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Abstract: Sediment in river is usually transported during extreme events related to intense rainfall
and high river flows. The conventional means of collecting data in such events are risky and costly
compared to water discharge measurements. Hence, the lack of sediment data has prompted the use
of sediment rating curves (SRC). The aim of this study is to explore the abilities of artificial neural
networks (ANNs) in advancing the precision of stream flow-suspended discharge relationships
during storm events in the Shiwen River, located in southern Taiwan. The ANNs used were
multilayer perceptrons (MLP), the coactive neurofuzzy inference system model (CANFISM), time
lagged recurrent networks (TLRN), fully recurrent neural networks (FRNN) and the radial basis
function (RBF). A comparison is made between SRC and the ANNs. Hourly based water and sediment
discharge during 8 storms were manually collected and used as inputs for the SRC and the ANNs.
Results have shown that the ANN models were superior in reproducing hourly sediment discharge
compared to SRC. The findings further suggest that MLP can provide the most accurate estimates
of sediment discharge, (R2 of 0.903) compared to CANFISM, TLRN, FRNN and RBF. SRC had the
lowest R2 (0.765), and resulted in underestimations of peak sediment discharge (´47%).
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1. Introduction

Taiwan is located in a sub-tropic area and is often subjected to several storms and typhoons
during a monsoon season (June to August). The average annual rainfall ranges from 2500 mm/year
up to 3000–5000 mm/year in hilly regions. These typhoons induce severe hazards in the form of
flooding [1,2]. In comparison to global rivers, the ones in Taiwan have the largest discharge per unit of
drainage area, steepest slopes and a minute concentration time [3]. Furthermore, the poor geologic
formations (fragile sandstones) of the watersheds, especially in the upstream sections, result in heavy
deposition in the downstream regions due to the extreme rainfall events. Subsequently, Taiwanese
rivers are among the highest in the world in sediment concentrations [4].

Engineering designs, river basin management, water resources planning, reservoir management
and operation all depend on precise calculations/predictions of sediment loads for their successful
implementation. Direct sampling of sediment in rivers or reservoirs and sediment transport formulas
are among the popular means of estimating sediment loads and their respective transport. While direct
measurement is the most preferred and trusted method, it is not always practical during periods of
extreme events mainly because of safety reasons and accomplishing such a task is difficult. Besides
the above challenge, sediment monitoring programs are expensive and are therefore not frequently
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performed. Instead, monitoring programs are conducted on selected streams based on their importance.
Generally, in most streams, water level is measured, and is converted to water discharge using rating
curves. The lack of sediment measurements has prompted the wide adoption of sediment rating
curves in predicting sediment load in rivers. A power function relating sediment discharge and water
discharge over extended periods (usually more than 10 years) often defines good sediment rating
curves. In many instances though, establishing a single association between sediment discharge
(Qs) and water discharge (Q) is nearly an impossible task due to the dissimilarities in high flow
events discharge and their subsequent sediment concentration levels plus hysteresis [5]. Overall,
the appropriateness of regression means to developing good sediment rating curves is influenced
by the size and characteristics of sediments in a particular river [6]. There is, however, a concern in
applying such approaches in small-scale rivers mainly because the above methods were developed
from large rivers. Water energy discharge is generally a good means for estimating sediment transport
in huge rivers since these rivers have ample suspended materials for transport. On the contrary,
small-scale rivers rely on sporadic precipitation events and their impacts on upland regions.

Periodic and systematic observations of discharge are necessary to comprehend the temporal and
spatial variability of rivers. Traditional discharge mensuration methods initially measure cross section
areas and velocity. Current meters (like the Price meter) are placed at selected locations in the river to
measure velocity. Nevertheless, during flood periods, it is nearly impossible to submerge the meter,
even if additional weights are utilized. In addition, the riverbed is highly unstable under high flow
conditions due to accelerated erosion and deposition making sound water depth impossible; hence,
complicating cross section area measurements. Not only is the riverbed unstable during floods, but flow
is highly unsteady too, and there is a great variation between water stage and subsequent discharge.
As a result, precise discharge mensuration should be conducted promptly. Besides, the environmental
conditions when conducting discharge measurements during flood periods are nowhere near an
ideal state. Flood threatens the safety of individuals completing the tasks and often results in a
loss of measurement instruments. Therefore, employing current meters under such conditions is
less recommended.

The sediment transport process resembles a very complex and non-linear system. Yet, empirical
methods (regressions) are continuously used in spite of their shortcomings in depicting the non-linear
environment. It is indispensable that non-linear system methods like artificial neural networks
(ANNs), which are appropriate for complex and non-linear systems, are adopted. ANNs are
proficient in modelling any arbitrary complex non-linear process that relates meteorological data
to sediment transport and loads [7]. They have gained popularity over the years in terms of
hydrological applications. Beginning in the early 90’s, ANNs have been successful in hydrology
fields. They have been applied in rainfall-runoff modeling [8]. Tfwala et al. [9] used a multilayer
perceptron and coactive neurofuzzy inference system model to estimate missing stream flow records.
Melesse et al. [10] used MLP to predict the suspended load of river systems. Further, several authors
have successfully used different types of ANNs, e.g., generalized regression neural network [11],
feed forward propagation [12] and time lagged recurrent network [7]. Therefore, the objective of this
study is to explore the accuracy of different artificial neural networks (five) in predicting sediment
discharge using hourly data collected from 8 typhoon events in Taiwan. These different neural network
algorithms are then compared with SRCs, which are currently used in the study area.

2. Materials and Methods

2.1. Study Area

Our study area was in the Shiwen River, located (21˝3414811 North latitude and 120˝4715611 East
longitude) in the southern part of Taiwan (Figure 1), an area receiving an average of 2300 mm/year.
The main stream length is about 22.3 km in a watershed covering about 90 km2. The average slope is
about 0.03 with a design flood at 1300 m3/s (50-year return period). The watershed is dominated by
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forests and agricultural activities as shown in Figure 2. Forests occupy about 88% of the watershed,
and agriculture about 7%. Built up land within the watershed comprises about 0.1%. The poor geologic
characteristics of Taiwanese watersheds [4] combined with the location of agricultural activities in
this watershed (Shiwen) have resulted in increased rates of sediment discharge as demonstrated
by [2]. Figure 2 shows the location of agricultural fields in close proximity to the main river channel,
which could be another source of the accelerated sediment volumes in this river.

Figure 1. Shiwen River watershed.

Figure 2. Land use map for the Shiwen watershed.
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2.2. Sediment Rating Curve

Fluvial data were manually collected on an hourly basis during 8 typhoon events, which occurred
between 2012 and 2014. In total, 170 observations were made. These included water velocity, cross
section area (for computing discharge) and suspended sediment concentration (SSC). SSC samples were
analyzed in the hydraulic laboratory at the National Pingtung University of Science and Technology.
Filtration methods, evaporation and weighing of remaining sediments were employed. Analysis results
have shown that suspended sediments from the different storms constituted fine sediments (clay to fine
sand material) in the range 0.001 to 0.1 mm. To enable comparison between the developed sediment
rating curves (SRC) and ANN, the data sets were split into two for training and testing purposes.
Therefore, in a data set comprising 170 observations of hourly water discharge and suspended
discharge, regression analyses were performed using 80% (136 data sets) for the establishment of
a sediment rating curve, employing the most frequently used power function. The remaining 20%
(34 data sets) were used for testing the developed SRC in estimating sediment discharge.

2.3. Artificial Neural Networks

ANNs are computational models that mimic how the human brain works [13]. They are made of
neurons as basic elements. The neuron will receive a signal (which represents inputs), process it using
different ANN configurations, and finally convert tit into results for intepretation. Inputs can be raw
data, or outputs from other processing elements (neurons) [14]. For ANNs to be successfully applied,
they need to undergo a learning procedure. This procedure can be grouped into either unsupervised
or supervised learning. The earlier procedure does not need information of known results to compare
the model’s result. On the contrary, the latter adjusts itself by utilizing known results to compare with
simulated outputs. Training is done over a specified number of epochs at which datasets consisting of
inputs and output are employed to modify connection strengths. Five neural networks were used in
this study and supervised learning was used in all of them. The used neural networks are governed by
Neurosolution software version 6 from Neurodimensions Inc. and further descriptions are given below.

2.3.1. Fully Recurrent Neural Networks (FRNNs)

Recurrent neural networks (Figure 3) are composed of at least one feedback connection at which
the output is fed back to inputs such that activation flows in a loop. This is contrary to feed forward
neural networks, in which there are no loops and outputs are associated only with inputs of elements
in successive layers. According to Martens and Sutskever [15], these types of neural networks can
store information about time, making them appropriate for predicting applications. They have been
successfully applied in several time series experiments. The architectures of FRNN are not limited to
form; however, they all possess two similar characteristics: They integrate some elements of multilayer
perceptron (MLP) and exploit the powerful non-linear representation capabilities of the MLP.

Similar to the human brain, ANNs learn to accomplish tasks by learning with examples (of input
configurations) and will adjust weights on the connections between network nodes. There are
numerous learning algorithms that are available for use to compute the required weight changes [9,16].
In the present study, to train the fully recurrent network, we adopted back-propagation through
time. This technique is founded on changing the FRNN from a feedback system to a feed-forward
system by collapsing the network with time [17]. Further, the FRNN was based on TahnAxon and
momentum algorithms.
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Figure 3. Architecture of the FRNN model.

Several combinations of the different core parameters, like number of processing elements
(neurons), hidden layers and data segregation methods, were tried. Based on observations made
by [18,19] that one hidden layer is enough for ANNs to estimate any complex non-linear function,
we used one hidden layer. The general architecture of the FRNN model used is shown in Figure 3,
in which there is 1 input (flow) and 1 output (in our case being sediment discharge) and a hidden
layer possessing 4 processing elements. In our study, processing elements were varied between 1 and
12 and the best combination was selected guided by the lowest root mean square error (RMSE) and
higher coefficients of determination scores. The conditions for training the FRNN model are shown
in Table 1. In total, there were 170 patterns of data from which 60% were used for training, 20% for
cross validation and 20% for testing. The training dataset was used to train the neural network by
minimizing errors. Cross validation data were used to determine the FRNN performance by regulating
the training process. Finally, we evaluated the overall performance by using the test data.

Table 1. Configurations of FRNN during training.

Training Variables Assigned Value

Step size 1
Momentum 0.7

Iterations 1000
Training threshold 0.001

2.3.2. Multilayer Perceptron (MLP)

MLP is characterized by having either one or more hidden layers with hidden neurons,
whose purpose is to enhance the relationship between specific inputs and the desired outputs.
With additional hidden layers, the computational power of the neural network in terms of statistics
is greatly enhanced. Despite this capabaility with increased hidden layers, several researchers have
proven otherwise. They have demonstrated that one hidden layer is enough for a neural network to
estimate any complex non-linear model/function [18]. Henceforth, we adopted a single hidden MLP
layer in this study.

As stated earlier, neural networks require training. MLP is trained by several backpropagation
algorithms. The overall function of training is to adjust the connecting weights accordingly in order to
attain higher accuracies in the desired output. At each connection weight configuration, errors and
accuracies can be determined by comparing the desired outputs to actual outputs [20,21]. In this study,
we use the momentum algorithm of the six available learning algorithms. Selection was based on the
algorithm that trained the network efficiently. The TahnAxon activation function was preferred as
the activation function of the model by the virtue of being successful in interrelating the input and
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output parameters based on [22]. Throughout all the simulations, we used a trial and error method to
determine appropriate hidden layer neurons (PE) for predicting sediments. The processing elements
were varied from 1 to 12. In total, there were 170 patterns of data from which 60%, 20% and 20% were
used for training, cross validation and testing, respectively.

Table 2 shows the condition of the training performance variables for the MLP and Figure 4 shows
the developed MLP architecture with a single input of water discharge from which sediment discharge
is estimated.

Table 2. Configurations of MLP during training.

Training Variables Assigned Value

Step size 1
Momentum 0.7

Iterations 5000
Training threshold 0.001

Figure 4. Architecture of the MLP model.

2.3.3. Time Lagged Recurrent Networks (TLRNs)

TLRNs are multilayer perceptrons (MLP) networks having their memory layer cramped to inputs.
This feature makes them best suited for time varying information. They have one main advantage
over MLPs; they require a small network size to learn temporal problems [23]. Further, they are less
sensitive to noise. The architecture of this network generally has 3 layers (input, hidden layer and
output) and a feedback connection from the hidden layer back to the input layer. TLRN provides a
number of memory structures at the input layer to choose from, but in this study we used the Laguerre
function as shown in Equation (1), (m is the memory resolution and z´1 denotes the delay operator
and i is 1, 2, 3 . . . ).

Li pz, mq “
b

1´ p1´mq2
`

z´1 ´ p1´mq
˘i´1

`

1´ p1´mq z´1
˘i (1)

We adopted the momentum setup as a learning rule for each layer, with the TanhAxon used as an
activation function. Processing elements and epochs were obtained through trial and error. A summary
of the conditions under which performance variables for the TLRN are trained is presented in Table 3
and Figure 5 shows a typical structure of the TLRN model.
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Table 3. Configurations of TLRN during training.

Training Variables Assigned Value

Depth in samples 10
Trajectory length 50

Momentum 0.7
Iterations 1000

Training threshold 0.001

Figure 5. Architecture of the TLRN model.

2.3.4. Radial Basis Function (RBF)

RBF networks are 2-layer feedforward neural networks whose main application is in supervised
learning. The RBF adopts Gaussian transfer functions, instead of the typical sigmoidal functions
used by MLPs and combines the advantage of generality and reduced computational complexity [24].
Unsupervised technique rules (called k-nearest neighbour rule) are responsible for adjusting the
Gaussians widths and centers, after which supervised learning is utilized in the output layer.
In principle, the radial basis functions architecture is similar to that of multilayer perceptron (Figure 4).
They have an input layer that receives signals and transfers them to hidden layer(s); these in turn,
performs non-linear computations. Finally, there is a linear output layer that supplies the results of
the network. RBF’s good estimation probabilities have been studied in [25]. Due to their non-linear
approximating probabilities, they are able to model complex mappings. Tabari et al. [26] likens RBF
learning to finding an optimum surface in a multifaceted space. Basically, the optimum surface can be
found using three metric functions in the RBF model (Box Car, Dot product and Euclidean) and in this
study we used the Euclidean metric function. The Euclidean distance, ϕj, between the input xi and the
connection weight, wj, can be computed by Equation (2) [25].

ϕj pxiq “ Φ

˜
ˇ

ˇ

ˇ

ˇxi ´wj
ˇ

ˇ

ˇ

ˇ

σj

¸

(2)

where φ, a radial basis function, which is assumed to be a Gaussian exponential, is obtained by
computing vector wj, for the jth hidden unit, the Gaussian basis function smoothing parameter for the
j neuron is denoted by σj. Finally, a linear output will yield RBF as:

yk “

h
ÿ

j“1

wkjϕj pxiq “ WT
k ϕ (3)



Water 2016, 8, 53 8 of 15

where yk is a linearly weighted sum of the outputs of the hidden units, WT
k is the weight vector for

the output neuron k and ϕ is the vector of outputs from the hidden layer; T indicates the transpose
operation. Conditions of the training performance variables of the RBF were similar to those of MLP
above (Table 2).

2.3.5. Coactive Neurofuzzy Inference System Model (CANFISM)

The coactive neurofuzzy inference system model (CANFISM) is housed in the adaptive
neuro-fuzzy inference model (ANFISM). In ANFISM, directional links connect the several nodes
making up the model. Each node is characterized by a node function with fixed or adjustable
parameters. It may be used as a universal approximator of any non-linear function [26]. In addition,
it mixes adjustable fuzzy inputs with a modular neural network to precisely compute complex
functions. CANFISM has added advantages in that it can integrate the same topology neural
networks and fuzzy inference. Pattern-dependant weights between the consequent layer and the fuzzy
association layer is the key feature of CANFISM models [27]. Fuzzy inference systems are also valuable
since they combine membership functions with the power of “black box” neural networks. Gaussian
and bell are the frequently applied membership functions. In this study we employed the Gaussian
fuzzy axon type. The advantage of this function is that the fuzzy synapses help in characterizing
inputs that are not easily discretized [26]. A modular network applying effective rules to the inputs
is an additional strength of this kind of CANFISM. The modular network number corresponds to
network output number and the processing elements of each network are the same as the membership
functions. Table 4 below shows the configurations adopted for the CANFISM model.

Table 4. Configurations of CANFISM during training.

Training Variables Assigned Value

Membership function Gaussian
MFs per input 2
Fuzzy model TSK

Step size 1
Momentum 0.7

Iterations 1000
Training threshold 0.001

In this study, the CANFISM architecture used had one input and one output. The hourly flow data
manually observed at Shiwen were used as inputs to the model and sediment discharge was our desired
output (Figure 6). From the 170 patterns of data, 60%, 20% and the remaining 20% were adopted for
training, cross validation and testing of the CANFISM model, respectively. Membership functions to be
assigned in each network input were alternated between 1 and 12 and the best was selected on the basis
of correlation coefficients. From the different methods within the CANFISM network (Quickprop, Step,
Levenberg-Marquardt, Momentum, Delta-Bar-Delta and ConjugateGradient), we used the momentum.
Besides, there are several transfer functions, which include Tanh, Linear Sigmoid, Bias, Sigmoid, Linear
and Linear Tanh that were tried to determine one that would give the best estimations of sediments
in the studied river. From these, we selected the TanhAxon transfer function. The best network
architecture for each function was determined by trial and error and was selected based on minimum
errors and maximum coefficients of determination criteron.
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Figure 6. Architecture of the CANFISM model.

2.4. Data Normalization

Prior to any statistical procedures, data are usually processed to filter out outliers and extreme
values, fill in missing values, etc. Similarly, before using the flow data in our neural network models,
data were processed following Equation (4) [8,28] and were scaled in the 0 to 1 range. To eliminate
biases, we further randomized the flow data before splitting them into the different group sets,
i.e., training, cross validation and testing groups.

Xnorm “
Xi ´ Xmin

Xmax ´ Xmin
(4)

where Xnorm is the scaled input value, Xi is the actual unscaled observed discharge input; Xmin and
Xmax refer to the minimum and maximum values of the flow data, respectively.

2.5. Models Evaluation

The performance of the neural network models applied is assessed using a variety of standard
statistical indexes. In our study, we evaluated the models using three indexes; root mean square
error (RMSE), mean absolute error (MAE) and coefficient of correlation (R) (Equations (5) to (8)).
The RMSE is a measure of the residual variance. MAE measures how close forecasts or predictions are
to eventual outcomes. The R is a measure of accuracy of hydrological modeling and is generally used
for comparison of alternative models.

RMSE “

d

řN
i“1

`

yi ´ y1i
˘2

N
(5)

MAE “
1
N

N
ÿ

i“1

ˇ

ˇyi ´ y1i
ˇ

ˇ (6)

r “
řN

i“1 pyi ´ yq
`

y1i ´ y1
˘

b

řN
i“1

`

yi ´ y1
˘2 řN

i“1
`

yi ´ y1
˘2

(7)

where yi represents the observed sediment discharge, y1i is the alternative methods-estimated sediment
discharge values; y and y1 are the mean values of the equivalent parameter; and N is the number of
data under consideration. Furthermore, a linear regression y “ α1x`α0 is used to evaluate the model
performance statistically, where y denotes the dependent variable (alternative methods); x represents
the independent variable (observed); α1 the slope and α0 the intercept.
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3. Results and Discussion

3.1. Sediment Discharge—Based on Rating Curve

The sediment rating curve developed by the Q-Qs relationship for available data at Shiwen is
presented in Figure 7. In the discharge (Q)-sediment discharge (Qs) relationship, the SRC yielded an R2

of 0.621 as shown in Figure 7a. The best fit power function in Figure 7a shows more variation between
the observed and estimated discharge. After using the allocated data set (34) for testing, the observed
and estimated R2 is 0.765 as seen in Figure 7b.

Figure 7. Scatter plot of (a) relationship between water and sediment discharge, (b) observed and
estimated sediment discharge.

3.2. Sediment Discharge—Based on ANNs

Determining the processing elements (PE) (or membership functions (MF) in the case of CANFISM
is a difficult task in neural network models [20]. Despite being a difficult task, it is an essential factor,
which may influence the overall neural network performance. Hence, determination of PE/MF was
the first process during the learning process for the adopted ANNs. The number of PE/MF was varied
between 1 and 12 and the optimum PE was found at 7 for the MLP, which outperformed the other
models based on minimum RMSE and maximum R2 as shown by Figure 8. A summary of the model’s
statistical performance is shown in Table 5. The RMSE values of MLP for training, cross validation
and testing stage were 1431.536, 1091.186 and 721.175 kg/s, respectively. The R2 values in the training,
cross validation and testing stages were 0.709, 0.823 and 0.912, respectively.

Figure 8. MLP accuracy under a different number of processing elements.
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Table 5. Summary of model statistical performance.

Model Stage RMSE (m3/s) MAE (m3/s) R2

MLP
Training 1431.536 893.700 0.709
Cross validation 1091.186 706.003 0.823
Testing 721.175 509.584 0.912

CANFISM
Training 1380.483 890.829 0.721
Cross validation 1122.562 758.043 0.826
Testing 775.401 591.837 0.906

TLRN
Training 1329.052 900.685 0.743
Cross validation 1187.290 786.072 0.801
Testing 860.803 649.805 0.878

FRNN
Training 1400.275 931.110 0.716
Cross validation 1142.759 775.643 0.823
Testing 782.847 588.648 0.906

RBF
Training 1359.194 844.964 0.729
Cross validation 1124.365 730.110 0.828
Testing 859.805 615.986 0.876

Figures 9–11 presents the observed and the estimated sediment discharge for training, validation,
and testing stages for the MLP model, respectively. From the figures it can be seen that the patterns of
predicted sediment data are almost similar to observed data in all stages (training, cross validation
and testing). At the intial stage, i.e., training, MLP seem to have overestimated sediment discharge for
smaller peaks as seen during the 5th, 18th, 27th hour, etc. During cross validation, MLP underestimated
sediment discharge around the 6th hour. Finally, at the final stage (testing), there is not much variation
between the observed and the predicted sediment discharge. The corresponding scatter for the testing
stage (MLP) is shown in Figure 12 together with all the adopted models.

Figure 9. Observed and estimated sediment discharge at training stage using MLP.

Figure 10. Observed and estimated sediment discharge at cross validation stage using MLP.
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Figure 11. Observed and estimated sediment discharge at testing stage using MLP.

Figure 12. Scatter plots of observed and estimated discharge using the five ANNs compared to SRC.

3.3. Comparison of Models

An effort was made to compare SRC and ANN for predicting sediment discharge during storm
events. To enable comparison, the 170 data sets were divided into 2 and 3 for multiple linear regressions
and ANNs, respectively. We used twenty percent (34 data sets) of the available data for testing and
comparing all the used models. The same data used to test the multiple linear regressions for SRC
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are used to test the developed ANNs. From the evaluation of these results, ANNs are superior to
conventional methods in estimating sediment discharge. The developed SRC yielded an R2 of 0.621
(Figure 7); however, during testing, the R2 shoots up to 0.765 to an almost similar R2 for the ANN
models as seen in Figure 12. Moreover, Figure 13 shows that the high SRC R2 obtained during the
testing stage may be misleading as it underestimated sediment discharge especially at the peaks and
overestimated low sediment discharge values when compared with observed Qs. The observed and
estimated peak Qs are shown in Table 6. The ANNs (MLP and FRNN = 1%), model peak Qs values
are almost similar to the observed values compared to the developed sediment rating curve (´47%).
Lin [28] observed that SRC can underestimate sediment load by as much as´73% and can overestimate
by as high as 224%. These findings demonstrate the inappropriateness of employing linear models in
solving non-linear and complex hydrological systems like that of Taiwan. Leahy et al. [14] concluded
that river studies are necessary but are a challenging mission because their hydrologic systems are
very complex. Boukhrissa et al. [29] compared a feed forward back propagation (FFBP) neural network
with sediment rating curves, and the FFBP model results showed high efficiencies in reproducing daily
sediment loads and global annual sediment yields.

Figure 13. Observed and estimated sediment discharge during the testing stage.

Table 6. The comparison of peak estimations of the different models in the test phase.

Observed MLP CANFISM FRNN TLRN RBF SRC Relative Error (%)

(Kg/s) MLP CANFISM FRNN TLRN RBF SRC

6402 5341 4954 5104 4689 4625 3414 ´17 ´23 ´20 ´27 ´28 ´47
6339 7312 7046 6701 7002 7062 4392 15 11 6 10 11 ´31
7520 7822 7760 7202 7095 7749 4775 4 3 ´4 ´6 3 ´37
3418 4768 4461 4218 4641 4087 3186 39 31 23 36 20 ´7
2160 2901 2977 2932 2872 2923 2437 34 38 36 33 35 13
5904 6671 6271 5936 5815 6197 4017 13 6 1 -2 5 ´32
6904 6969 6616 6243 5927 6595 4180 1 ´4 ´10 ´14 ´4 ´39
6065 4915 4584 4280 4123 4216 3244 ´19 ´24 ´29 ´32 ´30 ´47

4. Conclusions

Correct estimation of sediment discharge and consequently, sediment load is an essential
component in river management. The key objective of this study was to evaluate the accuracy
of artificial neural networks in estimating sediment discharge in rivers during storm events. Data
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collected during 8 typhoon events were used to establish a sediment rating curve and also acted as
inputs to the ANNs (MLP, CANFISM, TLRN, FRNN and RBF). Comparison of peak Qs estimates
revealed that SRC can underestimate Qs by as much as´47%, hence, compromising water management
projects. The study further shows that artificial neural networks can be successfully adopted in
this typhoon-prone region to aid in the precise estimations of sediment movement. Among the 5
ANN models, MLP performed best overall with an R2 of 0.903 obtained during application. Finally,
the inaccuracies associated with using SRC in estimating sediment loads and discharge can be overcome
by employing articial neural networks. Different catchments are likely to have different outcomes from
our findings; however, extensive data collection during storm events before applying the outlined
methodologies is recommended for better results.
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