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Abstract: This study explored the influence of the spatial resolution of a gridded weather dataset
when inputted in the soil and water assessment tool (SWAT) over the Garonne River watershed.
Several datasets are compared: ground-based weather stations, the 8-km SAFRAN product
(Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie), the 0.5◦ CFSR product
(Climate Forecasting System Reanalysis) and several derived SAFRAN grids upscaled to 16, 32, 64 and
128 km. The SWAT model, calibrated on weather stations, was successively run with each gridded
weather dataset. Performances with SAFRAN up to 64 or 128 km were poor, due to a contraction of
the spatial variance of daily precipitation. Performances with 8-km SAFRAN are similar to that of the
aggregated 16- and 32-km SAFRAN grids. The ~30-km CFSR product was found to perform well at
some sites, while in others, its performance was considerably inferior because of grid points where
precipitation was overestimated. The same problem was found in the calibration, where data at some
weather stations did not appear to be representative of the subwatershed in which they are used to
compute hydrology. These results suggest that the difference in the representation of the climate was
more influential than its spatial resolution, an analysis that was confirmed by similar performances
obtained with the SWAT model calibrated on the 16- and 32-km SAFRAN grids. However, the better
performances obtained from these two weather datasets than from the ground-based stations’ dataset
confirmed the advantage of using the SAFRAN product in SWAT modelling.
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1. Introduction

Semi-distributed hydrological models, such as the soil and water assessment tool (SWAT [1–3]),
are becoming increasingly popular for water management at the watershed scale [4–6]. One of the
main challenges in achieving their maximum potential is accessing proper data with which to establish
them. Over the years, distributed soil and land cover data have become more reliable and accessible,
mainly because of advancements in remote sensing and a relatively slow rate of evolution. On the
other hand, climate data are often problematic. Indeed, climate networks are prone to being irregularly
spaced and operated over non-uniform periods. This problem may be circumvented by using gridded
climate products constructed from weather reanalysis systems, such as CFSR (Climate Forecasting
System Reanalysis) from NOAA’s National Centers for Environmental Prediction [7], ERAs from the
European Centre for Medium-Range Weather Forecasts (ECMWF) [8], SAFRAN (Système d’Analyse
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Fournissant des Renseignements Adaptés à la Nivologie) from Météo-France, the French weather
agency [9–11] or the L15 dataset covering North America and described in Livneh, et al. [12].

The use of gridded climate products within an SWAT setup has recently been investigated.
For instance, Fuka, et al. [13] found that the CFSR product provides stream discharge simulations
that are as good as or better than models forced by using traditional weather stations. A similar
conclusion was reached by Auerbach, et al. [14]. Dile and Srinivasan [15] highlighted the benefit of
using the CFSR product in sparsely-monitored regions, where CFSR and conventional databases led to
minor differences, except for one watershed for which CFSR gave much higher average annual rainfall.
Monteiro, et al. [16] demonstrated the superiority of one ERA-derived product (WFDEI–WATCH
Forcing Data ERA Interim [17]) over CFSR. Finally, in a comparison of several weather input datasets,
de Almeida Bressiani, et al. [18] concluded that the best option for hydrological simulation is the CFSR
product used with ground-based climate data.

Others studies explored the influence of weather data density based on a single type of
data. For instance, Chaplot, et al. [19] used 1–15 precipitation gauges in two different watershed
(51 and 918 km2) and showed the benefit of a higher data resolution. Such a benefit is however
more substantial when larger watersheds are considered and remains limited on small ones [20].
Based on this conclusion, subsequent studies aimed at increasing the spatial resolution of ground-based
weather data, in order to improve simulation. Different methods were tested to interpolate weather
data to better fit model requirements (from the nearest neighbour method to the Thiessen polygon
method) [21–23]. In all of these studies, the main concern was the common lack of density when using
ground-based weather station data, which could be offset using interpolated data.

Working with gridded data, the opposite question may be considered. The resolution of the
gridded climate products has indeed continued to improve over the years, to the point that operational
hydrologists have to question the need for more detailed information when a model such as SWAT
has a user-defined areal discretisation that influences the way in which climate data are manipulated
within the model. As the model uses a single weather chronicle per subbasin, a too high spatial
discretisation of the weather data may lead to a loss of information to the hydrological model.

This study uses an SWAT setup on the Garonne River, a large alpine watershed in southwest
France (55,000 km2), to explore the relationship between the resolution of gridded climate data and
SWAT internal discretisation using: (i) available ground-based data; (ii) the native 8-km SAFRAN
product; (iii) the native ~30-km CFSR product; and (iv) several aggregated, upscaled SAFRAN-derived
databases that may better suit the SWAT model discretisation and could avoid a loss of information.

2. Materials and Methods

2.1. Study Site

The 525-km Garonne River is an important French fluvial system that flows into the Atlantic
Ocean after draining a watershed extending over an area of 55,000 km2 across three distinct geographic
entities: the Pyrenees to the south, with peaks exceeding 3000 m, the plateau of the Massif Central to
the northeast that reaches up to 1700 m in altitude and the plain in between whose elevation is typically
less than a few hundred metres (Figure 1). The actual SWAT implementation, however, is limited to
the 50,000-km2 area upstream of Tonneins, where tides cease to influence the discharge.

The Garonne watershed offers diversified topography and land cover, good data availability,
good prior knowledge of the hydrological system [24] and some successful SWAT setups built around
available ground-based climate data [25–28].
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Figure 1. Location and elevation of the Garonne River watershed at Tonneins, with a 150-subwatershed
areal discretisation monitored by 21 gauging stations and several types of ground-based climate stations.

2.2. The SWAT Model

SWAT [1–3] is an agro-hydrological semi-distributed model that requires an areal discretisation
process that consists of dividing the watershed into subwatersheds based on the river network and
topography. SWAT then identifies hydrological response units (HRUs) within each subwatershed,
based on soil, land cover and slope information. HRUs are then used to compute a water balance
articulated around four reservoirs: snow, soil, shallow aquifer and deep aquifer. The main hydrological
processes include infiltration, runoff, evapotranspiration, lateral flow and percolation. Computation
is performed at the HRU level, aggregated at the subwatershed level, and flows are routed toward
reaches to the catchment outlet.

It is important to stress that SWAT uses only one climate data source per subwatershed to compute
its water balance, thus opening up the issue of optimal climate data spatial resolution. Nonetheless,
it has been successfully implemented in many locations worldwide to simulate a large range of water
components of the hydrological cycle [4–6].

ArcSWAT 2012, a GIS-based graphical interface [29], was used to identify the subwatersheds
and HRUs and to generate their associated input files. It should be noted that the number of
subwatersheds within SWAT is directly influenced by the resolution of the topography and by
a user-defined threshold that defines the minimum drainage area required to form the beginning of
a stream, since every river confluence corresponds to a potential subwatershed outlet. Extensive SWAT
and ArcSWAT documentation, including theoretical and technical manuals, can be consulted on the
SWAT website [30].
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2.3. Data Availability

Data sources for this study are presented in Table 1. River discharge data are available from
21 gauging stations spread over the watershed and covering the period from 2000 to 2010 (Figure 1).
Two climate datasets from Météo-France were compared: standard stations providing precipitation
at 36 sites, temperature at 28 sites, and solar radiation, relative humidity and wind speed at eight
sites (Figure 1) and the 8-km SAFRAN product providing all of the required variables at each grid
point [9–11]. SAFRAN uses the optimal interpolation (OI) method [31], which corrects background
values against all nearby observed data, applying a linear regression in which observations are
weighted by distance and associated error. In SAFRAN, the background values originate from the
ARPEGE meteorological model from the French meteorological agency [32] or the ECMWF operational
archives, while the observations are from a large range of datasets, such as ground-based climate
stations, snow monitoring networks, weather balloons and dropsondes.

Table 1. Data sources. CFSR, Climate Forecasting System Reanalysis.

Data Type Data Source Scale

DEM NASA/METI [33] Grid cell 90 m × 90 m
Land cover CORINE Land Cover [34] 1:100,000
Soil European Soil Database [35] 1:1,000,000
Climate (stations/SAFRAN) Météo-France [36] 8 × 8 km (SAFRAN)
Climate CFSR NOAA [7,37] 0.5◦ × 0.5◦

River discharge Banque Hydro [38]

The SAFRAN grid is constructed in three stages: interpolation of all atmospheric parameters to a
300-m vertical resolution, horizontal interpolation of the surface parameter and temporal interpolation.
A more comprehensive description of this process is reported in Durand, Brun, Merindol, Guyomarch,
Lesaffre and Martin [9] and Quintana-Segui, Le Moigne, Durand, Martin, Habets, Baillon, Canellas,
Franchisteguy and Morel [10].

A second gridded climate product, the CFSR grid, was used in this comparison [7]. Free access is
now provided to SWAT users via the Texas A&M University spatial sciences website [37] which
automatically creates SWAT-formatted input files. The CFSR has latitudinal and longitudinal
resolutions of 0.5◦, which over the Garonne watershed correspond to a resolution of ~35-km in
latitude and ~25-km in longitude. The CFSR was built around coupled atmospheric, oceanic and
surface modelling components, corrected with satellite, aircraft, radiosonde, pibal and in situ data
from both land and ocean [7]. Like SAFRAN, the data are interpolated according to the OI method,
as described in Xie, et al. [39] for land surfaces and Reynolds, et al. [40] for ocean surfaces.

2.4. Watershed Discretisation

As mentioned above, the SWAT model only uses one source of climate information per
subwatershed: the one nearest to the centroid. The number of information points used by the
model is therefore directly linked to the areal discretisation defined by the user during the SWAT
implementation phase. However, the delineation of the subwatersheds was initially based on the
need for a fair representation of all of the hydrological processes prevailing on the watershed and
on computing time allocation. In this project, data presented in Table 1 have been used to set up
the SWAT model. The watershed was divided into 150 subbasins to allow the representation of the
different hydrological behaviours highlighted by Probst [24]. HRUs were defined on soil, land use
and slope, retaining only information covering more than 10% of the subbasin area, as proposed by
Srinivasan [41].
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2.5. Aggregation of the SAFRAN Product

In order to evaluate the spatial appropriateness of the SAFRAN 8-km product against the SWAT
areal discretisation of the Garonne River watershed, other resolutions of the former were computed,
aggregating the gridded information to 16, 32, 64 and 128 km, respectively.

All climate datasets, including information from the ground stations, were then used in turn to
simulate the hydrology of the Garonne River. In the first step, a reference calibration was undertaken
based on the ground stations (Figure 1). SWAT was then run with the native SAFRAN product,
the native CFSR product and all SAFRAN-aggregated grids. During the second stage, new calibrations
were performed based on the native 8-km SAFRAN product and the SAFRAN product aggregated to
32 km (see Section 3.1). In all instances, performance values were computed and compared for the
2000–2010 period at a monthly time step.

2.6. Sensitivity Analysis and Calibration Process

Sensitivity analysis and calibration were undertaken within SWAT-Cup [42] using the SUFI-2
(Sequential Uncertainty Fitting 2) algorithm [43]. SWAT-Cup is an external software tool that allows
SWAT users to perform automatic calibrations [44]. They are then given the option of several calibration
algorithms, of which SUFI-2 is known to identify an appropriate parameter set in a limited number of
iterations [45].

A sensitivity analysis was performed, following the one-at-a-time procedure proposed by
Abbaspour [42]. Thirty two parameters were considered in the analysis (Table 2). Five runs were performed
over the 10-year period from 2000 to 2010, preceded by a three-year warming period (1997–2000).

Table 2. Parameters considered in the sensitivity analysis. HRU, hydrological response unit. For more
details on parameters name see [46].

Parameters Description Min. Max. Default

EPCO Plant uptake compensation factor 1 0 1
SURLAG Surface runoff lag time 0.5 1 4

GW_Delay Groundwater delay 0 500 31
GW_Revap Groundwater “revap” coefficient 0.02 0.2 0.02
GWQMN Threshold in the shallow aquifer for return flow to occur 0 5000 1000

GWHT Initial groundwater height 0 25 1
GW_SPYLD Specific yield of the shallow aquifer 0 0.4 0.003
SHALLST Initial depth of water in the shallow aquifer 0 50,000 500
DEEPST Initial depth of water in the deep aquifer 0 50,000 1000

ALPHA_BF Base flow alpha factor (days) 0 1 0.048
REVAPMN Threshold in the shallow aquifer for “revap” to occur 0 500 0
RCHRG_DP Deep aquifer percolation fraction 0 1 0.05

ESCO Soil evaporation compensation factor 0 1 0.95
CN2 (relative test) Soil conservation Services (SCS) runoff curve number −0.2 0.2 HRU

CANMX Maximum canopy storage 0 100 HRU
OV_N Manning’s “n” value for overland flow 0.01 30 HRU

SOL_AWC (relative test) Available water capacity of the soil layer −0.5 0.5 soil layer
SOL_K (relative test) Saturated hydraulic conductivity −10 10 soil layer
SOL_Z (relative test) Depth from soil surface to bottom of layer −500 500 soil layer

EVRCH Reach evaporation adjustment factor 0.5 1 1
EVLAI LAI at which no evaporation occurs from the water surface 0 10 3
SFTMP Snowfall temperature −10 10 4.5
SMTMP Snowmelt base temperature −10 10 4.5

TIMP Snowpack temperature lag factor 0 1 1
SMFMX Maximum melt rate for snow during the year (summer solstice) 0 20 1
SMFMN Minimum melt rate for snow during the year (winter solstice) 0 20 0.5

SNOW50COV Snow water equivalent that corresponds to 50% snow cover 0 1 0.5
SNOWCOVMX Snow water content that corresponds to 100% snow cover 0 100 1

SNO_SUB Initial snow water content 0 300 0
TLAPS Temperature lapse rate −10 10 −6
PLAPS Precipitation lapse rate −100 500 0
SNOEB Initial snow water content in elevation bands 0 300 0

Once the most sensitive parameters were identified (see Supplementary Materials for more
detail), 1500-run calibrations were performed as recommended by Yang, Reichert, Abbaspour,
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Xia and Yang [45]. The SWAT-Cup calibration was achieved sequentially from upstream to
downstream, one gauging station at the time, using the Nash–Sutcliffe efficiency criterion (NSe) [47] as
the objective function. NSe is a normalised metric allowing a comparison between the variance of the
observed dataset and the existing variance of residual errors between this same observed dataset and
the simulated one. It ranges from −∞ to 1 and is sensitive to large errors. It equals 0 when the model
is as accurate as the mean of the observed dataset and equals 1 when the model offers a perfect fit.

After calibration, the performance was evaluated using the same criterion, but calculated on the
root square of discharge values (NSeSqrt) in order to diminish the influence of large errors on the
metric. Indeed, the NSeSqrt is influenced more greatly by common flows and the error on the global
simulated volume [48,49].

3. Results and Discussion

3.1. Climate Data of Different Resolutions

Seven climate datasets were compared for the Garonne River watershed: the network of standard
ground stations, the 8-km SAFRAN product, SAFRAN aggregated to 16, 32, 64 and 128 km and the
30-km CFSR product. SAFRAN and CFSR come from a combination of meteorological simulations
and observations and may therefore possess a different spatial variance than the network of ground
stations. SAFRAN aggregation also results in a reduction in variance or, in other words, reduces its
ability to describe irregular, non-uniform precipitation patterns [50].

Ranges in the spatial variance of the daily precipitation are compared in Figure 2 for the watershed
of the Garonne River at Tonneins. As expected, aggregation smoothed out spatial irregularities,
which is evident in Figure 2 in the significant loss of large variance events when reducing the resolution
from the initial 8 km to the aggregated 128 km. On the other hand, not all precipitation events are
non-uniform, so it was mostly higher values of the variance distributions that were affected by the
aggregation process.
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Figure 2. Ranges of the spatial variance of daily precipitation for the seven climate datasets. The box
represents the 25th and 75th percentiles of the distribution; the line is the median; and the whiskers
extend to the most extreme values.

Figure 2 also illustrates the spatial variance of the precipitation reported by the network of ground
stations. The 8-km SAFRAN had a narrower and lower distribution and a lower median value than
the network of stations, but the use of information from many different sources and an 8-km resolution
allowed SAFRAN to report more irregular events. In practice, the variance of the network between the
16- and 32-km aggregated SAFRAN grids in terms of spatial variance was an indication of the factual
resolution of the irregularly-spaced climate stations. Finally, the CFSR product offered yet another
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distribution of the spatial variance of daily precipitation, which lay between the aggregated 32-km and
64-km SAFRAN grids.

The fact that the choice was made to break down the watershed into 150 subwatersheds limited the
number of local climate information points to 150 and raised the question of the optimal resolution of
climate data. Indeed, too high a resolution forced SWAT to disregard much of the information, and too
low a resolution forced SWAT to use the same information for many adjacent subwatersheds, whereas
the resolution of the climate grid had a direct influence on its ability to describe non-uniformities in the
precipitation patterns, as mentioned above. This issue is illustrated in Figure 3, which shows points of
local climate information used by SWAT. It is evident that SWAT was not able to make use of all of the
8-km information; it used most of the 16-km information and used nearly all of the information from a
resolution of 32-km and more. From this perspective, the 32-km SAFRAN grid was the closest to the
resolution of the station network, as was the 30-km CFSR product.
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Figure 3. Weather data used by the SWAT model when fed with each different dataset. The notation
143/872 indicates the number of grid points used by the model out of the grid points located over
the watershed (a higher first number indicates that the model used a grid point located outside
the watershed).

3.2. Hydrological Performance

Figures 4 and 5 compare the performance values (NSe and NSeSqrt) of the SWAT model calibrated
with the network of ground stations and run with each SAFRAN grid and the CFSR grid (values of the
calibrated parameters can be found in the Supplementary Materials). Using the data from SAFRAN did
not improve on the network of ground stations, except at two sites, Larra and Villefranche, where the
initial performance was unsatisfactory. Excessive aggregation was detrimental to SWAT performance,
as depicted by the much lower SWAT performance when operated with the 64- or 128-km SAFRAN
grids, while the other three resolutions were closer to one another in terms of performance.
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CFSR data produced heterogeneous performances, mostly similar to those obtained with the
8-, 16- and 32-km SAFRAN grids, and was even better than in the calibration for the St Béat station
(see Figure 1), but also for stations where the SWAT model completely failed to simulate the discharge.
When comparing different products, the fact that 8-, 16- and 32-km SAFRAN grids produced similar
performances, which were worse than the weather station data and for several stations, very different
from the CFSR performance values, indicated that it was not so much an issue of spatial resolution
than one of a different representation of the climate.

It is noteworthy that the performance of the Saint Béat and Valentine gauging stations declined as
the aggregation increased. Both stations are located in the Pyrenean part of the watershed, where the
model is quite sensitive to the snow-relative calibration [28].

As for the Larra and Villefranche sites, each site drains a single subwatershed, where no merging
with other subwatersheds can compensate for any errors in a climate series. These poor performance
values may also be a representation of a widespread problem when using in situ gauging stations:
weather data used to compute hydrological processes in a subwatershed could originate from a distant
gauging station and may not be representative of the subwatershed [13]. Indeed, when the weather
stations’ datasets were used in the SWAT model, computations in subwatersheds upstream of the
Villefranche and Truyère-Amont sites were performed using the same weather station, located in
the subwatershed upstream of the Truyère-Amont station (Figure 1). Unlike the Villefranche site,
no important loss in performance at Truyère-Amont was seen, suggesting that even though the
weather station was located close to the Villefranche watershed, it was not representative of that
particular system.

As for the CFSR grid, it proposed non-representative precipitation data in some areas. Indeed,
a detailed analysis of the hydrographs (not illustrated) revealed that CFSR forced SWAT to overestimate
discharges greatly at Larra and Laguepie, a problem that was then transmitted downstream to Verdun,
Loubéjac, Lamagistère and Tonneins, while discharge was underestimated at Millau and Sarrans.
When comparing hydrographs and hyetographs, it appeared that overestimations were mainly caused
by grid points where precipitation was overestimated when compared to the rest of the grid. This was
consistent with the findings of Dile and Srinivasan [15], who encountered the same situation over the
Blue Nile watershed.

In order to document the issue of SAFRAN and the network of stations not reporting exactly the
same climatology, it was decided to recalibrate SWAT alternately using the 8- and 32-km SAFRAN
grids, since the 8-km resolution described spatial non-uniformity better, and the 32-km resolution was
the closest to the network’s (values of calibrated parameters are provided as Supplementary Materials).

Here, Figures 6 and 7 show poorer SWAT performance values when calibrated with the network
of climate stations than with any of the two SAFRAN grids, which was consistent with previous
studies [13,18]. Better performance values at the Larra and Villefranche sites when using SAFRAN
tended to confirm that, at least for these two sites, climate stations were either non-representative or
included errors. Moreover, the performance at Tonneins, which integrates climate data across the entire
watershed, confirmed the superiority of the SAFRAN product. This highlights the benefit of using a
gridded dataset developed from the interpolation and cross-checking of weather data, which avoids
temporal gaps, is less influenced by very local events and guarantees space-time consistency for all
meteorological variables [11].

The performance of the 8- and 32-km SAFRAN grids was mostly similar, indicating that the grid
resolution did not have a considerable influence on the calibration. The largest gain was at Saint Béat in
the Pyrenees, where the 32-km resolution proved to be quite beneficial, as it was for the CFSR dataset.

In this case, the Pyrenean gauging stations do not behave differently from the other ones,
in opposition to the previous modelling step when running SWAT (reference calibration) with the
various upscale grids, which led to a loss in performance values at those sites. Moreover, for some of them
(St Beat, Roquefort and Portet), a gain in performance is obtained. These results confirmed the capacity of
the calibration to take full advantage of the available information, especially in mountainous regions.
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4. Conclusions

The implementation of a semi-distributed hydrological model generally involves breaking down
the watershed space into homogeneous units that are compatible with the dynamic computation of the
hydrological processes. In the case of the SWAT model, only one climate grid point per subwatershed,
the nearest one, was used for the calculations, raising the question of the optimal resolution of the
climate data. In this study, the 45,000-km2 Garonne River watershed at Tonneins, which drains a
substantial part of southwest France to the Atlantic Ocean, was used to compare three sources of
climate information in different formats and resolutions, namely the available climate station network,
the 8-km SAFRAN product and the ~30-km CFSR product. SAFRAN grids aggregated to 16, 32, 64
and 128 km were also explored.

A spatial breakdown of the Garonne watershed into 150 subwatersheds was deemed as optimal
to represent the hydrological functioning of the catchment, as well as adequate regarding to computing
costs. From this breakdown results also the limitation of the number of local climate grid points to 150.
A higher climate data resolution would therefore force SWAT to disregard much of the information,
and a much lower resolution would force SWAT to use the same information for many adjacent
subwatersheds, whereas the resolution of the climate grid had a direct influence on its ability to
describe non-uniformities in the precipitation patterns.

The results showed that aggregating SAFRAN up to 64 or 128 km was detrimental to the
description of non-uniform precipitation events, to the point of leading to a much poorer performance
when used with the SWAT implementation calibrated on the available network of climate stations.
The native 8-km SAFRAN product offered the variability of daily precipitation events, while the
aggregated 16- and 32-km SAFRAN grids and the ~30-km CFSR product ranges of spatial variance
were similar to that of the network of climate stations.

Running the SWAT model calibrated on the network of climate stations with the 8-, 16- and 32-km
SAFRAN grids led to very similar performance values at most sites, but lower than those previously
obtained in calibration. These results suggest that the difference in the representation of the climate
was more influential than its spatial resolution in simulating the hydrological processes within the
SWAT model. Using CFSR with the same framework provided similar overall performance values
as SAFRAN for some sites, but for others, CFSR provided precipitation rates that were judged to be
unrealistic when compared to the other climate databases.

The great importance of the quality of the climate product over its resolution was confirmed when
calibrating SWAT with the native 8-km SAFRAN and its aggregated 32-km counterpart, since both of
these datasets led to very similar performances that were better overall than the calibration performance
values previously obtained by calibrating SWAT with the network of climate stations.

Results obtained in this study are consistent with previous works revealing the benefit of using
a gridded dataset. However, the choice of the dataset is influenced by (1) the resolution range,
which must be adapted to the model definition, even if certain resolution seems to lead to similar
performance values, and (2) the representation of the climate by the dataset. It is thus quite important
to select a dataset that is suitable to the model and to the climatological characteristics of the watershed.

The present study was based on monthly time step performance computations, compatible with
water planning needs, where the influences of extreme precipitation are limited. An equivalent study
calculating performances at a daily time step could generate additional findings that could have flood
warning applications.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/1/54/s1.
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