
 

Water 2015, 7, 6017-6038; doi:10.3390/w7116017 
 

water 
ISSN 2073-4441 

www.mdpi.com/journal/water 

Article 

Estimation of Rainfall Associated with Typhoons over the Ocean 
Using TRMM/TMI and Numerical Models 

Nan-Ching Yeh 1, Chung-Chih Liu 2,* and Wann-Jin Chen 3 

1
 Department of Aircraft Engineering, Air Force Institute of Technology, Kaohsiung 82047, Taiwan;  

E-Mail: jim912104@gmail.com 
2

 Natural Sciences Teaching Center, Minghsin University of Science and Technology,  

Hsinchu 30401, Taiwan 
3

 Department of Electronic Engineering, Ta Hwa University of Science and Technology,  

Hsinchu 30740, Taiwan; E-Mail: wannjin@gmail.com 

* Author to whom correspondence should be addressed; E-Mail: ccliu@must.edu.tw;  

Tel.: +886-7-6250743; Fax: +886-7-3801663. 

Academic Editor: Kwok-wing Chau 

Received: 31 July 2015 / Accepted: 23 October 2015 / Published: 3 November 2015 

 

Abstract: This study quantitatively estimated the precipitation associated with a typhoon  

in the northwestern Pacific Ocean by using a physical algorithm which included the Weather 

Research and Forecasting model, Radiative Transfer for TIROS Operational Vertical Sounder 

model, and data from the Tropical Rainfall Measuring Mission (TRMM)/TRMM Microwave 

Imager (TMI) and TRMM/Precipitation Radar (PR). First, a prior probability distribution 

function (PDF) was constructed using over three million rain rate retrievals from the TRMM/PR 

data for the period 2002–2010 over the northwestern Pacific Ocean. Subsequently, brightness 

temperatures for 15 typhoons that occurred over the northwestern Pacific Ocean were simulated 

using a microwave radiative transfer model and a conditional PDF was obtained for these 

typhoons. The aforementioned physical algorithm involved using a posterior PDF. A posterior 

PDF was obtained by combining the prior and conditional PDFs. Finally, the rain rate 

associated with a typhoon was estimated by inputting the observations of the TMI (attenuation 

indices at 10, 19, 37 GHz) into the posterior PDF (lookup table). Results based on rain rate 

retrievals indicated that rainband locations with the heaviest rainfall showed qualitatively 

similar horizontal distributions. The correlation coefficient and root-mean-square error of 

the rain rate estimation were 0.63 and 4.45 mm·h−1, respectively. Furthermore, the correlation 

coefficient and root-mean-square error for convective rainfall were 0.78 and 7.25 mm·h−1, 
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respectively, and those for stratiform rainfall were 0.58 and 9.60 mm·h−1, respectively. The 

main contribution of this study is introducing an approach to quickly and accurately estimate 

the typhoon precipitation, and remove the need for complex calculations. 

Keywords: quantitative precipitation estimate; WRF model; RTTOV model; prior 

probability distribution function; conditional PDF; posterior PDF 

 

1. Introduction 

The precipitation of typhoons at the early stages can be estimated by satellites by using visible (VIS) 

and infrared (IR) channels. VIS channels are used only during daytime. Furthermore, IR channels are 

affected by cloud layers and, therefore, data for the region below the cloud top cannot be collected. 

Unlike IR channels, passive microwave channels enable observing precipitation conditions below clouds. 

Scientists have established the regression relation between the passive microwave brightness temperature 

(TB) and the actual rain rate (rain rate, RR); thus, an observed TB can be input into the regression 

relation to estimate the RR [1,2]. However, the disadvantage of regression relations is that they are 

restricted to specific periods, areas, and weather systems. Past studies have mentioned various methods 

in which passive microwave channels are used to estimate the precipitation intensity after 1990 [3–8]. 

Many studies have indicated that a major method for estimating the RR over the ocean involves using 

multi-satellite passive microwave channels. Satellite passive microwave data can provide estimates of 

precipitation over the vast ocean, where there is a lack of observed data, and the estimates are unot 

influenced by cloud layers [9]. In the presence of the emission and scattering effects of raindrops, the 

relationship between the TB and the RR is non-monotonic [10]. 

Since 2000, many scholars have used satellite passive microwave channels to estimate the RR. Chen 

and Li [11] utilized the passive microwave channel of the Tropical Rainfall Measuring Mission (TRMM) 

along with synchronous satellite data to research precipitation estimation. Kidd et al., [8] developed a 

precipitation estimation method by combining passive microwave and IR channels, and the time 

resolution of the method is 30 min. Different microwave channels have different physical features and 

limitations related to precipitation retrieval. Therefore, some researchers have used multiple channels to 

estimate the RR and to increase the dynamic range of precipitation retrieval [12,13]. Kummerow et al., [14] 

presented the Goddard profiling algorithm for passive-microwave-data-based RR estimation. 

Although the passive microwave sensor has become the preferred choice for estimating precipitation 

associated with typhoons over the ocean, an IR sensor is superior for estimating long-period precipitation 

since the passive microwave sensor has extremely low time resolution [15–17]. Clearly, the use of  

RR estimation algorithms is restricted to the ocean [18–20]. Since the ocean has low emissivity 

(approximately 0.5) and a low (cold) radiation background, regions where precipitation occurs show  

a high (warm) radiation rate (emissivity close to 1.0). Therefore, precipitation locations over the vast 

ocean can be easily identified. 

Information on the type of land feature, such as whether an area is snow covered, a desert, or  

semi-arid [18,21–23], is necessary when estimating precipitation on land. Thus, it is difficult to conduct  

a study of land precipitation by using emission data. Studies on land precipitation retrieval typically 
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focus on scattering data [24,25]. High-frequency microwave channels can be used to estimate land 

precipitation [4,5,18,21,23]. 

Overall, although satellite precipitation data are quantitative and provide spatiotemporal coverage 

over the ocean [26], they contain uncertainties and have limitations [27]. Therefore, many studies have 

evaluated, improved, and used satellite-based rainfall data for different areas [28–30]. Moreover, the 

accuracy of satellite-based rainfall data for different locations, seasons, and weather systems has been 

evaluated [31,32]. 

Moreover, a strong relationship exists between the rainfall intensity and water resources management. 

Water resources management involves the activity of planning, developing, distributing, and managing 

the optimum use of water resources, such as reservoir operation, rainfall runoff, water supply planning, 

irrigation system, and so on. 

For example, Chau et al., [33] illustrated that the provision of an accurate and timely rainfall forecast 

is a key factor in reservoir operation. Meanwhile, Wang et al., [34] tried to improve the forecasting 

accuracy of annual runoff time series using numerical models and empirical models. Although a physical 

method has shortcomings such as requiring complex computations and being time consuming, regression 

relations used in a physical method do not change with time and place, similar to statistical methods. The 

time required to establish a relationship between the RR and attenuation index is longer than the time 

needed to establish a relationship between the RR and multi channels’ TB. Furthermore, a Bayesian 

method is a complex and time-consuming physical method in advance. This study simulated the TB of 

typhoons before their occurrence by using the Weather Research and Forecasting (WRF) and Radiative 

Transfer for TIROS Operational Vertical Sounder (RTTOV) models. The TB was then transferred to the 

attenuation index. Finally, a lookup table for the attenuation index and RR was constructed using a 

Bayesian approach. The following step merely involves transferring the observed TB to the attenuation 

index and then estimating the RR of typhoons by using the lookup table. Consequently, the use of 

time-consuming physical methods can be avoided. The main contribution of this study is providing a 

method that can quickly and accurately estimate the typhoon rain rate. 

This paper is organized as follows. In Section 2, we briefly review a theory used in this study;  

the theory presents the relationship between microwave observations (transferred to the attenuation 

index) and RR. In Section 3, we detail the basis of our methodology, including the physical algorithm, 

established rainfall threshold, and Bayesian approach. In Section 4, case validation and the results of this 

study are discussed. Finally, conclusions are presented in Section 5. 

2. Theory 

During rainfall, rain droplets over the ocean absorb and emit radiation. Therefore, the TB increases 

with the RR, implying that the TB can be used for precipitation estimation. The relationship between  

the TB and RR is shown in Figure 1 [35]. The text in the right side of Figure 1 describes the frequency 

and polarization of TMI which correspond to each line. For example, TB10V is the 10 GHz vertical 

polarization. Figure 1 was simulated as the standard atmosphere. For example, the standard atmospheric 

pressure was 1013.250 hPa. 
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Figure 1. Ideal plot of brightness temperature (TB) versus rain rate (RR) over the ocean for 

the Tropical Rainfall Measuring Mission Microwave Imager (TMI) channels [35]. The text 

in the right side of Figure 1 describes the frequency and polarization of TMI which correspond 

to each line. 

The microwave TB and RR do not have a one-to-one relationship [36]. If an equation relating them  

is developed directly, it would not be applicable to precipitation estimation. The attenuation index 

developed by Petty [12] is determined according to the difference between vertical polarization and 

horizontal polarization, and it is referred to as the P value. It is used to obtain the relationship between 

the TB and RR. The definition of the P value is as follows: 

OHOV

HV

TBTB

TBTB
P

,, −
−

≡  (1)

where VTB  and HTB  denote the vertical polarization TB and horizontal polarization TB, respectively, 
and OVTB ,  and OHTB ,  represent the values of VTB  and HTB  under identical atmospheric conditions 

after the removal of the effect of rain clouds. The p value ranges from 0 to 1. The value 1 indicates that 

clouds and rain are absent from the field of view (FOV) of the satellite, whereas 0 indicates that the 

optical thickness in the FOV becomes extremely opaque because of clouds and rain [37]. Figure 2 shows 

the inverse relation between precipitation intensity and the attenuation index [35]. The results of Figure 2 

were calculated by Equation (1) using the data of Figure 1. The P10, P19, P37, and P85 in the Figure 2 

indicate the attenuation index at 10, 19, 37, and 85 GHz of TMI. Figure 1 was simulated using typhoon 

cases. Therefore, they are more suitable for estimating the rain rate of the typhoon. In Figure 2, it was 

found that the attenuation index at 85 GHz approaches zero for RR just above 1 mm/h and, thus, the error 

of RR estimation from P would be significant at a higher rainfall rate, especially for typhoon cases. 

Therefore, the 85 GHz data are not used in this study. 
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Figure 2. Relationship between attenuation index and RR for TMI channels [35]. The P10, 

P19, P37, and P85 in Figure 2 indicate the attenuation index at 10, 19, 37, and 85 GHz of TMI. 

3. Methodology 

3.1. Physical Algorithm 

In the precipitation estimation method proposed in this study, the WRF model is used to simulate  

the vertical hydrometeor distribution of a typhoon over the western Pacific. The vertical hydrometeor 

distribution is the standard output products of WRF. The hydrometeor distribution is then inputted  

into the RTTOV model to simulate the TBs of the TMI channels, and a conditional probability distribution 

function (PDF) is constructed using the output of the WRF and RTTOV models. Moreover, a prior  

PDF is constructed using 3,115,544 PR precipitation data over the ocean. Finally, the posterior PDF is 

obtained on the basis of Bayesian theory. Therefore, a lookup table of the probability of occurrence  

of various RR corresponding to the attenuation index of TMI channels can be constructed. In other 

words, a rain rate can be estimated when the satellite observations are converted to the attenuation index. 

The complete flowchart for precipitation estimation is shown in Figure 3. The dotted square represents 

the processing procedure of the model, which includes the WRF and RTTOV models, and the dashed 

square represents the processing method of the satellite. 

3.2. Establishing a Threshold for Rain 

To obtain the precipitation threshold of each TMI channel over the northwestern Pacific during 

summer, TRMM swaths that were within the range of the northwestern Pacific from June to October of 

2009 and 2010 were obtained. There were a total of 2242 TRMM swaths, which included observed 
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values of the TMI and PR. Within the 2242 TRMM swaths contains 127,382 PR data points corresponding 

to the absence of rain. Histograms of the TB for each TMI channel in the absence of rain were drawn 

(Figures 4–8). Samples that were within ±1 of the standard deviation were reanalyzed excluding outlier 

and possibly noisy data. The average TB values of each channel represented the precipitation threshold 

(Table 1). 

 

Figure 3. Flowchart for precipitation estimation proposed in this study. 

 

Figure 4. Histograms of the TB for the TMI in the absence of rain: (a) TB10V and  

(b) TB10H. 
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Figure 5. Histograms of the TB for the TMI in the absence of rain at 19 GHz: (a) TB10V 

and (b) TB10H. 

 

Figure 6. Histogram of the TB for the TMI in the absence of rain at 21 GHz. 

 

Figure 7. Histograms of the TB for the TMI in the absence of rain at 37 GHz: (a) TB10V 

and (b) TB10H. 
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Figure 8. Histograms of the TB for the TMI in the absence of rain at 85 GHz: (a) TB10V 

and (b) TB10H. 

Table 1. Precipitation thresholds and standard deviations for TMI channels. 

Frequencies Threshold (Mean) Standard Deviation 

10-V GHz 175.78 K 1.27 K 
10-H GHz 93.78 K 2.39 K 
19-V GHz 218.77 K 2.73 K 
19-H GHz 163.46 K 5.05 K 
21-V GHz 248.21 K 3.41 K 
37-V GHz 228.09 K 2.39 K 
37-H GHz 175.74 K 5.05 K 
85-V GHz 276.17 K 1.63 K 
85-H GHz 260.77 K 3.76 K 

3.3. Prior PDF 

The main difficulties are constructing the prior and conditional PDFs [38] and obtaining numerous 

and distinct samples to extend the distribution range of the P value and RR. The objective of this study 

was to estimate the RR associated with typhoons that may impact Taiwan. Therefore, near-surface RR 

data were collected by using the PR for a nine-year period (2002–2010), from June to November, over 

the northwestern Pacific and South China Sea regions (longitude 110°–155° E, latitude 5°–35° N), and  

the data were used to construct the prior PDF. 

The minimum measurable echo intensity was 17 dBZ, which is equal to an RR of 0.7 mm·h−1 [39].  

A total of 15,480 swaths and over 60 million observation data were obtained over the South China Sea 

and northwestern Pacific in the nine-year period. The number of RR data used in this study to construct  

the prior PDF was 3,115,544. 
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The symbol “+” in Figure 9 is used to represent the RRs near the nadir of the curve. The x coordinate 

represents the RR, and the y coordinate represents the prior PDF. The solid line represents the probability 

distribution obtained by fitting a logarithmic normal distribution to the portion of the curve marked  

by “+” symbols. 
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Figure 9. Rain rate distribution-PR (near nadir). Points marked by “+” represent the RRs 

near the nadir of the curve, and the solid line denotes the probability distribution. 

3.4. Conditional PDF 

Calculating the conditional PDF mainly involved calculating the probability distribution of the p value 

at different RRs. Numerous samples are required to obtain the relevant statistics and increase the dynamic 

range of the P value and RR. For this purpose, most of the chosen typhoons were moderate or strong 

when conducting the simulation. 

The conditional PDF was calculated by WRF model to simulate various vertical hydrometeor 

distributions such as rain, snow, hail, and graupel, that is the standard output products of WRF.  

The results of hydrometeor sensitivity can be found in Yeh et al., [40]. According to Chien et al., [41], 

an analysis was made on the respective advantages and disadvantages for various combinations of different 

model parameters. The study used WSM6 (WRF Single-Moment) scheme in the microphysics option, 

YSU (Yonsei University) scheme in the boundary layer option, and KF (Kain-Fritsch) scheme in the 

cumulus option. These vertical hydrometeor distributions were inputted into the RTTOV model to 

obtain the TB of the TMI channels. RTTOV stands for Radiative Transfer for TOVS and is a very fast 

radiative transfer model for nadir-viewing passive visible, infrared, and microwave satellite radiometers, 

spectrometers, and interferometers. Fifteen typhoons occurring over the northwestern Pacific (Table 2) 

were simulated. 
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Table 2. Fifteen typhoons considered for constructing the conditional probability density function. 

Number Typhoon Nane Typhoon Strength Simulation Time (UTC) 

1 BOLAVEN Strong 2012/8/25 1800–2012/8/26 1800 
2 GUCHOL Strong 2012/6/17 0600–2012/6/17 0600 
3 NANMADOL Strong 2011/8/25 1800–2011/8/26 1800 
4 SONGDA  Strong 2011/5/26 1200–2011/5/27 1200 
5 SINLAKU Strong 2008/9/12 0600–2008/9/13 0600 
6 PRAPIROON Medium 2012/10/11 1800–2012/10/12 1800 
7 JELAWAT Medium 2012/9/28 0000–2012/9/29 0000 
8 SANBA Medium 2012/9/14 1200–2012/9/15 1200 
9 HAIKUI Medium 2012/8/6 0000–2012/8/7 0000 

10 MUIFA Medium 2011/8/3 0600–2011/8/4 0600 
11 CHABA Medium 2010/10/27 1800–2010/10/28 1800 
12 MEGI Medium 2010/10/21 0000–2010/10/22 0000 
13 FANAPI Medium 2010/9/17 1200–2010/9/18 1200 
14 LUPIT Medium 2009/10/18 0000–2009/10/19 0000 
15 PARMA Weak 2009/10/4 0600–2009/10/5 0600 

3.5. Posterior PDF 

Nine years of near-surface RR data were used to construct the prior PDF, and the WRF model  

was used to simulate the vertical hydrometeor distribution and surface RR for 15 typhoons and to 

calculate the P value, which was then simulated using the RTTOV model; subsequently, the conditional 

PDF was constructed. Finally, According to Bayesian theory, the posterior PDF derived from the prior 

and conditional PDF, and the posterior PDF could be used along with satellite observations to estimate 

the RR associated with a typhoon. In other words, the rain rate of typhoon was estimated by inputting 
the vector ),,( 371910 PPPP =

  into the lookup table (posterior PDF). The physical meaning is that the 

probability distribution of the RR is estimated using a certain known observation vector ),,( 371910 PPPP =
 . 

There are two advantages of using the model when the Bayesian approach is used to estimate 

precipitation. First, the model can simulate a massive amount of data and a wide range of RRs. In the 

statistical point of view, a large amount of data can improve its reliability. Additionally, a large amount 

of data can also expand the range of RR estimation and its accuracy. Second, the RR can be estimated 

instantly without any calculations. The advantage of the Bayesian approach can be found in Chiu and 

Petty [38]. In addition to the Bayesian approach, the relationship of P and RR, as shown in Figure 2, can 

also be used to estimate the RR. The result of the RR estimation can be seen in Section 4.2. Meanwhile, 

additional descriptions have been added to Section 4.2. 

4. Validation and Discussion 

4.1. Analysis of TB 

To clearly understand the differences between the simulated TB and the observed TB, a quantitative 

analysis of the TB was performed by considering typhoons in only a selected region. The region 



Water 2015, 7 6027 

 

 

considered for quantitative analysis and the corresponding number of data for each typhoon are listed  

in Table 3. 

Table 3. Information on the simulated typhoons. 

No. Typhoon Name Scan Time (UTC) 
The Range of Quantitative Analysis Data 

Number 

Correlation 

Coefficient North Latitude East Longitude 

1 BOLAVEN 2012/8/26 759 23 29 125 133 3437 0.74 

2 GUCHOL 2012/6/17 1848 19.5 24 125 130 1846 0.87 

3 NANMADOL 2011/8/26 842 15.5 19 122 126 1020 0.64 

4 SONGDA 2011/5/27 609 17 22.5 121.5 126 1921 0.73 

5 SINLAKU 2008/9/12 1912 22 26.5 121.5 125.5 1297 0.79 

6 PRAPIROON 2012/10/12 709 17 23 126 132 3117 0.78 

7 JELAWAT 2012/9/28 1508 23 28 123 128 1960 0.83 

8 SANBA 2012/9/15 347 21.5 26 126 131 1840 0.8 

9 HAIKUI 2012/8/6 1820 24 30 121.5 128 2589 0.7 

10 MUIFA 2011/8/3 1841 21.5 27 128 134 2682 0.77 

11 CHABA 2010/10/28 1016 23 28 127 131 1553 0.88 

12 MEGI 2010/10/21 1330 21.5 27 128 134 2156 0.84 

13 FANAPI 2010/9/18 620 21.5 25.5 123 128 1575 0.84 

14 LUPIT 2009/10/18 1434 15 21 131 137 2307 0.82 

15 PARMA 2009/10/4 2232 17 22 117 122 1691 0.72 

The precipitation lookup table was constructed by using frequencies of 10, 19, and 37 GHz to estimate 

the precipitation. Therefore, the quantitative analysis involved these three frequencies for the vertical 

and horizontal polarization. The correlation coefficient of the TB of each channel was calculated, and  

the average correlation coefficient of six channels was obtained. The average correlation coefficients  

of the observed TB and simulated TB were obtained. The correlation coefficients of the 15 typhoons are 

listed in Table 3. The conditional PDF was constructed using the TB and RR of the 15 typhoons, and  

the average correlation coefficient between the simulation and observation is 0.78. 

Validation of TB Simulation 

The conditional PDF was constructed by considering the 15 typhoons. The 10 GHz vertical polarization 

for the typhoons is discussed in this section. 

Typhoon Nanmadol occurred on 26 August 2011 at 0842 UTC, and its track number is 78483. Figure 10 

shows the satellite IR image at 0830 UTC. Clearly, the center of typhoon Nanmadol was approximately 

located to the east of the Philippines (latitude 17.5° N, Longitude 123.5° E). The cloud rainband shows  

a symmetrical and complete structure, indicating that Nanmadol was a strong typhoon. 

Figure 11a shows the TB observations of the TMI, Figure 11b shows the TB simulated by the 

RTTOV model, and Figure 11c shows the histogram of the TB for the region within the dashed square. 

The blue bar represents TB observations, and the yellow bar denotes the simulated TB. 

A qualitative analysis of Figures 11 and 12 shows that the center of the simulation of the typhoon is 

approximately identical in both figures and the entire simulation pattern is similar to the observed pattern 
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of the typhoon. The TB of the clear sky simulated by the model shows a value that is consistent with the 

observation. The TB of the simulated typhoon rainband is overestimated. 

 

Figure 10. Infrared (IR) image recorded at 0830 UTC on 26 August 2011. 

 

Figure 11. TB10V of Typhoon Nanmadol: (a) TMI observation; (b) Radiative Transfer for 

TIROS Operational Vertical Sounder (RTTOV) simulation; and (c) histogram for the region 

within the dashed square in the preceding panels. 
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Figure 12. TB10H of Typhoon Nanmadol: (a) TMI observation; (b) RTTOV simulation;  

and (c) histogram for the region within the dashed square in the preceding panels. 

The TB of the clear sky is identical in the simulation and observation (Figure 11c). The sizes of 

simulated and observed typhoons are similar. Therefore, the TB values of the clear sky within the dashed 

squares of the simulated and observed patterns are roughly identical. The highest TB of the rainband  

in Figure 11a is 230–240 K, and in Figure 11b, it is greater than 270 K. Therefore, the histogram of 

Figure 11c pertains to simulated TB values above 270 K. Figure 12 shows a similar situation. In other 

words, the simulation overestimated the TB in the rainband, because the WRF-model simulation of  

the precipitation associated with the typhoon was overestimated. The simulated RR was overestimated 

by the WRF model, and emissions dominated the 10 GHz frequency. Therefore, the simulated TB was 

overestimated because of emissions from raindrops, regardless of whether polarization was vertical  

or horizontal. 

The difference between the simulation time and observation time is 18 min. Overall, the intensity  

and the structure of the typhoon are similar in the TMI observation and simulation, and only the scale  

of the typhoon differs slightly between the simulation and the observation. Therefore, the correlation 

coefficient between the simulation and observation is only 0.64. 
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4.2. Validation of RR Estimation 

In this study, five complete typhoons, including 10 swaths scanned by the TMI in 2011 and 2012, 

were examined to verify the estimated precipitation. Information on the name, scanning time, and track 

number of the typhoons is presented in Table 4. Because there were few in situ observations (on islands 

and buoys), the verification was performed by considering the near-surface RR data recorded by the PR 

as the true value. RR verification was divided into quantitative analysis and qualitative analysis. 

Numbers 1 to 10 in Table 4 represent 10 cases. However, for some typhoons, nadir scanning by  

the PR did not encompass the full rainband of the typhoons. Therefore, quantitative analysis was not 

performed for case numbers 1 and 3. The average correlation coefficient for the other eight cases is 0.62, 

and the average root-mean-square for the other eight cases error is 4.45. The results of the average 

root-mean-square and RMSE showed that the proposed method can accurately estimate the typhoon  

rain rate. Overall, the position of the typhoon heavy rainfall could be displayed, but the heaviest rainfall 

intensity was underestimated. One of the key sources of the error is that this method does not use  

the high-frequency channel. One case in Table 4 is discussed in this section, and the quantitative analysis 

results of the other cases are presented in the Table 4. 

Table 4. RR validation cases. 

Number Typhoon Name Scan Time (UTC) Orbital Number Correlation Coefficient RMSE

1 MUIFA 2011/08/03 1307 78127 – – 
2 MUIFA 2011/08/03 1940 78131 0.52 3.48 
3 MUIFA 2011/08/04 1732 78146 – – 
4 NANMADOL 2011/08/29 0025 78524 0.78 2.67 
5 TEMBIN 2012/08/23 0943 84141 0.7 4.63 
6 TEMBIN 2012/08/26 0832 84187 0.58 4.27 
7 TEMBIN 2012/08/27 0736 84202 0.54 2.36 
8 SANBA 2012/09/12 0733 84451 0.44 6.05 
9 SANBA 2012/09/14 0540 84481 0.66 5.97 

10 JELAWAT 2012/09/28 1544 84706 0.72 6.14 

Case Study 

Figure 13 shows the estimated precipitation for typhoon Nanmadol. Figure 13a shows the RR estimated 

by the PR (hereinafter referred to as PR-RR), Figure 13b shows the RR estimated using the Bayesian 

method developed in this study (hereinafter referred to as TMI-RR), and Figure 13c shows a scatter plot 

of both types of estimates. In Figure 13a, typhoon Nanmadol consists of two regions with heavy 

precipitation. Region A is the southwestern sea area of Taiwan, and region B extends from the Bashi 

Channel to the southern part of the Taiwan Strait. In Figure 13b, the regions with heavier precipitation 

are located in regions A′ and B′, which match the locations of regions A and B in Figure 13a. Further 

analysis of Figure 13a,b regarding the intensity and range of heavy precipitation shows that the maximum 

PR-RR is higher than the maximum TMI-RR and that the range of the second greatest precipitation 

(yellow parts, 10–25 mm·h−1) of the TMI-RR is greater than that of the PR-RR. 
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Figure 13. RR estimation for Typhoon Nanmadol: (a) near-surface RR estimated by the PR 

(PR-RR); (b) RR estimated using the Bayesian method and the TMI data (TMI-RR); and  

(c) scatter plot of the PR-RR and TMI-RR. 

There is a possible reason for the discrepancy between Figure 13a,b regarding the intensity and range: 

the space resolution and accuracy of the PR-RR. The horizontal resolution (10 km) of the TMI is twice 

that of the PR (5 km), and the TMI-RR is the result of averaging smaller RR values and the maximum 

RR in the FOV. Another possible reason was the physics in models do not reproduce the typhoon 

environment well. The correlation coefficient between the PR-RR and TMI-RR is 0.78, and the 

root-mean-square error is 2.67 mm·h−1. 
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The TMI-RR for this typhoon did not exceed 30 mm·h−1, possibly because the heavy precipitation 

consists of individual short-range convective cells that average light precipitation in their vicinity. 

Finally, the maximum RR of the TMI-RR is smaller than that of the PR-RR, and the range of the second 

largest RR of the TMI-RR is greater than that of the PR-RR. 

For the case being discussed, the space resolution of the PR-RR is 5 km, which is suitable for 

observing a shorter range of convective precipitation. Therefore, a single grid point of RR can show  

a high precipitation value. By contrast, the space resolution of the TMI-RR is 10 km, and partial heavier 

precipitation and partial smaller precipitation in the FOV is easier to appear. These factors may cause  

the maximum RR of the TMI-RR to be smaller than that of the PR-RR, the RR range to be smooth,  

and the range of the TMI-RR to be greater than that of the PR-RR after averaging the precipitation 

distribution, as shown in Figure 13a,b. These are the differences in the precipitation features between the 

PR-RR and the TMI-RR. 

Although the space resolution of the PR-RR is superior to that of the TMI-RR, the precipitation 

estimation of the PR is based on using the radar reflectivity to retrieve the RR. Furthermore, comparing 

Figure 13a,b reveals that the swath of the TMI-RR is three times that of the PR-RR, and its utilization  

is superior to that of the PR-RR. 

Figure 14 shows the RR estimated by combining RR estimations from the 10, 19, and 37 GHz 

attenuation indices for Typhoon Nanmadol (hereinafter referred to as P-RR). In Figure 14, Typhoon 

Nanmadol consists of two regions where the areas that have the heaviest rain. Moreover, the locations 

of the two regions match the locations of regions A and B in Figure 13a. 

 

Figure 14. RR estimated using the 10, 19, and 37 GHz attenuation indice. 

Further analysis of Figure 14 regarding the intensity of the heavy precipitation shows that the 

maximum P-RR is lower than 15 mm·h−1. By comparing the TMI-RR and P-RR, the heavy rainfall 
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locations are similar and match the locations of the PR-RR, and the intensity of P-RR is significantly 

lower than the PR-RR. The possible season for the low P-RR values less than 15 mm·h−1 at high 

PR-RR above 25 mm·h−1 is that the Figure 2 is not a production for typhoons near Taiwan. Therefore, 

the proposed method provides better results than the approach in directly estimating the rain rate from 

the attenuation index. 

4.3. Precipitation Type Analysis 

Figure 15 shows all convective and stratiform precipitation of the eight swaths considered in this 

study and verified using the PR-RR. The type of rain was taken from PR data. The horizontal coordinate 

represents the PR-RR, and the vertical coordinate denotes the TMI-RR. Figure 15a represents convective 

precipitation and Figure 15b represents stratiform precipitation. The black dashed line is the straight line 

x = y. The purpose of classification verification is to determine the performance of different types  

of precipitation. 

 

Figure 15. Scatterplot of TMI-RR and PR-RR for (a) convective rainfall and (b) stratiform rainfall. 

An analysis of Figure 15a shows that some rainfall intensity values of the PR are greater than  

30 mm·h−1, and the corresponding rainfall of the TMI is less than 10 mm·h−1. The probability of heavy 

precipitation on a small scale is higher for convective precipitation. Regions A and B in Figure 13a,b are 

examples. The area which has the maximum RR is smaller than the FOV, and the RR of this area will  

be averaged. The PR-RR is averaged to the same horizontal resolution as the TMI. The maximum 

PR-RR can also be obtained by averaging it to the TMI resolution. The correlation coefficient between 

the TMI-RR and PR-RR is 0.78, and the root-mean-square error is 7.25 mm·h−1. 

Compared with Figure 15a,b shows that the points of the TMI-RR are below 5 mm·h−1, but the 

number of points of the PR-RR that reach 10–50 mm·h−1 is considerably smaller. The TMI-RR data  

are mostly located on the left side of x = y, whereas the PR-RR values are less than 20 mm·h−1. The right 

side of x = y contains PR-RR values greater than 30 mm·h−1, implying that the TMI-RR values are 

overestimating when the PR-RR values are less than 20 mm·h−1. The TMI-RR values are underestimating 

when the PR-RR values are greater than 30 mm·h−1. Iguchi et al., (2000) [42] showed that there are 
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differences in the coefficients in the reflectivity-rainfall rate relationship between different precipitation 

types as a result of larger raindrops in convective rain. Thus, an error in classification of convective 

actual type as stratiform type would lead to lower (by about 40%) estimated rainfall rate PR-RR than  

the actual value (and 2.5 times higher values for the opposite classification error). A possible reason  

for the high TMI-RR values above 20 mm·h−1 at low PR-RR less than 10 mm·h−1 values under stratiform 

rainfall is that they are errors in TRMM precipitation classification as the stratiform type while it is 

actually the convective type of rain, which leads to lower PR-RR values than actual RR. The correlation 

coefficient between the TMI-RR and the PR-RR is 0.58, and the root-mean-square error is 9.6 mm·h−1. 

Further analysis shows that the distribution of convective precipitation is different from stratiform 

precipitation. There are two possible reasons for this. First, the reliability of stratiform precipitation 

reaching 30 mm·h−1 is questionable because such high RR values do not occur in stratiform precipitation. 

However, if there is a TRMM classification error for these points, the results of the proposed method  

will underestimate even more significantly if they correspond to classification errors; second, the 

conditional PDF of Bayesian theory was constructed by considering 15 typhoons (heavy precipitation), 

and therefore, it is more suitable for heavy precipitation. In theory, high RR values are typical of convective 

precipitation. The most likely reason of the RR estimation error is that the physics in the models do not 

reproduce the typhoon environment well. 

There are two discussions from Figure 15a,b. First, the convection points are less than the stratiform 

points and for stratiform retrievals TMI-RR and PR-RR seem to compare better than for convective 

retrievals. Second, PR-RR greater than 30 mm·h−1 are underestimated by TMI-RR, which could be 

explained partially by possible rainfall classification errors (actual stratiform rainfall classified as  

the convective type). The conclusion from Figure 15 is that stratiform rainfall (excluding possible bad 

classification points) is overestimated by the proposed method and convective rainfall is underestimated 

(including high convective PR-RR rainfall classified as stratiform from TRMM algorithms in Figure 15b). 

5. Conclusions 

This study simulated the TB for various atmospheric conditions by using the WRF and RTM models 

and then compared the simulated TB with the TB observed by the TRMM/TMI. The result showed  

that the simulated TB was virtually identical to the observed TB at 10 GHz under clear sky conditions, 

but the rainband was overestimated in the simulation. This discrepancy might originate from the difference 

between the simulation time and observation time. Another concern was the difference between actual 

weather conditions and the weather conditions corresponding to the initial data used in the simulation.  

In other words, the physics in the models do not reproduce the typhoon environment well.  

For future research, further improvement in the model physics is absolutely needed to better simulate the 

typhoon environment. 

A qualitative comparison of the TB simulated by the RTM, the TB observed by the TMI, and  

the simulated TB of clear sky showed that the rainband of the typhoons considered and the typhoon 

patterns were similar to the observed rainband and patterns. A quantitative analysis of 15 typhoons 

yielded an average correlation coefficient of 0.78. However, a key point is that the conditional PDF was 

as extensive as possible and could simulate all rainfall intensities and confirm the simulation accuracy. 

Therefore, the posterior PDF can be used for a variety of rainfall intensities. 
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The attenuation index can reduce the impact caused by the environment background, and it has  

the advantage of decreasing with an increase in the RR; both these parameters have a one-to-one 

relationship. Therefore, the attenuation index is extremely suitable for use in precipitation estimation 

research. A Bayesian method was used to estimate the RR of 10 satellite swaths, and the estimated 

values were verified by comparing them with PR-RR. A qualitative analysis of the RR pattern, intensity, 

and location showed that the TMI-RR was underestimated in short-range heavy precipitation, and  

the location and range of the TMI-RR were similar to those of the PR-RR. Eight typhoon events were 

quantitatively analyzed, and the average correlation coefficient between the TMI-RR and the PR-RR  

is 0.63; the root-mean-square error is 4.45 mm·h−1. Furthermore, the correlation coefficient of the 

convective RR is 0.78, and the root-mean-square error is 7.25 mm·h−1 with a systematic underestimation 

of RR compared to PR. The correlation coefficient of the stratiform RR is 0.58, and the root-mean-square 

error is 9.6 mm·h−1 with a systematic overestimation of RR compared to PR. The results show that  

the Bayesian method can be effective in estimating the RR associated with typhoons over the ocean. 
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