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Abstract: The spatial distribution of precipitation is an important aspect of water-related research.
The use of different interpolation schemes in the same catchment may cause large differences
and deviations from the actual spatial distribution of rainfall. Our study analyzes different
methods of spatial rainfall interpolation at annual, daily, and hourly time scales to provide a
comprehensive evaluation. An improved regression-based scheme is proposed using principal
component regression with residual correction (PCRR) and is compared with inverse distance
weighting (IDW) and multiple linear regression (MLR) interpolation methods. In this study,
the meso-scale catchment of the Fuhe River in southeastern China was selected as a typical region.
Furthermore, a hydrological model HEC-HMS was used to calculate streamflow and to evaluate
the impact of rainfall interpolation methods on the results of the hydrological model. Results show
that the PCRR method performed better than the other methods tested in the study and can
effectively eliminate the interpolation anomalies caused by terrain differences between observation
points and surrounding areas. Simulated streamflow showed different characteristics based on the
mean, maximum, minimum, and peak flows. The results simulated by PCRR exhibited the lowest
streamflow error and highest correlation with measured values at the daily time scale. The application
of the PCRR method is found to be promising because it considers multicollinearity among variables.

Keywords: rainfall; interpolation; PCRR; hydrological model

1. Introduction

The spatial distribution of precipitation plays an important role in hydrological modeling,
disaster prediction, and watershed management. Many uncertain factors, including topographic
factors such as latitude, longitude, altitude, slope, aspect, and large-scale circulation, have variable
effects on the spatial distribution of precipitation. Therefore, it is necessary to conduct a detailed
study to improve the accuracy of such analyses. Spatial interpolation schemes are required to provide
accurate spatial distributions of rainfall. Various interpolation methods have been developed for
this purpose, ranging from simple techniques such as Thiessen polygons [1] and inverse distance
weighting schemes [2] to complex statistical methods such as multiple linear regression [3] and
geostatistical kriging [4,5]. The more complex approaches use additional information such as elevation,
slope, or radar-estimated rainfall as covariates [6]. Recently, soft computing schemes have been
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used to perform spatial interpolation for environmental variables. The methods such as support
vector machine [7] and artificial neural network (ANN) [8] were used, and the methods need no
prior knowledge and assumptions. A Fuzzy system was introduced to consider the interpretability
of the spatial interpolation models [9]. The interpolation method is more diverse and can be selected
according to different watershed conditions. For the application of spatial interpolation, most studies
have used only monthly or annual time steps for precipitation interpolation and mapping [10]. A part
of the research has focused on the use of geostatistical and non-geostatistical approaches for the
interpolation of daily rainfall in different sizes of area (Kyriakidis et al. [11], Buytaert et al. [4]). Only a
small number of studies have considered using hourly time steps for large-scale extreme rainfall
events, e.g., Schiemann et al. [6] used a geostatistical radar-rain gauge combination correlograms
and semi-variogram models for the construction of hourly precipitation grids for Switzerland. A few
studies have comprehensively compared the spatial interpolation methods from the annual, daily,
and hourly scales.

Spatial interpolation schemes, based on multiple regression with residual correction are useful
because they utilize geographic information to interpolate the precipitation data from rain gauge
stations. Thus, multiple regression residuals are spatially interpolated. Several studies have used
such methods for interpolating spatial precipitation. Ninyerola [12] applied spatial interpolation
tools to map monthly precipitation on the Iberian Peninsula, and the most accurate results were
obtained using a global model with multiple regression mixed with spline interpolation of the
residuals. Agnew and Palutikof [13] used multiple regression models that were refined by kriging of
the residuals to develop seasonal maps of temperature and precipitation in the Mediterranean basin.
Latitude, elevation, and distance from the sea were found to be the most effective predictors of local
seasonal climate, while the overall estimation efficiency of the models was high. Haralambos [14]
applied a backward stepwise multiple regression with topographical and geographical parameters,
including the normalized difference vegetation index (NDVI), as independent variables in a regression
equation to model temperature and precipitation data in Greece. Luo et al. [15] used four spatial
interpolation methods for monthly precipitation interpolation. The result showed that Ordinary
Co-Kriging (OCK) and Ordinary Kriging (OK) performed better than other two methods, and finally
the author integrated OK and OCK based on their respective superiority and obtained the results
with less error than those of OK and OCK. However, most studies that have used multiple regression
with residuals have focused on mapping annual or seasonal precipitation distributions and have
only applied interpolation schemes at annual or monthly scales. These limitations represent a lack
of a systematic and comprehensive evaluation of the performance of such methods. In addition,
when several variables are used to construct multivariate linear regression models of precipitation,
multicollinearity may exist between variables. Some studies have used stepwise regression models,
which can select important variables related to precipitation and exclude the less important variables;
however, some geographic information will be lost.

Cross-validation is a common technique used to evaluate interpolation results [16,17].
Unfortunately, the accuracy of this validation method depends on the number and the locations of
gauges within the study area, which should be representative of the spatial distribution of rainfall [18].
Haberlandt et al. [19] proposed a method for comparing spatial interpolation methods using not
only internal precipitation validation but also objective verification based on streamflow simulations
to produce and compare various time series of daily precipitation distributions. The approach of
using a hydrological model to validate the performances of different interpolation schemes has been
used in several studies. Ruelland et al. [20] analyzed the sensitivity of a lumped and semi-distributed
hydrological model for several spatial interpolations of rainfall data. Wagner [10] used regression-based
interpolation approaches with the two most suitable covariates in a meso-scale catchment of India
based on a Soil and Water Assessment Tool (SWAT) model for simulating catchment runoff. The author
concluded that choosing a suitable interpolation scheme should not only be based on the comparison
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of measured values at points but should also consider the given measurement network and the
interpolated spatial rainfall distribution.

The main objective of this paper is to propose a principal component regression (PCR) with
a residual correction spatial interpolation scheme and compare it with several traditional methods
on annual, daily, and hourly scales. Cross-validation is applied for all three time scales, and the
Hydrologic Modeling System (HEC-HMS) hydrological model is used to evaluate runoff and describe
the temporal and spatial distributions of rainfall at daily and hourly time steps.

2. Materials and Methods

2.1. Study Area

The Xinxie catchment (27.54◦ N~27.57◦ N, 116.10◦ E~116.15◦ E; Figure 1) is located in southeastern
China and is a tributary of the Fuhe River. The drainage area of the Xinxie catchment is
96.4 km2. The elevation ranges between 92 m and 827 m and increases gradually from north to
south. The catchment is dominated by a tropical monsoon climate, and mean annual temperature,
precipitation, and runoff are 17.5 ◦C, 1866.5 mm, and 1017.3 mm, respectively. Precipitation is mainly
concentrated from May through September (69.8% of annual precipitation and 66.6% of annual runoff).
The soil texture in the watershed is mainly sandy clay and clay loam.
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Figure 1. Location of the study area and the geographic distribution of hydrometeorological stations.

2.2. Data

The data used in this study include information used for spatial interpolation and input forcing
in hydrological modeling. Daily and hourly measurements of precipitation at 41 gauges within (seven
gauges) or close to the catchment (34 gauges) and streamflow records from the Xinxie hydrological
station situated at the outlet of the Xinxie basin (Figure 1) were provided by the Hydrology Bureau of
Jiangxi Province from 2007 to 2013. Geographic information was obtained as follows. A 90 m digital
elevation model (DEM) was obtained from the Shuttle Radar Topography Mission (SRTM), soil types
were obtained from the 5-min Food Agriculture Organization (FAO) dataset [21], and land cover data
were provided by the Chinese Academy of Science. Table 1 shows the data for interpolation and
model application.
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Table 1. Data for interpolation and model application.

Spatial
Interpolation

Methods Precipitation at 41 Gauges Lat & Lon Elevation Slope Aspect

IDW
√ √

MLR
√ √ √

PCRR
√ √ √ √ √

Model
Application

All three
methods

streamflow records at
Xinxiel station soil types land cover data

Data Preprocessing

Hydrometeorological data sets often include measurement and recording errors, which affect the
interpolation results. In this study, daily precipitation data at 41 rainfall stations were tested using
double mass curves [22], and the data from the Xinxie station were selected as the reference because
daily precipitation data were continuous from 2007 to 2013. The cumulative sum of precipitation
at each other station was compared with that at the reference station daily, and if the double
cumulative curve exhibited an inconsistency, the data were checked and suspect data were flagged as
missing. Then, the missing values were filled using a regression-based interval filling method [23].
The corresponding annual precipitation sums were calculated for every gauge using the same dates;
thus, relationships were established between the incomplete data and data at other stations based on
linear regression.

2.3. Interpolation Schemes

In this study, the principal component regression with the residual correction (PCRR) method,
the inverse distance square (IDW) method, and the multiple linear regression (MLR) method were
used to compare interpolated annual, daily, and hourly precipitation and the spatial distribution of
precipitation in the Xinxie catchment. In addition, the interpolation results were used as input data in
a hydrological model at daily and hourly time scales. These interpolation schemes were performed
using a 500 m × 500 m grid, and inputs for the HEC-HMS hydrological model were based on this grid
by averaging the values in each sub-basin. The specific interpolation schemes are as follows.

2.3.1. Principal Component Regression with Residual Correction

MLR is one of the common methods of spatial precipitation interpolation. Hay et al. [24] used MLR
to spatially interpolate precipitation for simulating runoff in the Animas River basin of southwestern
Colorado; the gridded values of precipitation provide a physically based estimate of the spatial
distribution of precipitation and result in reliable simulations of daily runoff in the Animas River basin.
The traditional MLR method assumes that a linear relationship exists between the predictor variables
and a known response variable. The latitude, longitude, and elevation data from meteorological
stations can be used to establish a regression model [25]. However, MLR estimation is unsatisfactory
under some conditions. For example, the column vectors of matrix X may be near-linearly correlated.
The approximate linear relationship between the independent variables is called multicollinearity,
and the existence of multicollinearity is the main reason for inconsistencies between the sign and
the value of the calculated regression coefficient and the actual sign and value. Principal component
regression (PCR) was proposed by Massy [26] in 1965 based on principal component analysis (PCA).
By linear transformation, the original indicators are combined into a few independent indicators
that fully reflect the associated information. This approach avoids collinearity between variables
and preserves important information. Therefore, the response variables (dependent variables) can
be regressed based on these principal components, and then the estimation equation of the original
regression model can be obtained according to the relationship between the principal components
and explanatory variables (independent variables). The specific steps of PCR are not repeated here;
see Massy [26] and Rocha [27].
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The main component of this method is adding macroscopic and microscopic topographic factors
as covariates to construct the PCR model of rainfall station precipitation based on station latitude and
longitude, elevation, slope, and slope aspect. Then, we calculate the regression coefficient and simulate
the regression grid surface. The residual value is obtained by subtracting the interpolated value from
the measured value, and the residual is interpolated using the IDW method. Finally, the meteorological
data grid surface is formed by summation with the regression grid surface. We call this the principal
component regression with residual (PCRR) analysis method. The PCRR method considers the
influence of terrain on meteorological data and the multicollinearity between variables, which is a new
improvement to traditional methods of meteorological data interpolation. The PCRR method uses
slightly different data processing methods at three time scales. The specific operations are as follows.

Annual Precipitation Interpolation

(1) The precipitation data from the meteorological stations used in the regression calculations
are taken as dependent variables, and the longitude, latitude, altitude, slope, and slope aspect of the
meteorological stations are used as input variables to perform PCR. To make the regression model
more accurate and more comprehensive for simulating the spatial variations in precipitation in the
new oblique basin, a regression analysis was conducted by adding 35 rainfall stations around the basin.
The regression coefficients b̂0, b̂1, b̂2, b̂3, b̂4, and b̂5 were calculated using the formula below:

Ŷ = b̂0 + b̂1X1 + b̂2X2 + b̂3X3 + b̂4X4 + b̂5X5 (1)

where Ŷ is the value of precipitation and X1, X2, X3, X4, and X5 represent the longitude, latitude,
altitude, slope, and aspect of the meteorological station, respectively.

(2) The latitude, longitude, slope, aspect, and DEM grid surfaces are substituted into the regression
equation to obtain the regression grid surface of the meteorological data:

ŶS =
n

∑
i=1

(b̂0 + b̂1X1i + b̂2X2i + b̂3X3i + b̂4X4i + b̂5X5i) (2)

where ŶS is the regression grid surface of meteorological data and X1i, X2i, X3i, X4i, and X5i are the ith
(i = 1, 2,..., n) grid cell values of the longitude, latitude, altitude, slope, and aspect grid surfaces.

(3) The interpolated values at stations and observed values used to train sample points differ.
Thus, a residual exists:

pri = poi − psi (3)

where pri is the residual value of the precipitation data at the ith meteorological station, poi is the value
of annual mean precipitation at the ith meteorological station, and psi is the regression value of the ith
meteorological station extracted from the grid surface of the meteorological data regression.

(4) The residual value of precipitation data is interpolated into a grid surface based on IDW:

ŶR =
∑n

i=1
1

(di)
p Pri

∑n
i=1

1
(di)

p
(4)

where ŶR is the residual grid surface of meteorological data, Pri is the residual value of ith
meteorological station, n is the number of stations used for the interpolation of residual values,
di is the distance from the interpolated point to the ith meteorological station, and P is the power of
the distance.

(5) The final grid surface of the precipitation data is calculated as follows:

YF =
n

∑
i=1

(ŶSi + ŶRi) (5)
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where YF is the final grid surface of the precipitation data, ŶSi is the ith grid cell value of the regression
grid surface of the precipitation data, and ŶRi is the ith grid cell value of the residual grid surface of
the precipitation data.

Daily Precipitation Interpolation

(1) When using the PCRR method for daily precipitation interpolation, due to the selection of
35 rainfall stations outside the catchment as auxiliary regression sites, the first step is to determine
the number of rainy days. If the precipitation in the Xinxie catchment is 0, the day is considered a
non-precipitation day and the regression analysis is not performed; otherwise, we proceed to the
second step.

Steps (2) to (6) are the same as Steps (1) to (5) in the ‘Annual Precipitation Interpolation’ section
and will not be repeated here.

Hourly Precipitation Interpolation

The hourly precipitation interpolation in this study focuses on a flood event. Such an event
reflects the hydrological process from the beginning of rainfall to the flood recession at the outlet of
the catchment, the Xinxie hydrological station. Therefore, to avoid the effect of spatial precipitation
variability associated with a flood event, only the rainfall gauges located inside the Xinxie catchment
are selected for regression analysis. The remaining steps are the same as those in ‘Annual Precipitation
Interpolation’ and will not be repeated here.

2.3.2. Multiple Linear Regression

The MLR method was described in the PCRR Section above and will not be repeated here.
Data processing using the MLR method is the same as that in the PCRR method on all three time scales.

2.3.3. Inverse Distance Weighting

IDW is a widely used method for the estimation of missing data in hydrology and geographical
sciences. Robinson and Metternich [28], in their study testing the performance of spatial interpolation
techniques for mapping soil properties, have used the IDW method and concluded that IDW is able
to interpolate subsoil pH with a sensible accuracy. The influence of a measured point is weighted
according to the distance from the sampled point to the estimated point. The formula for the IDW
method is as follows:

Z(S0) =
N

∑
i=1

λiZ(Si) (6)

where Z(S0) represents the interpolated value at point S0, Z(Si) represents the observed value at point
Si, n is the number of observations, and λi is the weight. The weights λi can be calculated as follows:

λi =
di0
−p

∑N
i=1 di0

−p ,
N

∑
i=1

λi = 1 (7)

where p is a power and di0 is the distance between a target and observations. The IDW method uses
the same data processing procedure on all three time scales.

2.4. Hydrological Model

In this study, the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS)
model is used to evaluate the effects of different precipitation interpolation methods on runoff.
The HEC-HMS model has been developed by the US Army Corps of Engineers [29] and can be
used for many hydrological simulations such as simulations of natural rainfall-runoff processes or
rainfall-runoff processes constrained by artificial controls. The HEC-HMS model is a semi-distributed
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model, which takes into account the spatial changes of the climate-environment and the underlying
surface in the catchment. The catchment is divided into several sub-catchments using the natural divide
line formed by the terrain, and various runoff calculation methods, basic flow calculation methods,
and river channel confluence calculation methods can be adopted for each sub-basin and river channel
respectively. The different parameters of each sub-catchment are set up, the runoff process and the
slope convergence process of each sub-catchment are calculated, these are calculated along the river
channel of confluence to the downstream control section outlets, and the hydrological elements such
as the peak runoff, runoff, and peak time are calculated at the outlet of the catchment. The HEC-HMS
model consists of four modules; namely, Basin Model, Meteorological Model, Control Specification,
and Time-series Data. For a specific introduction of the HEC-HMS model see Feldman [29].

The HEC-HMS model has been validated in previous studies and has shown good applicability
in catchments in Jiangxi Province [30,31]. Based on 90-m SRTM DEM data, HEC-GeoHMS,
the preprocessing software of HEC-HMS, was used in this study to generate the basin boundary
and river network of the Xinxie catchment, and the important terrain information in the typical
small catchment was extracted (such as river length, riverbed gradient, maximum flow path length,
etc.). The sub-catchment area was divided by the geographical location of the rainfall station in
the study area. Based on the land use and soil texture data provided by the Jiangxi Freshet Torrent
Project Management Office, the land use and soil texture characteristics of each small catchment were
determined to provide basic underlying surface data for the determination of important physical
parameters in HEC-HMS. Several parameterization schemes for the Xinxie catchment were selected in
the catchment module of HEC-HMS (Table 2), and corresponding numerical simulation schemes were
developed. The details of each step will not be repeated here.

Table 2. Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) simulation scheme
of Xinxie catchment.

Runoff-Volume Model Direct-Runoff Model Baseflow Model Routing Model

Soil moisture accounting Clark’s unit hydrograph Linear reservoir Lag

In this paper, the Xinxie catchment was divided into six sub-basins (Figure 1), and the hydrological
model was constructed according to the simulation parameterization scheme discussed above.
Then, daily precipitation data from 2007 to 2013 and flood event data from each sub-basin were
interpolated using the PCRR method, MLR method, and IDW method as input data used to drive the
model (The flood event data refers to the flow record data and precipitation data recorded during a
flood event from the rising time to the recession time. Usually as a result of storage effect of basin,
the precipitation has occurred before the flood rises so the rising time often starts from the moment of
precipitation). Some of the parameters of the HEC-HMS model need to be calibrated according to the
historical rainfall runoff data; the criterion for parameter calibration is to find the optimal fit for the
flow calculated by the parameter values and the measured flow at the outlet of the watershed. In this
study, the genetic algorithm was used to automatically calibrate the model parameters to determine
the maximum certainty coefficient as the objective function. This parameterization process has been
successfully applied in the ‘Flash Flood Forecasting and Disaster Management of Jiangxi Province’
(grant No. 0628-156104104417) project.

2.5. Validation

(i) Cross-validation [32] was done to verify the effect of interpolation from 2007 to 2013 by
eliminating the observation site data systematically. Other site data were used to generate the predicted
values of the site, and the predicted values were compared with measured values to analyze the error
associated with the interpolation. Mean absolute error (MAE), mean relative error (MRE), and root
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mean square error (RMSE) were used as the criteria to evaluate different interpolation methods.
Their expression of the criteria are as follows:

RMSE =

√
∑N

i=1 (Mi −Oi)
2

N
MAE =

∑N
i=1 ABS(Mi −Oi)

N
MRE =

1
N ∑N

1

∣∣∣∣ABS(Mi −Oi)

Oi

∣∣∣∣ (8)

where Oi is the ith observation value, Mi is the ith predicted value, and N is the total number
of observations.

Errors can reflect the merits of calculation results from different perspectives. Among them,
the MAE reflects the error range of the calculated values, and the error is given quantitatively.
MRE gives the error range of the calculated values by reflecting the relative errors of different data
sets, and the effect is intuitive. Moreover, RMSE can reflect the interpolative sensitivity and extreme
effects associated with sample data.

(ii) Another method of comparing different spatial interpolation methods is to compare various
time series of daily areal precipitation distributions using not only internal validation but also objective
verification based on streamflow simulations [33]. Therefore, HEC-HMS was used to evaluate the
effect of the different interpolation inputs on the water balance and runoff dynamics. The evaluation
criteria include the percentage bias (PBIAS) and the Nash–Sutcliffe efficiency (NSE) [34]

NSE = 1− ∑N
i=1(Oi −Mi)

2

∑N
i=1
(
Oi −O

)2 PBIAS = 100 · ∑N
i=1(Oi −Mi)

2

∑N
1 Oi

(9)

where O is the mean of the observed value and other notations are as defined above.

3. Results

Before analyzing the interpolation results of different schemes at different scales, a collinearity
analysis was performed based on the MLR method. The matrix XTX of the observed data of the
independent variables was analyzed, and various indexes were used to reflect the co-linearity between
independent variables. Commonly used collinear diagnostic statistics include eigenvalues and
condition indexes, etc. [35]. If the eigenvalues of matrix XTX displays the following relationship
d1 ≥ d2 ≥ · · · ≥ dk, then the conditional index d1

dk
of X is used to characterize its singularity.

Thus, d1
dk

(j = 1, 2, · · · , k) is also called a conditional index. It is generally believed that if the
conditional index is between 10 and 30, a weak correlation exists between the independent variables.
Additionally, a value between 30 and 100 represents a moderate correlation, and a value greater than
100 denotes a strong correlation. The larger the condition index is, the closer the eigenvalue is to
zero and the stronger the collinear relationship. The results of the collinearity analysis show that the
eigenvalues are close to zero and the condition indexes are large in two dimensions, which suggests
that multicollinearity exists between the independent variables when the MLR method is applied
(Table 3). However, this phenomenon can be avoided by using the PCRR method.

Table 3. Collinearity Diagnosis of the Multiple Linear Regression (MLR) method.

Dimension Eigenvalue Condition Index
Variance Proportions

(Constant) Longitude Latitude Elevation Slope Aspect

1 4.984468 1 0.00 0.00 0.00 0.01 0.01 0.01
2 0.662792 2.742335847 0.00 0.00 0.00 0.07 0.22 0.02
3 0.185079 5.189568491 0.00 0.00 0.00 0.07 0.08 0.82
4 0.167639 5.452825175 0.00 0.00 0.00 0.55 0.68 0.09
5 2.03 × 10−5 495.2502822 0.03 0.02 0.99 0.30 0.01 0.01
6 1.57 × 10−6 1781.863642 0.97 0.98 0.01 0.00 0.01 0.05
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3.1. Annual Analysis

The results of data cross-validation for different interpolation schemes are shown in Table 4.
In general, the PCRR interpolation scheme was superior to other methods.

For annual precipitation, the MAE, MRE, and RMSE values of the eight interpolation methods
exhibited similar trends.

Table 4. Cross-validation performance and ranking of different interpolation schemes for simulating
annual precipitation.

Interpolation
Scheme

Mean
RMSE

Rank of Mean
RMSE

Mean
MAE

Rank of
Mean MAE

Mean MRE
(%)

Rank of
Mean MRE

PCRR 40.1 1 31.2 1 1.51 1
IDW 53.1 2 39.4 2 1.98 2
MLR 54.0 3 41.2 3 2.19 3

On the whole, the PCRR scheme was used to calculate the relationship between precipitation and
geographical factors such as latitude, longitude, elevation, and others via principal component regression.
The interpolation effect of PCRR was superior to those of the other two methods for all indicators. The
performance of the MLR method was slightly worse than that of the IDW method. Among all three
schemes, RMSE ranged from 40.1 mm to 54 mm with relatively large variations. Additionally, MAE ranged
from 31.2 mm to 41.2 mm, and MRE ranged from 1.51% to 2.19% with moderate variations.

When evaluating the plots of observed versus predicted mean annual rainfall for each gauge from
2007 to 2013 (Figure 2), certain trends can be identified. Figure 2 shows that the PCRR method exhibits a
good correlation between predicted precipitation and measured precipitation, and the points are located
close to the 45-degree line; however, the correlation between the IDW method and the MLR method is
low. The PCRR scheme displayed good performance due to the addition of a variety of terrain elements
and the consideration of multicollinearity between the independent variables. In addition, the residuals
were further processed in the PCRR method. As shown in Figure 2, further analysis of three schemes
suggests that the annual mean precipitation ranged from 1500 to 2000 mm, and the predicted values were
slightly larger than the measured values when the annual precipitation was less than 1800 mm, i.e., an
overestimation trend was present. Additionally, the predicted values were less than the measured values
when the annual precipitation was more than 1800 mm, which reflects an underestimation trend.
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Figure 2. Scatterplots of observed versus predicted values for all interpolation methods of annual precipitation.
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According to the above results, the statistical error (SE) of each station (Figure 3) reflects regional
interpolation trends. The ±SE range of the PCRR method at all stations was 20.5 mm, and five of
the seven stations had SE values greater than 0 mm. Notably, the SE values of the IDW method
displayed a significant negative trend at Yunfeng station, which is the southernmost station in the
catchment. The average annual precipitation at Yunfeng station was 1970.5 mm, which exceeds
1800 mm; thus, this trend is consistent with previous conclusions that the predicted values are
underestimated. The MLR method yielded negative SE values at all stations, which is opposite
to the results of the PCRR method. This phenomenon is because the annual precipitation at all stations
in the Xinxie catchment was more than 1800 mm, while only seven out of the 34 sites outside the basin
had an annual precipitation greater than 1800 mm. Thus, the regression model using precipitation
as the objective function is not ideal for extreme values. Since the PCRR residuals were further
interpolated, the degree of negative correlation is the smallest among the three methods, thus the
addition of a residual can effectively avoid the systematic deviations in predictions.
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Figure 3. Statistical error of rainfall between interpolation methods and meteorological station rainfall
measurements in the basin.

Spatial maps generated from each interpolation method (Figure 4) were used to visualize some of
the spatial patterns of annual rainfall in the Xinxie basin from 2007 to 2013. The spatial distribution of
precipitation and the elevation of the catchment increased from north to south. These results suggest
that the precipitation is affected by topography. As shown in the simulation results of the three
interpolation methods, the IDW method produced obvious circles around the interpolation points.
Additionally, the PCRR and MLR schemes accounted for more micro-scale changes in rainfall, while
the IDW interpolation method displayed a clear dividing line. Overall, the simulation results of the
PCRR scheme were satisfactory. Because of its high simulation accuracy, the zonal distribution of
precipitation in space was clearly reflected in the map and was consistent with the actual distribution.
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3.2. Daily Analysis

Daily precipitation from 2007 to 2013 was interpolated using the PCRR, IDW, and MLR schemes.
The results of cross-validation show that the PCRR scheme performed better than the other two
schemes, and the differences between the indicators of different methods on the daily scale were more
obvious than those on the annual scale (Table 5), which suggests that the spatial variability of daily
precipitation was larger than that of annual precipitation.

Table 5. Cross validation performance and ranking of different interpolation schemes for simulating
daily precipitation.

Interpolation
Scheme

Mean
RMSE

Rank of Mean
RMSE

Mean
MAE

Rank of
Mean MAE Mean MRE Rank of

Mean MRE

PCRR 3.92 1 3.06 1 0.49 1
IDW 8.38 2 6.63 2 1.17 2
MLR 12.39 3 10.55 3 1.81 3

Another way to compare the spatial interpolation methods is to produce and compare various
time series of daily areal precipitation distributions using not only internal precipitation validation but
also objective verification based on streamflow simulations [36]. Table 6 shows the HEC-HMS daily
runoff performance using different interpolated rainfall inputs in the Xinxie catchment from 2007 to
2013. The results showed that the PCRR model yielded the minimum relative error in average annual
runoff depth (0.97%). Additionally, the NSE coefficient obtained using the IDW method was slightly
lower than that of the PCRR method (0.803), and the relative error associated with the average annual
runoff depth was 5.34%. Due to the underestimation of precipitation by the MLR method, the average
annual relative error and the NSE coefficient were unsatisfactory.

Table 6. Model performance using differently interpolated rainfall inputs.

Interpolation
Scheme

Annual Precipitation
(mm) Measured

(mm)
Simulated

(mm)
Absolute

Error (mm)
Relative
Error (%) NSE

Simulated Measured

PCRR 1875.5
1919.0

979.6 975.1 −4.5 −0.46 0.806
IDW 1872.9 979.6 930.2 −49.4 −5.04 0.803
MLR 1740.0 979.6 880.1 −99.5 −10.15 0.707

The differences between the interpolation methods were more pronounced over short time
scales [10]. Monthly rainfall differences between the PCRR and IDW schemes ranged from −20 mm
to +40 mm, and those between the PCRR and MLR methods ranged from −60 mm to +80 (Figure 5).
These monthly differences generally exhibited maximum values between May and July. Thus, a visual
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analysis of the differences in runoff is shown in Figure 6 from May to June 2010. The peaks generally
occurred at the same time in both model runs. 20 June 2010 was the peak runoff time of the entire
period, and the measured peak discharge was 95.7 m3/s. The peak discharges determined using the
three interpolation methods were lower than the measured values. The PCRR method yielded the
closest estimate (83.2 m3/s), while the IDW and MLR values were 71 m3/s and 65.4 m3/s, respectively.
A similar trend was observed for runoff processes on 22 May 2010. Figures 5 and 6 reveal that, in
general, large rainfall differences led to large peak flows, and the simulated streamflow volumes varied
with the different inputs.
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Figure 5. Differences in monthly rainfall for the Xinxie catchment using different interpolations:
(a) PCRR-IDW and (b) PCRR-MLR.
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Figure 6. Modeled and measured runoff during May to June 2010 in Xinxie catchment for principal
component regression with residual correction (PCRR), inverse distance weighting (IDW), and MLR
rainfall interpolation.

Further results of analysis, including important flow characteristics such as the annual mean
flow, maximum and minimum annual mean flow, maximum and minimum daily flow, and upper
10th percentile flow, are shown in Table 7. The values in bold were closest to the observed values.
Generally, the flow characteristics obtained using the PCRR method were more similar to the observed
data than those obtained using other methods, and daily streamflow characteristics exhibited large
ranges between different simulations and flow characteristics.
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Table 7. Comparisons of flow characteristics.

Flow Characteristics Obs. (cm) PCRR (cm) IDW (cm) MLR (cm)

Max. annual mean flow 152.1 156.9 162.2 147.5
Min. annual mean flow 53.9 57.1 60.4 56.9

Upper 10 percentile 212.6 189.7 209.4 202.8
Minimum daily flow 13.1 13.1 9.8 6.5
Maximum daily flow 3130.7 2489.5 2083.9 2460.1

3.3. Hourly Analysis

To further understand the performance of the interpolation methods and the objective verification
based on streamflow simulations, investigations were performed for two flood events in the period
between 2007 and 2013. Half-hourly precipitation was spatially interpolated using the three methods,
and the results were used as input data in the HEC-HMS model. The selected events and important
statistics are listed in Table 8. The cross-validation performance (Table 9) exhibited differences on the
annual and daily scales. As shown in Tables 8 and 9, of the three methods, the MLR method displayed
the worst performance. However, there was little difference between the PCRR and IDW methods.
The PCRR method exhibited a better interpolation effect for the No. 20100619 flood event, while the
IDW method displayed better results for the No. 20120430 flood. In addition, the MRE method was
significantly different compared with PCRR and MLR.

Table 8. Precipitation statistics of the selected events with hourly time step data.

Event Period Duration (h) Average Rainfall
Sum (mm/ev.)

Maximum
(mm/h)

Average Rainfall
Intensity (mm/h)

20100619 19 July–22 July 2010 69.5 160.3 14.8 2.3
20120430 30 April–3 May 2012 65.0 47.2 19.0 0.7

Table 9. Cross-validation performance and ranking of different interpolation schemes for simulating
flood events precipitation.

Interpolation Scheme
20100619 20120430

PCRR MLR IDW PCRR MLR IDW

Mean RMSE 0.712 1.74 0.83 0.42 0.96 0.44
Rank of mean RMSE 1 3 2 1 3 2

Mean MAE 0.52 0.71 0.65 0.32 0.72 0.23
Rank of mean MAE 1 3 2 2 3 1

MRE 1.07 2.1 1.39 7.06 9.54 2.25
Rank of mean MRE 1 3 2 2 3 1

As with the daily model, the results of the three interpolation models were used as precipitation
inputs for the HEC-HMS model, and the spatial distribution of the runoff results was obtained for
different methods. Table 10 shows the statistical results of the two floods, which suggested that the
results of the No. 20100619 flood using the PCRR method were slightly better than the results of the
other two floods. However, for the No. 20120430 flood, the IDW method yielded the best results,
which was consistent with the conclusion of cross-validation. A visual analysis of the differences in
runoff is shown in Figure 7. For the No. 20100619 flood, all three methods yielded a distinct small
peak before the flood peak, but the hydrograph of the measured discharge was not obvious, and
this mismatch may be due to possible data error. The results of the three methods showed similar
variations during the two flood events, and peak discharge was slightly larger than the measured
discharge. Additionally, the flood peak time was about 1 h later than the measured peak time.
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Table 10. Model performance of flood events using differently interpolated rainfall inputs.

Flood Event
20100619 20120430

PCRR IDW MLR PCRR IDW MLR

Runoff
Measured (mm) 141.7 141.7 141.7 53.6 53.6 53.6
Simulated (mm) 148.7 127.6 144.1 46.7 49.8 31.5

Relative Error (%) 4.95 −9.97 1.72 −12.82 −7.02 −41.24

Peak Discharge
Measured (m3/s) 166 166 166 74.7 74.7 74.7
Simulated (m3/s) 160 145 188 82.2 76.3 83.6
Relative Error (%) −3.73 −12.47 13.19 10.04 2.14 11.91

Peak Time Absolute Error (h) 2 2 1.5 1.00 1.00 1.00

Nash–Sutcliffe efficiency 0.925 0.9 0.705 0.908 0.918 0.808
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Figure 7. Modeled and measured runoff of two flood events in Xinxie catchment for PCRR, IDW, and
MLR rainfall interpolation.

For the two flood events selected in this study, the differences between the hourly interpolation
results of the three interpolation methods were not obvious, which is in agreement with Verworn’s
conclusion [37]. Over a short time-series, heavy rain is concentrated as well as no precipitation for
the rest time, which may lead to similar interpolation results. The distributions of runoff processes in
the HEC-HMS model driven by PCRR and IDW were nearly identical, while that of the MLR method
was quite different from the former two. This result also suggests that even slight differences in
precipitation can cause dramatic differences in simulated streamflow.

4. Discussion

When using the hydrological model to reflect the difference of precipitation, a worthwhile
discussion topic is that the ability to correctly reproduce surface runoff strictly depends on
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the rainfall-runoff transformation and the successful generation might not guarantee the correct
reproduction of the precipitation field [38,39]. However, this study focuses on the comparison of
interpolation methods. The traditional cross-validation method is often used for verifying the results.
On the other hand, we also want to reflect the temporal and spatial distribution of precipitation
interpolation from the side by means of the flow simulated by the hydrological model. Usually, this
method is especially relevant in catchments that are dominated by heavy rainfall events, producing
mostly direct runoff and resulting in highly dynamic hydrographs, which allow for a simple evaluation
of rainfall inputs (Wagner et al. [18]).

Another discussion in this study is the selection of the hydrological model, which is also related to
the correct reproduction of the precipitation field. In this study we used a semi-distributed hydrological
model, which divides the study basin, an area of 96.4 km2, into six sub-basins; each sub-basin can
represent the internal spatial distribution. The area precipitation of each sub-basin is the average of
the internal grids, which can reflect the geographical features of the catchment, so it can represent the
spatial precipitation distribution information within the sub-basin. This can effectively explore the
performance of the spatial precipitation interpolation method. Haberlandt et al. [33], Ruelland et al. [21],
Masih et al. [40], Tobin et al. [41], and others also used semi-distributed hydrological modeling for
the validation of interpolation methods. In addition, the HEC model has the characteristics of easy
operation, short running time, the combination of a variety of multiple runoff-convergence schemes,
and so on. At the same time, the study catchment is located in Jiangxi Province, where flash floods
happened frequently; previous studies have used the HEC-HMS model (Li [42]; Wu et al. [43]) with
good applicability. This model and parameter calibration procedure have been successfully applied in
our previous study, ‘Flash Flood Forecasting and Disaster Management of Jiangxi Province’ (grant No.
0628-156104104417) project. Therefore, the semi-distributed HEC-HMS model was chosen.

HEC-HMS was used to evaluate runoff and describe the temporal and spatial distributions of
rainfall. In this study, the genetic algorithm was used to automatically calibrate the model parameters
to determine the maximum certainty coefficient as the objective function.

The results of cross-validation showed that the average annual rainfall value at each site simulated
by the PCRR method was close to the measured value, while the IDW method yielded a negative trend
at Yunfeng station. This negative trend is potentially important because the annual precipitation at
Yunfeng station is 1970.4 mm, which is the largest among all gauges, and the elevation is the highest
(341 m) among the gauges located within the basin. The precipitation predicted at all stations by the
MLR method was less than the measured precipitation, reflecting a negative correlation. This negative
correlation exists because the annual precipitation at all stations in the Xinxie catchment is greater than
1800 mm, while only seven of the 34 sites outside the basin have an annual precipitation greater than
1800 mm. It is worth mentioning that, because of this reason, the three methods used to predict annual
precipitation values over 1800 mm yielded negative correlations. Since the PCRR residuals were further
interpolated, the degree of negative correlation was the smallest among the three methods. Further
research is needed to explore the generality of this result by using other models and other catchments.

Remarkably, although the results of MLR in cross-validation were only slightly worse than
those of the other two methods, the hydrological response in the catchment associated with different
interpolation methods can reflect a large difference. Hwang et al. [44] summarized the same conclusions
in their study of spatial interpolation schemes of daily precipitation for hydrologic modeling. For the
No. 20100619 flood, as shown in Figure 7, the MLR method produced a significant flood peak on
June 20 from 04:00 to 10:00, while this peak was not obvious in the measured flow during this event.
Compared with the measured peak flow, the MLR-based flow corresponded to a larger peak discharge
and a longer duration, while the other two methods yielded flows that were slightly smaller than the
observed peak discharge. For the No. 20120430 flood, the MLR method and PCRR method yielded
the same peak flow, but the values of flood initiation and termination processes based on the MLR
method were smaller than the measured values of those processes, resulting in relatively large error in
the runoff depth.
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Some limitations of this study are as follows. Only one small catchment, Xinxie, was chosen
as the study area; this catchment is dominated by a tropical humid monsoon climate, and the
terrain transitions from high to low from south to north. A distributed hydrological model will
be introduced to compare the results with the HEC-HMS model and to study the spatial response
between precipitation and runoff. Moreover, only two flood events were selected for hourly scale
interpolation, and the small number of samples may not effectively reflect the effect of hourly scale
interpolation schemes. Future studies will be conducted for a more comprehensive analysis.

5. Conclusions

In this study, three interpolation schemes were used to provide rainfall data on annual, daily,
and hourly scales using seven rain gauges in the Xinxie catchment and 34 rain gauges surrounding
the catchment as auxiliary sites. Cross-validation was used to evaluate different methods, and the
HEC-HMS hydrological model was used to assess the performance of spatial integration.

Based on collinearity diagnosis, it can be concluded that there is strong collinearity in the MLR
model, which will influence the least square estimation; however, this problem will not occur using the
PCRR method. Our analysis shows that PCR based on the residual method, which involves elevation,
slope, and slope aspect, performs the best on the annual and daily scales and shows little difference at
the hourly scale compared to the results of the IDW method.

At the annual scale, the predicted value was slightly larger than the measured value when the
annual precipitation was less than 1800 mm, reflecting a trend of overestimation. However, the
predicted value was less than the measured value when the annual precipitation was more than 1800
mm, reflecting a trend of underestimation. At the daily scale, the differences between the indicators of
the different methods increased obviously compared to those at the annual scale due to the increase
in the spatial heterogeneity of precipitation at the daily scale. The cross-validation performances of
different interpolation schemes differed at the hourly scale compared with those at the annual and
daily scales. At the hourly scale, the PCRR and IDW methods performed better than the MLR method,
but the difference between PCRR and IDW was not obvious.

Furthermore, to assess the accuracies of interpolated spatial distributions, a hydrological model
was used to temporally and spatially integrate rainfall and simulate streamflow. Overall, large rainfall
differences led to high differences in peak flows. The hydrological model driven by PCRR from 2007
to 2013 displayed good results, which suggested that the indicators of daily runoff processes were
relatively accurate. Additionally, although the NSE of the IDW method was slightly less than that of
the PCRR method, differences existed between various flow characteristics, such as the daily maximum
flow and runoff depth. The three methods produced roughly the same simulation results for the two
flood events, especially the No. 20120430 flood. The results showed that the peak discharge was
greater than the observed discharge, and the simulated peak time was an hour later than the observed
peak time.

In general, our results indicate the potential of using the PCRR method for rainfall interpolation.
Moreover, different time scales can be used to more comprehensively assess model performance, and
the use of hydrological models can be a complementary indicator of the quality of rainfall interpolation.
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