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Abstract: This study concerns the optimization of an industrial recycling line; in other terms, this
paper aims to find the optimal processing parameters that allow for a decrease in the loss of stress
crack resistance (SCR) using a notched crack ligament stress (NCLS) test and an increase in the gain
of the elongation at break, flexural modulus, and Izod impact strength of a polyethylene (PE) blend
before and after recycling. The recycling line is composed mainly of a mono- and twin-screw extruder
and a filtration system. Hence, the research question is as follows: How can we optimize the recycling
process, without compromising the mechanical properties of recycled polyethylene (PE) blends? To
answer the research question, Taguchi’s design of experiment and grey relational analysis (GRA) for
multiobjective optimization was applied. Experiments were performed according to L16 standard
orthogonal array based on five process parameters: mono-screw design, screw speed of the mono-
and twin-screw extruder, melt pump pressure, and filter mesh size. Based on grey relational analysis
(GRA), the optimal setting of process parameters was identified, and a barrier screw and a higher
screw speed for both extruders were allowed to have optimal mechanical properties. Furthermore, the
analysis of variance (ANOVA) indicated that the mono-screw design and screw speed of the mono-
and twin-screw extruder significantly impact the mechanical properties of recycled polyethylene
(PE) blends.

Keywords: mechanical recycling; polyethylene (PE); stress crack resistance (SCR); grey relational
analysis (GRA); analysis of variance (ANOVA)

1. Introduction

The growth of populations and incomes have increased global plastics production; it
has doubled, reaching 460 million tons (Mt) in 2019 [1]. This rapid growth is due to the good
properties and low cost of plastic. Thanks to its versatility, this material is used in several
fields such as packaging, textile, transport, and construction [2]. Global annual plastic
waste increased by more than double between 2000 and 2019. Most of the plastic waste
comes from applications with lifespans of less than five years: packaging (40%), consumer
products (12%), and textiles (11%) [1]. Indeed, only 9% of plastic waste was recycled,
while 19% was incinerated and almost 50% was landfilled. The remaining 22% was burned
or leaked in the environment [1]. The proliferation of plastics negatively impacts the
environment because of the emission of greenhouse gas emissions, since the production
of virgin plastics requires the transformation of petroleum into monomers, which is an
energy-intensive mechanism. This process generated more than 400 million tons (Mt) of
greenhouse gas emissions in 2012 [3]. Protecting the environment involves reducing plastic
footprints and enhancing recycling. Basically, recycling techniques can be classified in three
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categories: physical recycling (primary and secondary recycling), chemical recycling, and
energy recovery (incineration) [4–6]. Physical recycling, also called mechanical recycling, is
the most used technique, consisting of several operations (collecting, separating, washing,
drying, and extrusion) that aim to obtain a recycled polymer with higher mechanical
properties [7].

Mixing polymers during extrusion is one of the most important factors that influences
recycled blend properties [8,9]. Some qualitative visualization techniques had demon-
strated that the mixing quality of polymer is affected by the design of the mixing element.
The capability to create a high shear rate was an essential property that enhanced mixing.
It was found that the best emplacement of the mixing element is just after the melting zone.
Moreover, screw speed was also an important factor that influenced mixing quality, and
among all the mixing elements tested, the pineapple screw offered the best mechanism for
polymer mixing [8]. The recycling line under study is equipped with a mono- and twin-
screw extruder and a filtration system. Each piece of equipment has several parameters. To
optimize the process’s parameter, a design of experiment was completed based on Taguchi
coupled with grey relational analysis (GRA).

The Taguchi method helps to design and analyze experiments [10]. It has proved its
efficiency to significantly reduce the number of trials without compromising the quality
of products. However, this method has been developed to optimize a few performance
characteristics. Studying multiple performance characteristics requires using the Taguchi
method combined with other methods [11]. Some researchers have highlighted Taguchi’s
quality loss function to determine optimum conditions during the parameter design stage
for optimizing multiple quality characteristics in manufacturing processes [12,13]. The
fuzzy logic Taguchi method was used by several researchers to optimize processes with
multiple performance characteristics [14,15]. Some researchers used the Taguchi coupled
with grey relational analysis (GRA) to optimize process parameters; Huang and Lin applied
the grey relational analysis for the optimization of machining parameters of wire EDM [16].
Fung and al. studied the grey relational analysis to obtain the optimal parameters of
the injection molding process for mechanical properties of yield stress and elongation
in polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) composites [17]. C. L. Lin
used the Taguchi method and grey relational analysis to optimize turning operations with
multiple performance characteristics [18].

As mentioned before, this paper focuses on the optimization of the industrial recycling
line composed of several pieces of equipment such as extruders and filtration systems. This
industrial line is dedicated to recycling polyethylene (PE) blends, which will be used to
produce corrugated pipes. The main objective of this study is to investigate the effect of
process parameter (RPM, filter mesh size, melt pump pressure, and mixing element) on
the mechanical properties of (PE) a polyethylene (PE) blend, such as elongation at break,
flexural modulus, Izod, and stress crack resistance (SCR).

2. Materials and Methods
2.1. Recycling Line and Materials

The recycling line consists of several components, which can be divided into two
sections: the first (single-screw extruder + filtration system) for decontamination, and the
second (twin-screw extruder) for homogenization (Figure 1).
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The reference blend tested was composed of recycled high molecular weight polyethy-
lene (rHMW) and recycled high-density polyethylene (rHDPE) (Table 1).

Table 1. Blend’s composition.

Composition Rate (%)

rHMW 62.5

rHDPE 37.5

Two screw designs were tested in the mono-screw extruder: a barrier screw and a
screw equipped with Maddock and pineapple mixer (Figure 2).
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Figure 2. (a) Barrier screw (b) Screw with Maddock and pineapple.

The temperatures of the mono- and twin-screw extruder were chosen depending on
the polymer blend composition (Tables 2 and 3).

Table 2. Mono-screw extruder temperatures.

T (◦C) 220 240 235

Zone 1 2–4 5–7

Table 3. Twin-screw extruders temperatures.

T (◦C) 200 210 215 225 235 220

Zone 1 2 3 4 5–7 7–12

2.2. Experimental Methodologies
2.2.1. Tensile Test

Tensile tests were performed in accordance with ASTM D638-14, on five dog-bone-
shaped specimens (specimen type IV) cut from a 3.2 mm thick molded plate (Figure 3).
Tensile tests were carried out on a lab integration machine with a crosshead speed of
50 mm/min at room temperature 23 ◦C. Elongation at break was determined from stress–
strain curves [19].
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2.2.2. Bending Test

Bending tests were performed in three-point bending mode with a crosshead speed of
10 mm/min according to ASTM D790 on five test rectangular specimens (Figure 4) [20].
The flexural modulus was determined from stress–strain curves.
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2.2.3. Impact Test Izod

An Izod test is a standardized impact test used to measure the energy absorbed by
a material when a notched specimen is subjected to a sudden impact load. This test was
performed on an Izod impact tester according to the ASTM D256-10 [21].

The 8 notched specimens with a V-shape notch, with dimensions that are illustrated in
Figure 5, were tested using a pendulum. The energy absorbed by the specimen during the
test indicates the material’s toughness and its impact resistance.
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2.2.4. Notched Crack Ligament Stress (NCLS)

Based on ASTM F2136, this test method is intended to assess slow crack growth
(SCG) for polyethylene (PE) resin. In other terms, this test is used to control the tenacity
of materials. The test specimen (Figure 6), which is obtained from compression-molded
plaques, is notched and immersed in a solution composed of distilled water and 10% Igepal,
at a temperature of 50 ◦C. Five specimens were placed at a single ligament stress level in a
bath maintained at 50 ◦C, the weight tube was attached to the lever arm of each specimen,
and the time to failure of all specimens was recorded [22].
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2.3. Design of Experiments
2.3.1. Line’s Parameters

The design of experiments (DOE) approach based on the Taguchi method has been
applied in several studies related to composite and polymer processes [23–25].

By using strategically this method, it is possible to study the effect of several variables
at one time, and to study inter-relationships and interactions [26–28].

The objective of this paper is to study the effect of recycling line parameter on the
mechanical properties of recycled polyethylene (PE) blends and to determine the optimal
parameters configuration of the line.

The parameters considered were as follows: the screw design of the mono-screw
extruder, the screw speed of the mono- and twin-screw extruder, the mesh size of the filter,
and the pressure of the melt pump. Taguchi orthogonal arrays (OA) were used to build the
experimental matrix. Table 4 shows the parameters and their levels in the experiments.
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Table 4. Experimental parameters and their levels.

Factors Parameters Levels

A Mono-screw design Maddock + Pineapple Barrier screw

B Screw speed 1 (mono-screw extruder) 80 90

C Pressure melt pump (bar) 35 40

D Filter mesh size (µm) 200 300

E Screw speed 2 (mono-screw extruder) 210 225

2.3.2. Taguchi Orthogonal Arrays (OA) Design

The Taguchi experimental design, called orthogonal arrays (OAs), consists of a set
of fractional factorial designs which ignore interactions and concentrate on main effect
estimation. Orthogonal arrays can be viewed as plans of multifactor experiments where
the columns correspond to the factors, the entries in the columns correspond to the test
levels of the factors, and the rows correspond to the tests (Table 5).

Table 5. Experimental design based on experimental values.

Exp. No. Mono-Screw Design
Screw Speed
(Mono-Screw

Extruder)

Melt Pump
Pressure Mesh Size Filter

Screw Speed
(Twin-Screw

Extruder)

1 Maddock + Pineapple 80 35 200 210

2 Maddock + Pineapple 80 35 300 225

3 Maddock + Pineapple 80 40 200 225

4 Maddock + Pineapple 80 40 300 210

5 Maddock + Pineapple 90 35 200 225

6 Maddock + Pineapple 90 35 300 210

7 Maddock + Pineapple 90 40 200 210

8 Maddock + Pineapple 90 40 300 225

9 Barrier screw 80 35 200 225

10 Barrier screw 80 35 300 210

11 Barrier screw 80 40 200 210

12 Barrier screw 80 40 300 225

13 Barrier screw 90 35 200 210

14 Barrier screw 90 35 300 225

15 Barrier screw 90 40 200 225

16 Barrier screw 90 40 300 210

3. Results and Discussions
3.1. Results of Experiments

After setting the experimental parameters for each experiment, 16 experiments were
conducted using Taguchi orthogonal arrays (Table 5). Four characterization tests were
carried out on the recycled materials. In other terms, the response features were elongation
at break, flexural modulus, Izod impact strength, and stress crack resistance (SCR).

Since the study concerns an industrial line that recycles post-consumer and post-
industrial plastics from all sources, the physicochemical properties of its materials change
depending on the batch. To overcome this complexity, for each test, three samples were
characterized before and after they had been recycled, and the gain of each property was
calculated for all the tests (Table 6).
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Table 6. Data summary of experiments.

Exp. No. A B C D E Elongation at
Break (%)

Stress Crack
Resistance (%)

Flexural
Modulus (%)

Izod Impact
Strength (%)

1 1 1 1 1 1 210 −81.2 19.2 22.3

2 1 1 1 2 2 43 −79.4 30.4 25.7

3 1 1 2 1 2 122 −80.1 2.6 35.2

4 1 1 2 2 1 100 −80.3 33.3 38.4

5 1 2 1 1 2 177 −87.2 19.3 21.1

6 1 2 1 2 1 271 −82.7 28.2 25.8

7 1 2 2 1 1 19 −81.9 8.8 14.3

8 1 2 2 2 2 181 −80.6 33.7 15.2

9 2 1 1 1 2 134 −64.5 12.9 17.9

10 2 1 1 2 1 237 −75.5 13.2 26.3

11 2 1 2 1 1 31 −79.3 8.0 22.4

12 2 1 2 2 2 182 −72.2 4.4 22.8

13 2 2 1 1 1 94 −63.1 11.3 17.5

14 2 2 1 2 2 174 −57.4 7.7 19.5

15 2 2 2 1 2 118 −72.6 14.9 17.5

16 2 2 2 2 1 255 −61.3 20.2 19.5

To investigate which processing parameters significantly affect the mechanical proper-
ties of the recycled blends, graphics were drawn using Minitab to shows the effect of each
parameter on each recycled blend’s property (Figures 7–10).
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The graphics show that the design of the mono-screw extruder significantly influences
the gain of elongation at break and the loss of SCR (stress crack resistance), while the
pressure of the melt pump and the screw speed of the twin-screw extruder impact the gain
of Izod impact strength and flexural modulus, respectively.

Since the process has 4 response features, and each parameter has a significative impact
on only one property, the Taguchi method should be coupled with grey relational analysis
(GRA) to figure out the optimal parameters configuration that improve the mechanical
properties under study of the recycled blend.

3.2. Grey Relational Analysis

Grey relational analysis (GRA) is a method that combines all the considered per-
formance characteristics into a single value that can be used as the single characteristic
in optimization problems. This approach is based on the normalizing of data, and the
calculation of grey relational grade (GRG) using grey relational coefficient (GRC) [29].

3.2.1. Normalization of Responses Values

Normalization of response values are completed to transfer the original sequence to a
comparable sequence. Numerical results are normalized between 0 and 1. The normaliza-
tion can be divided to two types depending on the expected nature of the response.

The first normalization is ‘the smaller the better’ values, where the lowest values of
the function are expected. The second one is ‘the higher the better’, where the highest
values of the results are expected.

Since the objective of the study is to find the parameters that allow for the production
of a recycled material with optimal properties, accordingly, ‘the higher the better’ is the
normalization criteria that is considered.

The formula for ‘the higher the better’ normalization criteria considered is as follows:

Xi(k) =
Yi(k)− minYi(k)

maxYi(k)− minYi(k)
(1)
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where

- Xi(k): value after the grey relational generation.
- Yi(k): the original data.
- min Yi(k): smallest value of the response Yi(k).
- max Y(k)i: largest value of the response Yi(k).

Hence, the normalized values of the responses are calculated and presented in Table 7.

Table 7. Normalized experimental results.

Exp. No.
Normalization

Stress Crack
Resistance

Elongation at
Break

Flexural
Modulus

Izod Impact
Strength

1 0.2 0.76 0.56 0.33

2 0.26 0.09 0.91 0.38

3 0.24 0.41 0.06 0.86

4 0.24 0.32 1 0.99

5 0 0.63 0.56 0.28

6 0.17 1 0.84 0.47

7 0.18 0 0 0

8 0.21 0.64 1 0.04

9 0.77 0.46 0.37 0.15

10 0.42 0.87 0.4 0.49

11 0.26 0.05 0.26 0.33

12 0.20 0.65 0.1 0.35

13 0.81 0.3 0.34 0.13

14 1 0.62 0.21 0.21

15 0.49 0.4 0.59 0.57

16 0.89 0.94 0.42 1

3.2.2. Grey Relational Grade

The grey relational grade (GRG) is used to measure the correlation between the
measurement spaces factor and the target sequence after a grey relational generation of
the discrete sequence. The GRG depends on grey relation coefficient γi(k), which can be
calculated using the following equation:

γi(k) =
∆min+ξ∆max

∆0i(k) + ξ∆max
(2)

where

- ∆0i =||X0(k)− Xi(k) || : which is the difference of the absolute value between the
target sequence X0(k) and the comparison sequence Xi(k).

- ξ: distinguishing coefficient: 0.5.
- X0(k): the target sequence.
- Xi(k): the calculated sequence.
- ∆max = max ∆0i(k)
- ∆min = min ∆0i(k)

After the calculation of the GRA coefficient, the grey relational grade can be calculated
by the following equation:

γ =
1
n

n

∑
i=1

γi(k) (3)
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Table 8 shows the grey relational coefficients and grades for each experiment.

Table 8. Grey relational coefficients and grey relational grades.

Exp. No.
Grey Relational Coefficient

Grey Relational
Grade

RankingStress Crack
Resistance

Elongation at
Break

Flexural
Modulus

Izod Impact
Strength

1 0.38 0.75 0.53 0.46 0.53 7

2 0.4 0.33 0.4 0.45 0.395 15

3 0.4 0.4 0.41 0.82 0.507 8

4 0.4 0.42 0.86 0.69 0.592 3

5 0.32 0.47 0.46 0.4 0.412 14

6 0.38 0.59 0.44 0.43 0.46 12

7 0.38 0.35 0.33 0.33 0.347 16

8 0.39 0.53 0.56 0.33 0.452 13

9 0.68 0.49 0.38 0.36 0.477 10

10 0.46 0.93 0.47 0.48 0.585 4

11 0.4 0.42 0.64 0.42 0.470 11

12 0.5 0.63 0.38 0.43 0.485 9

13 0.73 0.49 0.71 0.36 0.572 5

14 1 0.49 0.4 0.38 0.567 6

15 0.5 0.56 1 0.54 0.65 2

16 0.82 1 0.53 1 0.837 1

The higher grey relational grade (GRG) corresponds to the optimal parameter combi-
nation. Experiment 16 has the highest value of grey relational grade, and the factors set up
for this experiment are listed in Table 9.

Table 9. Parameter’s optimal values.

Parameters Optimal Values

Mono-Screw design Barrier screw

Screw speed (mono-screw extruder) 90

Pressure melt pump 40

Filter mesh size 300

Screw speed (twin-screw extruder) 210

The means of the grey relational grade for each level of the five parameters are
calculated in Table 8 and summarized in Table 10. Figure 11 shows the process parameter
in relation with the grey relational grade.
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Table 10. Mean value of the grey relational grade.

Factors Level 1 Level 2 Max-Min Rank

Mono-screw design 0.453 0.608 0.155 1

Screw speed (mono-screw extruder) 0.503 0.558 0.055 3

Pressure melt pump 0.526 0.529 0.003 5

Filter mesh size 0.506 0.554 0.048 4

Screw speed (twin-screw extruder) 0.558 0.502 0.056 2
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Based on Figure 11 and Table 10, the mono-screw design and the RPM of the two
extruders significantly influence the grey relational grade and, consequently, impact the
mechanical properties of the recycled blends.

3.3. ANOVA Analysis

The analysis of variance (ANOVA) is a method used in this study to find which
controllable parameter significantly affects the feature responses of this process. The main
objective of ANOVA is to extract from the results how much variation each factor causes to
the total variation observed in the results [30]. The ANOVA indicates the percentage and
the degree of influence of each factor on the results obtained (Table 11).

The results of the ANOVA indicate that the percentage of contribution of the mono-
screw design, screw speed of the mono- and twin-screw extruder, and mesh size of the
filter are 45.47%, 5.7%, 5.86%, and 4.3%, respectively (Table 11).

Figure 12 shows the contribution of the five parameters on the mechanical properties
of recycled blends. The mono-screw design is the most significant parameter for multiple
performance characteristics, while the melt pump pressure does not have a significant
impact on the process’s response.
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Table 11. ANOVA for multiple performance characteristics.

Factors Degrees of
Freedom

Sum of
Squares (SS)

Mean Squares
Variance (MS) F Value Contribution (%)

A 1 0.09641 0.09641 11.78 45.47

B 1 0.0121 0.0121 1.48 5.7

C 1 0.0001 0.0001 0.01 0.04

D 1 0.00912 0.00912 1.11 4.3

E 1 0.012432 0.012432 1.52 5.86

Error 10 0.081855 0.008186

Total 15 0.212018
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4. Conclusions

In this paper, the controllable parameters influencing the multiple performance charac-
teristics of recycled polyethylene (PE) blend were studied based on Taguchi’s experimental
design method. The optimal configuration of the recycling line was determined for the
improvement in the following mechanical properties: elongation at break, flexural modulus,
Izod impact strength, and stress crack resistance (SCR).

This research proposed the orthogonal array combined with the grey relational analysis
(GRA) to optimize multiple performances of recycling of PE blends when 5 parameters
where modified: mono-screw design, speed screw of the mono- and twin-screw extruder,
the pressure of the melt pump, and the mesh size of the filter.

The conclusions were summarized as follows:
1. It can be concluded from the grey relational grade and the response table for the

grey relational grade that the optimal levels of recycling process parameters for the desired
mechanical properties is the combination labelled as A2B2C2D2E1. In other terms, the
optimal parameter settings are as follows:

- Mono-screw design: Barrier screw
- Screw speed (mono-screw extruder): 90 RPM
- Pressure of the melt pump: 40 bar
- Mesh size of the filter: 300 µm
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- Screw speed (twin-screw extruder): 210 RPM

With this combination, it is possible to have a lower decrease in stress crack resistance
(SCR) and higher elongation at break, Izod impact strength, and flexural modulus.

2. Based on the ANOVA of the GRG results, it is observed that mono-screw design,
screw speed of the mono- and twin-screw extruder has a significant influence on the
recycled blend properties.

However, since the study concerned an industrial recycling line developed for recycled
polyethylene (PE) blends, these findings could not be generalized to other types of recycled
polymers. For perspective, a second part of this study is under preparation to analyze the
effects of process parameters on contaminants presents in polyethylene (PE) blends before
and after recycling.
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