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Abstract: In the dry zone of Sri Lanka, human-made reservoirs have served for the collection, storage
and distribution of rainfall and runoff and provide irrigation water for the cultivation of paddy for
2000 years. This paper introduces the layout and function of four traditional village tank cascade
systems in the hinterland of Anuradhapura, located in the North Central Province in Sri Lanka.
In contrast to large-scale tanks, these systems are managed and maintained by local villagers.
Sedimentological data from two tanks provide information about processes leading to the formation
of these deposits and their post-sedimentary, partly human-induced alterations. The presented data
support the hypothesis, that the decentral managed tanks were not affected by severe erosion after
the abandonment of the ancient capital Anuradhapura in the 11th century CE, a period that was
characterized by socio-economic instability and increased climatic fluctuations. Presented results
underline the significance of small-scale tank cascades systems to buffer the effects of climatic
fluctuations and point to their potential as a cornerstone in coping with future climate change in the
dry zone of Sri Lanka.
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1. Introduction

In the north-central dry zone of Sri Lanka, rainfall and surface runoff have been stored in
human-made reservoirs since ancient times and today continue to provide water for irrigation [1].
During the two main rainy seasons in January–April and September–December, surface runoff is
collected and stored in these reservoirs, the so-called tanks or wewas, and successively distributed
during the dry periods to the paddy fields located downslope. The tanks are arranged in a cascade-like
fashion along shallow valley courses. They are connected by canals and spillways and build a complex
system of floodwater harvesting, water storage and water distribution [2].

The majority of these tanks were constructed during the period of the Anuradhapura kingdom
(377 BCE to 1017 CE) [3], with its heyday characterized by the construction of new tanks and the
reformation of existing tanks between 200 and 950 CE [4]. The introduction of this innovation was
one of the most important preconditions for the development of early urban societies in north-central
Sri Lanka, as knowledge of storage and distribution of water for irrigation purposes was necessary
to obtain an agricultural surplus for the growing population and build the basis for the cropping of
rice [5].
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Today, 10,000 small so-called village tanks are still in use in the dry zone of Sri Lanka [6]. Besides
irrigation, the stored water is used for domestic purposes, desiccated tank beds serve as pasture for the
cattle [7] and deposited sediments are used as raw material for brick production [8]. Thus, the tanks
have characterized the cultural landscape of north-central Sri Lanka for 2000 years, and have become
an identity-generating factor for the rural everyday culture.

Today the tanks are classified into major, medium, minor and micro tanks depending on their
water spread (water surface area of a tank) and command area (agricultural fields under irrigation).
The responsibility for maintenance measures is shared between the Department of Irrigation (major
and medium tanks) and the Department of Agrarian Services (minor and micro tanks) (Table 1) [9].
The ratio of tank command area (Acoa) to tank water-spread area (Awa) is a measure for the efficiency
of tank cascade systems. For minor tanks, a ratio ≥1.0 reflects a good balance between storage capacity
and irrigated area [10].

Table 1. Classification of tank systems in South Asia and in the catchment of the Aruvi Aru basin,
Sri Lanka (after Murray 2004, and literature cited herein).

Type
Water-Spread

Area (ha)
Command
Area (ha) Maintenance Seasonality

Number of Tanks in
the Catchment of the

Aruvi Aru River *

Major >200 ha >600 ha State Perennial 11

Medium 50–200 ha 80–60 ha State Perennial or
seasonal 74

Minor 1–50 ha <80 ha State and/or local
communities Mostly seasonal 150

Micro 0.1–1 ha <1 ha Community or
individual farmers

Perennial only with
ground supply n.a.

Notes: * classification for the Aruvi Aru catchment, in which the study area is located, is based on the size of the
water-spread area; n.a.: no information.

Historical records allow a tentative dating of early major irrigation works to the 3rd century
BCE. In contrast, there is still a lack of data on the construction of minor tanks. Presumably, the
construction of the village wewa systems developed from rain-fed agriculture [11,12]. As a result of
wars and epidemics in the 14th century CE many major wewa systems fell into disrepair and were left
abandoned [3]. In the 19th century, during the British colonial period, major ancient irrigation works
were subsequently restored. After World War I, small village wewa systems also increasingly became
the objects of restoration programs leading to a “stabilisation of the small tank irrigated agriculture”
within the dry zone of Sri Lanka [13]. A broad store of traditional knowledge has been established over
the centuries on the operation and maintenance of these systems [1,14], including strategies about how
to deal with changing climatic conditions, for instance, during increased monsoonal variability in the
Medieval Warm period and during the Little Ice Age [15]. This water-harvesting system in Sri Lanka
is therefore regarded as a sustainable method that facilitates the capacity to support local communities
in adapting to long-term changes in climate [1,16].

Calculations of ecosystem services underline the present-day significance of the tank cascade
systems for local communities. For the Kala Oya basin, these services account in total, including water
supply, for c. US$2800 per hectare per year, of which only US$160 per hectare per year results from
paddy cultivation. The remaining amount is derived from the utilization of tank water and tanks for
vegetable, banana and coconut cultivation, fishery, the utilization of lotus roots and flowers, and the
extraction of domestic, livestock and commercial water [17].

1.1. Aims of the Paper

Sustainable management of natural resources at watershed level is regarded as key to urban/rural
balance [18]. In India, where comparable systems are in use for paddy irrigation, this balance is affected
by the privatization of water resources, e.g., an increase in groundwater pumping by local water lords.
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The pumping leads locally to a decrease of groundwater levels and to the desiccation and abandonment
of tanks. Not all community members are able to afford the costs for the pumped groundwater,
triggering in the Indian state Tamil Nadu socio-economic segregation and migration processes [18].
This example illustrates the tight relationship between processes running at landscape level and
socio-economic activities. Today, groundwater pumping in Sri Lanka has not yet reached a level
affecting the function of tank cascade systems; however, as the surface near so-called regolith-aquifer
in the central dry zone is predominantly recharged by the seepage of the tank beds, its increased
exploitation would lead to an degradation of this important groundwater resource [19].

With a view to the coming decades, demographic and climatic changes, as well as changes in
management responsibilities, may also affect and transform the ancient traditional water-harvesting
systems in the northern dry zone of Sri Lanka. While today 77% of the total population (20.3 million in
2012) still live in rural areas, it is expected that in the coming decades more than half of the population
will live in larger towns [20,21] with the consequence of a loss of traditional knowledge concerning the
maintenance and management of village tank cascade systems. According to the Intergovernmental
Panel on Climate Change (IPCC) climate change scenarios, Sri Lanka will be affected by rising temperatures,
a higher variability of monsoonal rainfall and an increase in climatic extreme events such as floods or
droughts [20]. All of these developments have a potential to affect the future sustainable functionality and
management of the water-harvesting and storage systems to an unknown extent.

Currently, potential future development trajectories and historical developments are investigated
in an interdisciplinary joint research project between the Freie Universität Berlin and the University
of Peradeniya, to provide stakeholders with a long-term series of data as base for the derivation
of recommendations for actions. This study presents an inventory of selected, probably ancient
tanks, which are until today predominantly traditionally managed and maintained by local villagers.
In this sense, this paper contributes towards documenting the traditional layout of these systems, by
introducing different sub-types of traditional village tank cascade systems located in the immediate
vicinity of Anuradhapura, composed of minor and micro tanks, maintained by local villagers (Figure 1b).

Information about the construction dates of major irrigation works could be derived from literary,
epigraphic and archaeological sources [22,23]. In contrast, little is known about the origin of smaller
tanks and village tank cascade systems, which are considered as precursors of major irrigation
works [13]. Hence, besides a documentation of the layout and function of traditional village tank
cascades in the north-central dry zone of Sri Lanka, this paper presents sedimentological data from
two connected minor tanks belonging to one of the investigated tank cascade systems. The results
presented here contribute to improving understanding of processes leading to the formation of the
deposits analyzed and their post-sedimentary, partly human-induced, alterations. Finally, the results
support the hypothesis, that the investigated tank cascade system 2 was not affected by severe erosion
after the abandonment of Anuradhapura in 1017 CE [4,24].

1.2. Study Area

The study area is located c. 1.7 to 4 km north of the fortified ancient center of Anuradhapura,
the so-called Citadel (Figure 1). It comprises four valleys draining the slopes west of the Malwathu
Oya River, a tributary to the Aruvi Aru River. Each of these valleys, like all other tributaries of
the Malwathu Oya River in this region, was used for the construction of tank cascade systems.
Climatically, the region corresponds to an As-climate according to the Köppen-Geiger classification [25],
with annual mean temperatures of 27.1 ◦C and an annual average precipitation of 1198 mm [26].
High evapotranspiration rates foster water stress, especially during the period between May and
September [27]. The bedrock is composed of metamorphic crystalline rocks, first of all charnockitic
gneiss [28]. A near-surface aquifer at a depth of 2–10 m b. s. is associated with the base of the regolith.
A second aquifer corresponds to the deep fracture zone at a depth of 30 m b. s. [29]. The study area
is characterized by agriculture, where paddy rice is the primary cropping system. Vegetables are
cultivated in a traditional slash-and-burn practice called chena cultivation [16].
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Figure 1. (a) Ancient irrigation system within the dry zone of Sri Lanka (modified after Seneviratna, 
1987 [30]); (b) Location of the four investigated tank systems north of Anuradhapura. 

2. Material and Methods 

2.1. Fieldwork and Data Processing 

The hydrological and infrastructural set-up of four tank cascade systems north of Anuradhapura 
was systematically mapped in the field in spring 2010 and autumn 2011 using a Garmin 60Cx 
handheld Global Positioning System (GPS) device. Field maps were digitized in a Geographical 
Information System (GIS) environment (ArcGIS 9.3, Environmental Systems Research Institute 
(ESRI)) and the ratio between command area (Acoa) and water-spread area (Awa) was calculated. 
Three sediment cores were extracted from two subsequent tanks of a tank cascade system (system 2), 
located ca. 2.5 km north of the ancient city center (Figure 1b; Table 2). Drillings were carried out using 
percussion drilling equipment (Wacker hammer, BHF 30S, Wacker Neuson Group Munich). All core 
sections were extracted in closed plastic tubes, 5 cm in diameter.  

Table 2. Drilling characteristics. 

Sediment Profile 
UTM * East UTM * North

Depth (cm) 
(44N)

NA01 433,520 926,767 250 
NA02 433,547 926,702 180 
NA03 433,458 926,740 300 

Note: * Universal Transverse Mercator (UTM). 

2.2. Sediment Analysis 

Deposits of small tanks were affected by multiple post-sedimentary alterations, driven by 
natural and anthropogenic factors. Results from a study carried out c. 30 km east of the study area 
indicate the low suitability of these deposits for a high-resolution reconstruction of paleo-
environmental conditions [16]. Based on this, laboratory analysis was limited to the determination of 
sediment texture and accelerator mass spectrometry (AMS) radiocarbon dating. 

Figure 1. (a) Ancient irrigation system within the dry zone of Sri Lanka (modified after Seneviratna,
1987 [30]); (b) Location of the four investigated tank systems north of Anuradhapura.

2. Material and Methods

2.1. Fieldwork and Data Processing

The hydrological and infrastructural set-up of four tank cascade systems north of Anuradhapura
was systematically mapped in the field in spring 2010 and autumn 2011 using a Garmin 60Cx handheld
Global Positioning System (GPS) device. Field maps were digitized in a Geographical Information
System (GIS) environment (ArcGIS 9.3, Environmental Systems Research Institute (ESRI)) and the ratio
between command area (Acoa) and water-spread area (Awa) was calculated. Three sediment cores
were extracted from two subsequent tanks of a tank cascade system (system 2), located ca. 2.5 km
north of the ancient city center (Figure 1b; Table 2). Drillings were carried out using percussion
drilling equipment (Wacker hammer, BHF 30S, Wacker Neuson Group Munich). All core sections were
extracted in closed plastic tubes, 5 cm in diameter.

Table 2. Drilling characteristics.

Sediment Profile
UTM * East UTM * North

Depth (cm)
(44N)

NA01 433,520 926,767 250
NA02 433,547 926,702 180
NA03 433,458 926,740 300

Note: * Universal Transverse Mercator (UTM).

2.2. Sediment Analysis

Deposits of small tanks were affected by multiple post-sedimentary alterations, driven by natural
and anthropogenic factors. Results from a study carried out c. 30 km east of the study area indicate
the low suitability of these deposits for a high-resolution reconstruction of paleo-environmental
conditions [16]. Based on this, laboratory analysis was limited to the determination of sediment texture
and accelerator mass spectrometry (AMS) radiocarbon dating.
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Sediments were macroscopically described in the laboratory, recording grain size and
lithostratigraphy, carbonate and organic content, moisture, texture, rooting, hydromorphic and special
features (e.g., macro plant remains or calcite concretions). Two-centimeter-thick bulk samples were
taken at 10 cm intervals and according to stratigraphic layers. After removal of the fraction >2 mm Ø,
grain size distribution was determined with a laser diffraction particle size analyzer (LS 13320 PIDS,
Beckmann-Coulter Germany, Krefeld, Germany) following the methodological set-up as described in
Schütt et al., 2013 [16].

Four bulk samples of organic sediments were sent for AMS radiocarbon dating to the Poznan
radiocarbon laboratory, Poland. Pretreatment of AMS radiocarbon samples comprised the manual
removal of visible roots. Calibration was conducted with OxCal 4.2 [31] applying the calibration curve
IntCal13 [32].

3. Results

3.1. Micro-To-Minor-Scale Tank Cascade Systems North of Anuradhapura

The tank cascade systems recorded are located north of the Citadel of Anuradhapura. In the
undulating terrain, a slightly inclining, eastward-facing slope is drained by several first-order
tributaries running W–E to the Malwathu Oya River, located in a sequence with a distance of
1.5 km. An N–S-striking ridge of outcropping bedrock forms the divide in the headwater area of the
tank cascade systems. An archaeological survey within the catchment of system 2 yielded numerous
archaeological findings especially in its headwater area. Finds such as bricks, pottery, tiles, stone steps
and stone cuttings indicate settlement and quarrying activity during prehistoric and historical times [33].

The most southern system, system 1, consists of only a single tank, 31 ha in size (Figure 2a).
The water of this tank is used to irrigate a paddy field, located directly downstream of the tank.
Three spillways, constructed as shallow canals, dug in the soil, are used to distribute the irrigation
water through the paddy fields. A village is situated north of the paddy field. A small strip between the
paddy field and village, as well as small patches north and west of the tank, are used for chena cultivation.
The described setting is surrounded by an open deciduous forest. The Acoa/Awa ratio totals 0.8.
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System 2 connects north to system 1; it comprises ten active tanks and one inactive tank, which
are aligned in a row (Figure 2b). The western divide is formed by a linear bedrock outcrop (Figure 3a).
All tanks are classified as micro tanks as their water-spread areas are smaller than 1 ha, ranging in size
between 0.07 ha and 0.8 ha (Figure 3b). Spillways and sluices (Figure 3c) connect the tanks. Paddy field
cultivation is the prevailing agricultural land use found along the thalweg (Figure 3e). Three paddy
fields are associated with the active tanks. In contrast, a fourth paddy field, located west of tank 4,
is not connected to a tank and is instead cultivated on a rain-fed basis. Chena cultivation is practiced
mainly in the headwater area of the drainage basin. Areas which are not utilized for agriculture
are covered by shrubs or forests (Figure 3f). Increased soil degradation and erosion has occurred
predominantly between tanks 4 and 5 in an area where there are repeated cattle drives (Figure 3c).
The Acoa/Awa ratio of system 2 totals 1.0.
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Figure 3. Detailed set-up and characteristics of system 2: (a) bedrock outcrop, with sculptured stairs
as the western boundary of tank 1; (b) view from the dam of tank 6 into the desiccated water-spread
area; (c) area affected by soil erosion; (d) sluice of tank 6; (e) paddy field between tank 6 and tank 7;
(f) shallow earthen spillway connecting tank 4 and tank 5 surrounded by scrubland; (g) detailed
layout of system 2, showing the bedrock outcrops in the headwater area, distribution of archaeological
findings and the location of sediment profiles NA01-NA03.

Tank cascade system 3 is characterized by two tanks of 6.0 ha and 3.9 ha in size (Figure 2c).
The water is routed from the first tank via a spillway 150 m through an open deciduous forest to a
paddy field. Two villages located north and south of the W–E-striking thalweg frame this system.
At the fringe of the northern village, the open deciduous forests degrade into scrubland. West of the
northern village, an area is used for slash-and-burn cultivation. The Acoa/Awa ratio totals 0.5.
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Tank system 4 comprises four tanks, connected in a linear series (Figure 2d). The tank size
increases downstream from 0.1 ha to 2.1 ha. Downslope of tank 1, local soil erosion occurs. Downslope
of tank 1 and upstream from tank 3, the land use along the thalweg is dominated by chena cultivation.
In contrast, downstream of tank 3, paddy fields occur along the thalweg east of the tank dams.
In accordance with the systems already introduced, system 4 is also embedded in a cultural landscape
with open deciduous forests and villages. The Acoa/Awa ratio totals 0.8.

3.2. Sediment Characteristics of the Tanks in System 2

The occurrence of archeological artifacts in the headwater area of system 2 points to (pre)historic
human activities in this area. Due to this clear indication of human impact, the tanks of system 2 were
selected for sedimentological analysis. In order to receive an integral indication of processes related to
runoff and sediment balance as influenced by climate and human activities, two drillings were carried
out in tank 6 (NA01, NA02). A third drilling (NA03) was conducted in tank 5 immediately upstream
of tank 6. In the following, the lithostratigraphy of the drillings is briefly described.

3.2.1. Sediment Profile NA01

In the upper periphery of tank 6, approximately 50 m west of its dam, drilling NA01 was
conducted, extracting 250 cm of undisturbed sediments. The sediments of NA01 are not stratified
and consist of loamy, sandy and gravely material (Figure 4). Corresponding to their macroscopic
character, the sediments are subdivided into six units (Table 3). Underlying units VI and V comprise
the basal section of profile NA01 (170–250 cm b. s.), which is represented by the saprolite with
unweathered fragments of quartz and feldspars. The superimposing units I–IV (1–170 cm b. s.) are
characterized by fine-grained sediments of allochtonous origin. The uppermost centimeter of the
sediment profile consists of undecomposed plant remains. The sediment color lightens from top to
bottom, changing from dark brown to olive and pale brown to yellowish/white. Throughout the
whole profile, sesquioxide oxidation marks and concretions in different sizes occur frequently. Calcite
precipitation appears as fine distributed powder and coatings.

Water 2017, 9, 231  7 of 16 

 

Tank system 4 comprises four tanks, connected in a linear series (Figure 2d). The tank size 
increases downstream from 0.1 ha to 2.1 ha. Downslope of tank 1, local soil erosion occurs. 
Downslope of tank 1 and upstream from tank 3, the land use along the thalweg is dominated by 
chena cultivation. In contrast, downstream of tank 3, paddy fields occur along the thalweg east of the 
tank dams. In accordance with the systems already introduced, system 4 is also embedded in a 
cultural landscape with open deciduous forests and villages. The Acoa/Awa ratio totals 0.8. 

3.2. Sediment Characteristics of the Tanks in System 2 

The occurrence of archeological artifacts in the headwater area of system 2 points to (pre)historic 
human activities in this area. Due to this clear indication of human impact, the tanks of system 2 were 
selected for sedimentological analysis. In order to receive an integral indication of processes related 
to runoff and sediment balance as influenced by climate and human activities, two drillings were 
carried out in tank 6 (NA01, NA02). A third drilling (NA03) was conducted in tank 5 immediately 
upstream of tank 6. In the following, the lithostratigraphy of the drillings is briefly described. 

3.2.1. Sediment Profile NA01 

In the upper periphery of tank 6, approximately 50 m west of its dam, drilling NA01 was 
conducted, extracting 250 cm of undisturbed sediments. The sediments of NA01 are not stratified 
and consist of loamy, sandy and gravely material (Figure 4). Corresponding to their macroscopic 
character, the sediments are subdivided into six units (Table 3). Underlying units VI and V comprise 
the basal section of profile NA01 (170–250 cm b. s.), which is represented by the saprolite with 
unweathered fragments of quartz and feldspars. The superimposing units I–IV (1–170 cm b. s.) are 
characterized by fine-grained sediments of allochtonous origin. The uppermost centimeter of the 
sediment profile consists of undecomposed plant remains. The sediment color lightens from top to 
bottom, changing from dark brown to olive and pale brown to yellowish/white. Throughout the 
whole profile, sesquioxide oxidation marks and concretions in different sizes occur frequently. 
Calcite precipitation appears as fine distributed powder and coatings. 

 
Figure 4. Lithostratigraphy of sediment profiles NA01, NA02 (tank 6) and NA03 (tank 5) in system 2. 

Figure 4. Lithostratigraphy of sediment profiles NA01, NA02 (tank 6) and NA03 (tank 5) in system 2.



Water 2017, 9, 231 8 of 16

Table 3. Sediment characteristics drilling NA01.

Unit Depth (cm b. s.) Sediment Character

0–1 litter, undecomposed plant remains

I * 1–20 loamy sand with sub-angular fine gravel, dark yellowish brown (10 YR
4/6), moderately rooted (hair roots), dry, unconsolidated, gradual change to

II * 20–40 transitional horizon between units I and II, gradual change to

III * 40–100

sandy loam, dark brown (7.5 YR 3/4), weakly rooted (hair roots), fairly dry,
highly compacted, mottled sesquioxide oxidation marks, scattered
calcareous precipitations and coatings, scattered Fe/Mn concretions (small),
diffuse change to

IV * 100–170

angular-shaped gravel in sandy loamy-matrix, olive brown (2.5 YR 4/4,
reduced), isolated hair roots, moist, highly compacted, mottled sesquioxide
oxidation marks, scattered Fe/Mn concretions, scattered calcareous
precipitations, diffuse change to

V ** 170–210

alternating layers of sandy and loamy material, sand: yellow (10 YR 8/6) to
very pale brown (10 YR 8/4), clay: dark yellowish brown (10 YR 4/6); not
rooted, moist, highly compacted, very high concentration of small
sesquioxide concretions at depths from 178 to 181 cm, scattered calcareous
precipitations, diffuse change to

VI ** 210–250
sandy/gravely (angular-shaped), very crumbly, yellowish/white in color,
not rooted, moist, highly compacted, scattered Fe/Mn concretions,
scattered sesquioxide oxidation marks

Notes: * allochtonous deposits; ** saprolite.

3.2.2. Sediment Profile NA02

Profile NA02 was extracted 60 m south of profile NA01 in tank 6. The extracted sediment sequence
totals 180 cm. Based on macroscopic sediment characters, seven units can be distinguished (Table 4,
Figure 4). Due to compaction processes during drilling, the uppermost 18 cm of the drill tube were
empty. The topmost sediment unit I (18–55 cm) consists of fine gravel in a sandy matrix. The texture of
units II–VI (55–170 cm b. s.) is predominated by sandy loam. The lowermost unit VII (170–180 cm b. s.)
is characterized by middle and coarse sand with a small amount of angular-shaped fine gravel. Units
VI and VII correspond to saprolite, while the superimposing units I–V correspond to allochtonous
sediments. Sediments are not stratified and are all over dark brownish in color. Sesquioxide concretions
and oxidation marks occur frequently along the profile, while calcium carbonate precipitations and
coatings are found in the deeper sediment sequences (140–180 cm b. s.).

Table 4. Sediment characteristics drilling NA02.

Unit Depth (cm b. s.) Sediment Character

0–18 core loss

I * 18–55

fine gravel in sandy matrix; structure-less; very weakly compacted;
colored gradation from dark greyish brown (10 YR 4/2) over dark
brown (10 YR 4/4) to dark yellowish brown (10 YR 3/3); dry but
increasing moisture with greater depth, strong sesquioxide oxidation
marks; weakly rooted (hair roots), clear change to

II * 55–70 sandy loam; very dark brown (10 YR 2/2); not rooted; moist; highly
compacted, scattered Fe/Mn concretions, diffuse change to

III * 70–93 ditto unit II; mottled sesquioxide oxidation marks; scattered Fe/Mn
concretions, diffuse change to

IV * 93–110 sandy loam; dark yellowish brown (10 YR 4/4); not rooted; moist;
highly compacted; weak sesquioxide oxidation marks, diffuse change to
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Table 4. Cont.

Unit Depth (cm b. s.) Sediment Character

V * 110–140

sandy loam (getting coarser with increasing depth); dark yellowish
brown (10 YR 3/6); not rooted; moist; highly compacted; yellow
streaks of sesquioxide oxidation marks; scattered Fe/Mn concretions
(spherical, Ø 1 cm), diffuse change to

VI ** 140–170

coarse sandy loam (becoming coarser with increasing depth); dark
yellowish brown (10 YR 3/6); not rooted; moist; highly compacted;
soft calcium carbonate precipitations and coatings (light brownish grey,
10 YR 6/3, very crumbly); scattered small Fe/Mn concretions,
diffuse change to

VII ** 170–180

middle and coarse sand with a small amount of angular-shaped fine
gravel; very crumbly; dark yellowish brown (10 YR 4/6); decrease of
calcium carbonate precipitations; increase of Fe/Mn concretions;
not rooted; moist; highly compacted; partly weathered quartz
detritus from 175 to 180 cm depth

Notes: * allochtonous deposits; ** saprolite.

3.2.3. Sediment Profile NA03

Sediment profile NA03 was extracted from tank 5 approximately 35 m upstream of the dam
and comprises 300 cm of undisturbed sediments. Corresponding to their macroscopic character,
the sediments are subdivided into five sedimentological units (Table 5), which are classified in two
main sediment sections: the highly weathered, saprolitic base of this profile is represented by unit V
(200–300 cm b. s.), whereas the overlying sediment units IV to I are composed of unlayered loamy,
sandy and gravely allochtonous material (Table 5). The uppermost 2 cm of the profile consists of
organic litter. Sediment colors become brighter with increasing depth, changing from dark brown
at the top to yellowish/pale brown at the bottom of the sediment profile. Sesquioxide oxidation
marks and concretions, as well as calcium carbonate precipitations occur frequently as non-cured, fine,
distributed powder.

Table 5. Sediment characteristics drilling NA03.

Unit Depth (cm b. s.) Sediment Character

0–2 litter, organic overlay

I * 2–21
loamy (coarse) sand with small contents of fine gravel; dark yellowish
brown (10 YR 4/4); moderately rooted (hair roots); dry; highly
compacted, gradual change to

II * 21–75
sandy loam with small contents of fine gravel; dark greyish brown
(10 YR 3/2); weakly rooted (hair roots); scattered Fe/Mn concretions
(spherical, <Ø 0.5 cm); dry; highly compacted, diffuse change to

III * 75–100
coarse sandy loam with fine gavel; very dark greyish brown
(10 YR 3/2); weakly rooted; dry; very highly compacted; mottled
sesquioxide-oxidation marks; many Fe/Mn concretions, clear change to

IV * 100–200

coarse sandy loam; olive brown (2.5 YR 4/4); weakly rooted (hair roots);
moist; highly compacted; scattered Fe/Mn concretions (up to Ø 1 cm);
sesquioxide-oxidation marks; soft diffuse calcium carbonate
precipitations, diffuse change to

V ** 200–300

mixed horizon of layers of coarse sandy loam with fine gravel and
sand with sesquioxide oxidation marks; sandy loam: olive brown
(2.5 YR 4/4), sand: yellow (10 YR 8/6) & very pale brown (10 YR 8/4);
very weakly rooted (hair roots); moist; moderate to highly compacted;
scattered Fe/Mn concretions; soft diffuse calcium
carbonate precipitations

Notes: * allochthones deposits; ** saprolite.
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3.2.4. AMS Radiocarbon Dating

The chronology of profiles NA02 and NA03 is based on four AMS radiocarbon dates,
corresponding to two dates for each drilling. The dates are stratigraphically consistent and range
between 10,595 and 790 cal a BP. Overall, they provide a Holocene chronology for the sediment
sequences. The youngest age appears in sediment profile NA03 (sample Poz-37935, 57–58 cm b. s.)
and dates to the period immediately after the abandonment of Anuradhapura in 1017 CE (Table 6).
In both sediment profiles, two ages related to the early Holocene are found in sediments overlying the
saprolite (NA02, Poz-40252; NA03 Poz-40249).

Table 6. AMS radiocarbon dates.

Sediment
Profile Lab-Code Sampling Depth

(cm b. s.)
Uncalibrated
Age (a BP) *

Calibrated Age
(cal a BP, 2σ)

Calibrated Age
(cal a BCE/CE, 2σ)

NA02 Poz-40251 59–60 2960 ± 40 3120 ± 65 1170 ± 65 BCE
NA02 Poz-40252 147–149 8250 ± 70 9230 ± 105 7285 ± 105 BCE
NA03 Poz-37935 57–58 870 ± 30 790 ± 50 1160 ± 50 CE
NA03 Poz-40249 146–147 9370 ± 80 10595 ± 135 8645 ± 135 BCE

Note: * Before Present (BP).

4. Discussion

4.1. Layout of the Tank Cascade Systems

The four tank cascade systems that underwent analysis are associated with the type of linear
cascades in which all tanks are aligned in a row [10]. The number of tanks per cascade varies
between one and eleven. The investigated tank cascade systems are situated in first-order, shallow
saucer-shaped valleys, which are regarded as not being prone to erosion. Consequently, the
geomorphological conditions of the study area seem to have favored the construction and sustainable
function of these systems. All systems provide irrigation water for paddy cultivation west of the
floodplain of the Malwathu Oya River (Figure 1b).

The tanks are embedded in a cultural landscape setting, which is regarded as typical for village
tank cascade systems. In an idealized model, this setting is composed of four concentrically arranged
zones, namely the tank, the paddy fields, the settlement areas and the surrounding shrub lands
and forests [34]. Each of these zones fulfills specific functions and is traditionally used for different
purposes. All four zones are represented in the investigated tank cascade systems. In the following,
local particularities are briefly discussed.

During both field campaigns in April 2010 and September 2011, the majority of tanks, except the
single tank in system 1, were desiccated, reflecting weather conditions during previous months, with
an unusually dry rainy season in spring 2010 and the end of the dry season in September 2011.

Various observations like soil erosion and damage to the dams and sluices indicated that the
maintenance measures were neglected. Cultivation of rice or other plants with high temporal water
consumption is known to be a local form of subsequent use of desiccated tank bodies [9,35]. However,
due to the prohibition of the cultivation of tank bodies by the government, this phenomenon could
not be observed in the study area [7,9,35]. In contrast, the traditional use of desiccated tank beds as
pasture during the dry season is still practiced in the four systems investigated.

A typical feature of village tank ecosystems is a wetland area, called thaulla in Sinhala, which
can be found upstream of the tank body at the root of the discharging channel. Runoff and channeled
irrigation water from upstream tanks pass this swampy area in which aquatic plants force the
deposition of fines [36]. Such thaulla areas could not be identified for the investigated tank cascade
systems. It is assumed that the intensive irrigation agriculture causes relatively quick consumption of
the stored water, which in turn prevents the development of an upstream wetland. In addition, due to
increased population pressure, thaulla areas have been increasingly removed from all over Sri Lanka’s
dryland zone during the last decades [35].
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Desiltation of tanks is practiced regularly by local villagers as a maintenance measure to sustain
the storage capacity of the tanks [16]. The extracted sediments are utilized as raw material for bricks or
as fertilizer for the fields [13]. Revisiting system 2 in 2014 and interviews with local villagers showed
that sediments had in the recent past also been illegally exploited using heavy machinery and utilized
as construction material (Figure 5) (personal interview with a local villager, 23 September 2015) [37].
This practice affects the functionality of the tank cascade system as the deepening of the tank bed
lead to an exposure of the surface near regolith aquifer. Consequently, this tank bed does not fall dry
anymore and cannot be used as pasture during the dry season.
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Figure 5. Photographs of tank 6, system 2 taken from the tank bund in October 2014. (a) The central part
of the tank was illegally dredged; (b) c. 80 cm of sediments, or saprolite, were extracted. The deepening
of the tank beds leads to the exposure of the regolith aquifer. Consequently, the tank bed does not
desiccate in the dry period, resulting in a loss of pastures.

The ratio of tank command area (Acoa) to tank water-spread area (Awa) is a measure for the
efficiency of tank cascade systems. Ideally, this ratio should be ≥1.0 in order to provide enough storage
capacity for irrigation [10]. With a ratio of 1.0, this optimal condition is only present in system 2.

The north-central dry zone of Sri Lanka is characterized by a dispersed settlement pattern.
This pattern is also reflected in the distribution of settled areas in the investigated tank cascade systems,
in which various small settled areas occur. In all systems, settled areas are situated in close vicinity
to tanks and the associated paddy fields. Archaeological findings in system 2 indicate a (pre)historic
utilization of this area [33]. Chena cultivation, a slash-and-burn practice, is applied in all systems. It is
widely assumed that the beginning of shifting cultivation dates prior to the onset of paddy cultivation.
To intersperse chena cultivation with irrigation-based rice cropping is typical for the dry zone in Sri
Lanka and is practiced until today ([38] and literature cited herein). Remarkable is the chena cultivation
in the command area of tank 2 in system four, as traditionally this slash-and-burn practice is not based
on irrigation.

All investigated tank systems, with the associated agricultural fields and settlement areas, are
embedded in open deciduous forests or scrubland, which are utilized as pasture for cattle and for
logging. A distinction between parkland and forested areas as proposed by Tennakoon could not be
observed [34].

4.2. Sediment Characteristics

Sediment texture and macroscopic sediment character are used as proxies to differentiate between
allochtonous sediments and the autochthonous weathered bedrock (saprolite) [16]. The weathering
grade of the parent metamorphic bedrock is locally highly heterogeneous, resulting from the
petrographic character and small scale changes in environmental conditions [39–41]. The transition
between saprolite and superimposing allochtonous deposits is characterized in profiles NA01 and
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NA03 by a diffuse change from gravels in a matrix of sandy loam to alternating layers of sandy and
loamy material at a depth of 170 cm b. s. (profile NA01) and 200 cm b. s. (profile NA03). In profile
NA02, the saprolite was identified at a depth of 140 cm b. s. based on a diffuse change from sandy
loam to coarse sandy loam. A distinct boundary as described in a previous study about tank sediments
in the Anuradhapura district was not observed in the extracted sediments [42].

Two different types of sediment facies can be expected to overlie the in-situ weathered saprolite:
Facies (a) is associated with fluvial deposits in an alluvial plain dating to a phase prior to tank
construction, and facies (b) is expected to be characterized by siltation in the still water body of the
tanks [42]. Tank sediments can be assumed to be of varying origin due to human impact, such as soil
erosion in consequence of tillage or cattle watering [43]; furthermore, this material may also result
from erosional processes at the slopes. In a previous study, the sand/(silt + clay) ratio was successfully
applied as a proxy to characterize the introduced facies for tanks in the Anuradhapura district ranging
in size between 23 ha and 15 ha [42]. Contrastingly, in the present study it was not possible to
distinguish between the two facies by this proxy. Another study on tank sediments c. 30 km east of
Anuradhapura showed that consideration of bulk chemical and physical sediment parameters like
electric conductivity, pH-value, total organic and inorganic carbon, chemical parameters and magnetic
susceptibility also do not enable a differentiation between autochthonous saprolite and allochtonous
sediments to be made [16]. This might be attributed to the relatively small size of tanks investigated.
Tanks 5 and 6 have an area <1 ha; unlike larger tanks they desiccate throughout the dry season and
are affected by tropical soil formation processes [44,45]. A resulting textural degradation of layering
as well as the mixture of chemical composition, especially within the uppermost meter, is primarily
caused by bioturbation by plant roots, micro-organisms and soil fauna as well as pediturbation due to
the shrinking and swelling of clays and their translocation in desiccation cracks [45].

The precipitation of carbonates and the frequent occurrence of oxidation and reduction marks
reflect regular changes of hydromorphous conditions associated with the periodical desiccation of the
tanks [46]. The occurrence of calcite concretions is a common feature in the soils of the dry zone [47].
Dissolved calcium originating from the weathering of feldspars is transported laterally in the subsoil,
gets enriched and precipitates as calcareous concretion in the poorly drained soils of the valley
bottom, receiving its carbonates from conversion of CO2-containing soil water [48]. Reduction and
oxidation marks in profiles NA01 and NA03 indicate seasonal variations of the groundwater table [44].
Precipitation of sesquioxide is an indicator for oxidizing processes linked with the desiccation of the
tanks [49]. Other factors affecting sedimentation conditions and post-sedimentary alteration of the tank
deposits are related to the above-mentioned traditional subsequent use of the desiccated tanks during
the dry season as paddy fields, livestock pasture or a source for construction material. Furthermore,
the desiltation of tanks leads to a considerable removal of material out of the reservoirs, which is also
reflected in the hiatus of younger sediments.

4.3. Geochronology

Carbon from bulk sediment samples originating from tank sediments was used for radiocarbon
dating, as extracted sediments did not contain macro plant remains or charcoal. Here the different
origins of the dated carbon, e.g., soil organic matter and—in the context of lake sediments—old-carbon
reservoirs (e.g., shales, bedrock), need to be taken into account [50]. Soil organic matter is regarded
as a product of continuous processes of accumulation and decomposition [51]. Resulting AMS ages
are therefore frequently interpreted as minimum ages for soil formation [52,53]. Dating of carbon
from old reservoirs is associated with the “hardwater effect” leading to an overestimation of resulting
ages [50,53,54]. As carbonaceous bedrock is absent in the study area, and carbonates precipitation
corresponds to a secondary precipitation of carbonates, it is concluded that the calcites found are
authigenic or correspond to remnants of organisms like shells or bones [55]. Additional sources for
errors, resulting in an underestimation of ages, may include a vertical relocation of humic acids, an
incomplete removal of roots or rootlets and bioturbation [56,57]. Ages measured are in stratigraphic
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order and match the pattern presented for a comparable system 30 km east of Anuradhapura [16].
Taking the uncertainties mentioned into account, the ages provide a rough Holocene chronology for
the introduced profiles.

4.4. Synthesis

The tank cascade systems are deeply interwoven in the socio-economy and landscape household
in the central dry zone of Sri Lanka. In this paper, the layout and function of four traditional village
tank cascade systems is presented. The results contribute to a documentation of this traditional
water-harvesting technique, which built the foundation for irrigation agriculture not only in the dry
zone of Sri Lanka, but also in South India since several hundred years. Furthermore, an analysis of
tank sediments allows conclusions on the buffering capacity of tank cascade systems against past
socio-economic developments (e.g., the abandonment of the ancient capital of Anuradhapura) and
climate changes.

Abandoned land management systems have a tendency to shift from depositional into erosional
environments after the neglect or cessation of maintenance measures [58,59]. Such a transition
is not reflected in the sedimentological record from tank cascade system 2. The radiocarbon
sample Poz-37935 dating to 1110–1210 CE (profile NA03) matches with the period after the
abandonment of Anuradhapura in 1017 CE (Table 6). Although the city lost its status as capital
of the Anuradhapura kingdom, archaeological evidence indicates a continuation of the occupation
and use of its hinterland [60]. It is reported for this period that reservoirs and canals were affected
by siltation and fell partly into disuse [61]. Climatically, this phase corresponded to the Medieval
Warm Period, characterized in South Asia by alternating intervals of stronger and weaker monsoonal
intensities [15]. This increase in climatic dynamics is also not reflected in the sedimentological record
of profile NA03, as there is a lack of coarser detritus corresponding to more dynamic depositional
environments. In summary, the sediment facies dated to 1110–1210 CE clearly indicates siltation
processes in a depositional environment. This could be tentatively interpreted as evidence, that these
decentral managed tanks were not affected by severe erosion during a period, which was characterized
by socio-economic instability and increased climatic fluctuations. The presented results underline the
significance of small-scale tank cascades to buffer effects related to climatic fluctuations. Despite being
exposed to fluctuations of monsoonal intensities and socio-economic change and facing periods of
decay, e.g., in the 14th century CE [3], they have been in use for some 2000 years and continue to meet
a variety of water demands in the north-central dry zone of Sri Lanka. The integration of traditional
techniques and knowledge in planning their future sustainable development has great potential to
anchor these systems as a cornerstone in coping with future climate change scenarios.
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