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Abstract: The use of geotextile filters has been a common application in geo-environmental and
geotechnical engineering for decades. The purpose of the present paper is to assess the influence
of artificial physical clogging and cyclic water flow on the water permeability characteristics of
nonwoven geotextiles used commonly in filter and drainage systems. Despite many studies
examining the behavior of soil-geosynthetics, the mechanism of physical clogging is not fully
understood yet and remains incompletely defined. Artificial clogging and cyclic water flow tests
have been conducted according to a procedure created by the authors. Three nonwoven geotextiles
and silty sand were employed in the test series. Hydraulic properties of the tested geosynthetics
were determined according to the ISO standard. Filter design criteria are also discussed. The paper
also presents the changes of water permeability characteristics due to clogging and cyclic water
flow. The results show significant decrease of water permeability coefficients of the tested nonwoven
geotextiles after artificial clogging and under cyclic water flow. Furthermore, the clogging mechanism
was observed and confirmed by three-dimensional computed tomography.
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1. Introduction

Geosynthetics are modern engineering materials, which have been widely used in soil structures
for reinforcing, separation, filtration, and drainage [1–10]. The main functions of geotextile filters are
to prevent the movement of fine particles from the base soil and to avoid the development of excessive
pore water pressure on the soil–geotextile filter interface. The use of geotextile filters is one of the most
common and oldest applications in geo-environmental and geotechnical engineering works [11–14],
especially in drainage systems, revetments of channels, armored banks of rivers, and along the coast
line [6,15]. Synthetic materials are very cost-effective in comparison to traditional granular drainage
layers, easy to transport and install, and reduce the exploitation of natural materials [12,16,17].

However, the selection of particular nonwoven geotextiles for particular places is a critical decision
and the hydraulic properties of the material should be measured [18,19], especially, because in drainage
and filter applications, nonwoven geotextiles are the first to be in contact with soft, saturated, and fine
soils [20].

A geotextile filter includes the geotextile, the interface between the geotextile and the natural soil
(filter cake) and the interface between the nonwoven geotextile and the drainage material [21]. For this
reason, a geotextile filter should be considered as a filtering zone that evolves over time. Figure 1
presents the evolution of the geotextile filter structure under exploitation.
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In some structures, there is a zone that is always subjected to cyclic flow due to the fluctuation of
the water table caused by boats, sea waves, or periodic drawdown of water for irrigation purposes.
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Typical examples are structures consisting of a geotextile filter layer placed on a soil slope, covered
with stone armor (Figure 2). When the groundwater table within the revetment is higher than the
outside water level, water will flow out from the revetment. On the other hand, when the outside
water level is higher, water will flow into the revetment. The percolation rate of water through a
soil–geotextile system is a function of the hydraulic gradient. If the geotextile filter does not function
well, the structure may fail [6,22–24].
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As a result, the selection of a geotextile filter strongly depends on the design and boundary
conditions (applied hydraulic gradient, flow conditions, continuity of the soil–geotextile filter contact
interface, shear stresses, and applied vertical effect) and on the geotechnical characteristics of the base
soil (grain size distribution, internal stability, relative density, mechanical, and permeability properties).
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Current design does not consider all the mentioned factors and is generally based on empirical
approaches regarding [11,14,21,25–30]:

• retention—the geotextile should retain the base soil to prevent the piping phenomenon,
• permeability—ensuring the passage of water to guarantee flow and preventing excessive water

pressure alongside the filter.

The retention criterion is commonly expressed as

On ≤ xDn (1)

where On—n percent opening size of geotextile (usually O90); x—retention ratio dependent on the
criterion; Dn—diameter, for which n% in mass of the remaining soil particles are smaller than that
diameter (usually D85).

The design parameters considered by different authors are variable, chiefly with regard to the
indicative diameter of the base soil, the soil relative density, the geotextile opening size, and the type
of the geotextile. Therefore, the use of dissimilar retention design criteria must be cautiously evaluated
referring to the real in situ design parameters [11,14].

Nevertheless, the permeability criterion is commonly expressed as

kn ≥ λks (2)

where kn—coefficient of permeability normal to the plane of geotextile; λ—constant coefficient
dependent on the criterion (usually 10–100); ks—coefficient of soil permeability.

The permeability criterion includes flow rate and pore pressure requirements. The flow rate
requirement consists of comparing the flow rate in a two-layered filter soil filtering system and flow
rate in the same soil layer without a filter. The pore pressure requirement means that the presence of
the geotextile filter should not increase the pore water pressure in the soil in comparison to the case
performed without a filter [31]. Furthermore, the permeability criterion takes into account the blinding
and clogging limit states.

Moreover, any design has to be carried out within narrow margins. The approaches are often
grouped into “hydraulic” and “geometric” criteria. Hydraulic criteria define the limit value for the
hydraulic gradient, at which transport of particles begins. Geometric criteria describe limit values for
void diameters to hinder the transport of finer particles through it [23].

Furthermore, clogging criteria are required (the synthetic filter should prevent the clogging
process phenomena in the long term). If the nonwoven geotextile filter is not correctly designed,
the main limit states of the filtering systems that can occur, leading to the inefficiency of the drainage
system, are base soil erosion and synthetic filter external and internal clogging [14,21,32,33].

Blinding (external clogging) occurs when the geosynthetic filters are in contact with internally
unstable soils. As a result, if the hydraulic flow moves the base soil particles, these particles accumulate
at the base of the soil–geotextile filter interface and a low permeability zone is created. The development
of pore water pressures is related to the decrease of permeability at the soil filter interface. Consequently,
it affects the structure stability [14]. Clogging is the main mechanism affecting the durability of
geotextile filters and is the reduction of the geotextile permeability to a point where flow through it
results in the hydraulic system’s non-performance [34]. Physical clogging occurs on the scale of the
entire geotextile filter when the particle movement of the base soil leads to the clogging of the geotextile
filter pores (Figure 3) [35,36]. Subsequent decrease in effective porosity and interconnectedness of the
pore network reduces the hydraulic conductivity of the geosynthetics. The phenomenon results in
the decrease of the system drainage capacity [14,21,25,28,37]. The consequent increase of pore water
pressure may cause stability problems [11,14].
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Figure 3. Geotextile clogging.

Moreover, clogging may be caused by accumulation of chemical and biological materials.
Biological clogging usually occurs with the formation of surface biofilms, generation of slimes,
and the growth of the interconnection of bioconcentrations. Chemical clogging occurs due to the
precipitation of iron oxide onto the fibers. These types of clogging are a major concern for drainage in
leachate-collection systems [14,16,17,21,35,37–42].

In reference to the issues mentioned above, the main aims of this study are: (1) to create an
artificial clogging and cyclic water flow procedure to mimic natural in situ conditions; and (2) to study
the influence of clogging and cyclic water flow on the filtration characteristics of nonwoven geotextiles.

2. Materials and Methods

2.1. Materials

2.1.1. Nonwoven Geotextiles

In this study three types of needle-punched nonwoven geotextiles were employed and will be
referred to hereafter as A, B, and C. Table 1 summarizes the main physical and mechanical properties
of the applied geosynthetics.

Table 1. Physical and mechanical properties of the tested nonwoven geotextiles.

Geotextile
Mass per Unit Area Thickness

d 1
Opening Size

O90

Tensile Strength
CMD 2

Tensile Strength
MD 3

(g/m2) (mm) (µm) (kN/m) (kN/m)

A 450 4.5 83 27.1 26.7
B 280 2.6 80 24.0 20.3
C 200 2.0 100 14.5 16.0

Notes: 1 geotextile thickness (under 2 kPa normal stress); 2 cross machine direction; 3 machine direction.

In the case of hydraulic properties, the water permeability characteristics of the tested nonwoven
geotextiles were determined according to ISO 11058:2010 [43] in the Water Center Laboratory at the
Warsaw University of Life Sciences. Figure 4 illustrates the laboratory equipment.

Testing the velocity of flow involved measuring the water flow velocity normal to the plane
of a geotextile sample, in a specified time and at an appropriately set water head (70, 56, 42, 28, 14,
and additional 3 mm to calculate the water permeability coefficient only). The surface of each of
specimen was 19.63 cm2. The specimens were placed under water containing a wetting agent at
laboratory temperature, and were left to saturate for 24 h. Then the specimens were placed in a
cylinder. A supporting mesh was used in the cylinder to avoid deformation of the material by the
pressure of water flowing through the holder installed in the device measuring water permeability.
The actual volume of water was determined based on the average value from three measurements.

The flow velocity (v20) was calculated using the following expressions [43]

v20 =
V · Rt

A · t
(3)
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where V—water volume measured, (m3); Rt—correction coefficient for water at the temperature
of 20 ◦C, (-) (Equation (4)); A—exposed specimen area, (m2); t—time measured to achieve the
volume V, (s).

Rt =
1, 762

1 + 0, 0337 · T + 0, 00022 · T2 (4)

where T—temperature during the test, (◦C).
Having compiled the test results, the flow velocity index (VH50) was calculated for the water

head equal to 50 mm. The coefficient of water permeability (kn) was calculated for 3 mm of the water
head [32]

kn =
V · d

A · t · ∆h
(5)

where d—thickness of the tested material, (m); ∆h—pressure differential under and over the specimen,
expressed as the height of the water column, (m).

Statistical flow velocity characteristics for the tested nonwoven geotextile samples A, B, and C
before the tests and other hydraulic parameters are shown in Figure 5 and Table 2.
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The smallest flow velocity index before artificial clogging and cyclic water flow test for nonwoven
geotextile B with the smallest characteristic opening size (80 µm) was determined at 0.026 m/s. In the
case of the nonwoven geotextile A with the largest thickness (4.5 mm) and mass (450 g/m2), the largest
flow velocity index and the coefficient of water permeability were determined at 0.035 m/s and
0.0042 m/s, respectively.

Table 2. Summary of statistical analyses of hydraulic properties for the tested nonwoven geotextiles.

Nonwoven Geotextile A

Head Loss (m)
v20 (m/s)

Minimum Quartile 1 Median Quartile 3 Maximum Mean

0.014 0.0012738 0.012941 0.012942 0.013100 0.013121 0.012968
0.028 0.022983 0.023059 0.023110 0.023111 0.023318 0.023116
0.042 0.033018 0.033076 0.033100 0.033219 0.022243 0.033169
0.056 0.037000 0.037067 0.037145 0.037199 0.037528 0.037188
0.070 0.044180 0.044316 0.044397 0.044440 0.044592 0.044385

VH50 (m/s) 0.035

kn (m/s) 0.0042

Nonwoven Geotextile B

Head Loss (m)
v20 (m/s)

Minimum Quartile 1 Median Quartile 3 Maximum Mean

0.014 0.006849 0.007017 0.009838 0.007115 0.007134 0.007033
0.028 0.012124 0.012305 0.018599 0.012496 0.012699 0.012416
0.042 0.023988 0.024016 0.029380 0.024058 0.024186 0.024056
0.056 0.030105 0.030186 0.0360525 0.030389 0.030485 0.030303
0.070 0.035488 0.035499 0.043580 0.035597 0.035688 0.035558

VH50 (m/s) 0.026

kn (m/s) 0.0013
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Table 2. Cont.

Nonwoven Geotextile C

Head Loss (m)
v20 (m/s)

Minimum Quartile 1 Median Quartile 3 Maximum Mean

0.014 0.009835 0.009837 0.009838 0.009839 0.009839 0.009838
0.028 0.018500 0.018589 0.018599 0.018600 0.018700 0.018598
0.042 0.029170 0.029330 0.029380 0.029384 0.029740 0.029401
0.056 0.036000 0.036000 0.0360525 0.036105 0.037189 0.036269
0.070 0.042887 0.043295 0.043580 0.043745 0.045800 0.043861

VH50 (m/s) 0.033

kn (m/s) 0.0017

2.1.2. Soil

According to ISO 14688-2 [44], the soil used in the artificial physical clogging and cyclic water flow
tests was classified as silty sand (siSa). For this material Table 3 presents the particle size dimensions.
Furthermore, the soil was internally unstable (Figures 6 and 7 and Table 4) [45].

Table 3. Particle size characteristics of the soil tested.

Soil
D10

1 D15 D50 D85 CU
2 CC

3

(mm) (mm) (mm) (mm) (-) (-)

siSa 0.028 0.035 0.17 0.55 8.6 0.54

Notes: 1 diameter, for which n% in mass of the remaining soil particles are smaller than that diameter, 2 coefficient
of uniformity (=D60/D10), 3 coefficient of curvature (=D30

2/D60D10).
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Table 4. Fn and Hn point coordinates

Particle Diameter D (mm) Point Coordinate (Fn; Hn)

0.001 (F0; H0) = (0; 2.0)
0.004 (F1; H1) = (2; 1)
0.016 (F2; H2) = (3; 28)
0.064 (F3; H3) = (31; 33)
0.256 (F4; H4) = (64; 30)
1.024 (F5; H5) = (94; 6)
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2.2. Artificial Clogging Test

Artificial clogging of the tested nonwoven geotextiles was conducted according to a procedure
created by the authors in the Geotechnical Laboratory of the Slovenian National Building and Civil
Engineering Institute. The laboratory equipment is presented in Figure 8.
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The specimen was placed in the central part of this device on a silty sand layer (15 mm thick).
Next, water flew through the soil and then through the geotextile at a constant time and water head
to allow clogging of the specimen. The load of 10 kPa, representing on site conditions of geotextile
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covered with a stone armor, was enough to protect the composite (soil and material) before lifting up.
Focus on avoiding empty space at the contact of the composite with the cylinder was very important.
In this case, water had to flow through the entire surface of the soil and the tested geosynthetic.

Furthermore, the water flow had to be steady, so that, depending on the physical parameters
of the nonwoven geotextiles, a different water head could be used during the test. Necessary value
increases of the head loss were from 111 to 300 mm for sample A, from 32.5 to 60 mm for sample B,
and from 15.5 to 41 mm for sample C.

Based on the authors’ experience [32], the water permeability coefficient of nonwoven geotextiles
was determined to check and observe the artificial clogging process after 120 min according to the
Equation (5).

In the case of clogged specimens, it is very important to prevent the samples from cleaning
before the hydraulic properties are determined. For this reason, the authors recommend the use
of a maximum water head of 5 mm in the test. Determination of water permeability normal to the
plane of the nonwoven geotextile after clogging and after exploitation according to ISO 11058 [43] is
unacceptable because too high of a water head (14–70 mm) results in falsification of the results.

2.3. Cyclic Water Flow Test

A cyclic water flow test was conducted according to a procedure created by the authors.
The central part (Figure 9a,b) of the laboratory device (Figure 5) was also designed by the authors.
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The composite of three layers—nonwoven geotextile, soil (50 mm thick layer), and nonwoven
geotextile (Figure 9a)—were placed between metal o-rings and perforated plates, which protected
the composite before the movement (Figure 9b). Afterward, the water was allowed to flow from the
bottom to the top for 30 min and at a constant water head of 100 mm. After this time, the central part
of the device was turned around and water flowed for the same time in opposite direction through the
composite. The procedure was repeated several times to cause cyclic water flow though the composite
and through the geotextile layers within it.

To check and observe the cyclic water flow mechanism after 30, 60, 90, 120, 150, 180, 210, and
240 min of the test, the coefficient of water permeability was determined according to the Equation (5).

Additionally, non-cyclic water flow tests (without rotating the central part) were performed for
comparison of the results. In this case the water permeability coefficient of the tested three nonwoven
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geotextiles was determined after 60, 120, 180, and 240 min within a water head of 3 mm. The surface
of each of specimen was 0.00111 m2.

3. Results and Discussion

3.1. Artificial Clogging

Nonwoven geotextile samples before and after clogging are shown in Figure 10. Values of
hydraulic properties of the tested nonwoven geotextiles after artificial clogging are presented in
Table 5.
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Table 5. Coefficients of water permeability kn of the tested nonwoven geotextile samples.

Type of Geotextile
kn for Unworn

Nonwoven Geotextile
kn for Nonwoven Geotextiles after

Artificial Clogging Decrease of kn

(m/s) (m/s) (%)

A 0.0042 0.0018 57.1
B 0.0013 0.0002 84.6
C 0.0017 0.0006 64.7

The results show a noticeable reduction of water permeability after the test, indicating possible
clogging of the geotextile [32,46,47]. After 180 min of artificial clogging, the coefficient of water
permeability decreased even by 84.6% in the case of Sample B.

A nearly identical tendency is presented in the research conducted by Kohata et al. [48] which
have confirmed that the coefficient of permeability became small after clogging. Similarly, the results
of the studies and observations of filtration behavior of nonwoven geotextiles of Nishigata et al. [49]
have shown the influence of particle-size distribution on clogging. The studies of many other
researchers [20,28,30,50] have also demonstrated that the flow performance of geotextile filters depends
on clogging.

However, it also depends on the physical properties of the materials, such as: opening size,
thickness, and mass [26,28,29,32,51]. Sample B was characterized by the smallest characteristic opening
size. In turn, Sample A had the largest mass and thickness, therefore the decrease of the coefficient of
water permeability was the smallest.

Additionally, stable filtration is guaranteed when the maximum number of the constrictions
(dimensionless parameter, which represents the number of “windows” delimited by three or more
fibers, in which soil particles could migrate and combines the structural characteristics of the nonwoven
material: thickness, porosity, fiber size) does not exceed 40 [25,26]. This confirms that mechanical
clogging is strongly connected with the physical properties of nonwoven geotextiles that should
be correctly determined before designing. For clogged Specimen B, three-dimensional computed
tomography (CT) was carried out (Figure 11).
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Figure 11. Nonwoven geotextile B after artificial clogging.

Analysis of the CT results is difficult because of the heterogeneity of the clogging phenomena,
but tests have confirmed that the geotextile pores were clogged by entrapment of soil particles.
However, particle entrapment increases the retention capacity of the geotextile filter. This is one of the
reasons why filters that fail to meet the retention criteria can still function in an approved manner with
regard to the retention of base soil particles [5].

3.2. Cyclic Water Flow Test

Cyclic water flow has influence on the hydraulic properties of nonwoven geotextiles and the
clogging process. Chen et al. [52] performed filtration tests with cyclic flow and claimed that the
fine soil content plays important roles in filtration, clogging, and settlement of the soil–geotextile
filter system.

The results of our study show that, with increasing time of the test, the coefficient of water
permeability decreased, reaching the minimum value of 0.0011, 0.00014 and 0.00033 m/s for samples
A, B, and C, respectively.

In the case of the test without cyclic water flow, geotextiles have not demonstrated the same
behavior, since there was a smaller reduction of permeability (Table 6). This indicates that in the
case of cyclic water flow, e.g., in coast protection, the clogging process should be closely observed
and checked.

The results of the studies by Chen et al. [22] have shown that the fines content has a significant
effect on the filtration behavior of a soil-nonwoven geotextile system and cyclic flow has influence
on the performance of the geotextile filter. For silty sand, at the beginning of testing the cyclic flow,
fine silty particles could migrate and clog within the geotextile. Figure 12 shows the behavior of the
tested geotextiles with respect to permeability in the test period studied.

Table 6. Coefficients of water permeability kn of the tested nonwoven geotextile samples.

Type of Geotextile
kn for Unworn

Nonwoven Geotextile
kn after 240 min of the Cyclic

Water Flow Test
kn after 240 min of the

Non-Cyclic Water Flow Test
Decrease of kn after the
Cyclic Water Flow Test

(m/s) (m/s) (m/s) (%)

A 0.0042 0.00110 0.00140 73.8
B 0.0013 0.00014 0.00017 89.2
C 0.0017 0.00033 0.00038 80.6
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Figure 12 shows the tendency of the tested materials to clog with time, because the coefficients
of permeability tend to decrease with time until there is complete blockage of the geotextile voids.
The largest decrease of the coefficient of water permeability was observed again for Sample B, and the
smallest was observed in the case of Sample A. This confirms that the hydraulic properties of the tested
materials depend on the physical parameters. Faure et al. [53] concluded that a thick geotextile with a
low number of constrictions should be suitable for bank protection under cyclic flow conditions.

Furthermore, Palmeira and Tatto [6] suggested that the presence of a filter reduces the values of
maximum pore pressure in the base soil due to damping effects in the case of slopes under cyclic load
and water flow, particularly for geotextiles with larger thickness. Three-dimensional CT results are
presented in Figure 13. As in the case of the artificial clogging test, CT images have confirmed that the
geotextile pores were clogged by soil particles but entrapping of more fine particles was observed.
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4. Conclusions

Understanding the mechanism of clogging is important for knowledge of geotextile filter
application in geotechnical engineering especially under cyclic flow. The present research has shown
that, under cyclic water flow, physical clogging has larger influence on the decrease of permeability for
nonwoven geotextiles in comparison with one-way flow conditions. Furthermore, commonly used
design filter criteria, especially clogging criteria, do not exist for cyclic flow conditions. This may
lead to faulty design and problems during exploitation. Biological and chemical clogging requires
additional research.

Change of hydraulic properties of geotextiles with time depends on the physical parameters of
materials, in particular on the mass, thickness, and characteristic opening size.

However, even if some relationship between the different properties of the tested nonwoven
geotextiles was observed, it is difficult to establish a linear correlation. The results reported in the
present study are based on experimental tests conducted with a limited number of specimens of
nonwoven geotextiles. More tests on various geotextiles with different production technologies would
be beneficial in the future for a better understanding of the effects of clogging and cyclic flow on the
filtration properties of geotextiles.
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