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Abstract: Models are necessary tools for watershed management. However, applying watershed
models is time consuming and requires technical knowledge, including model selection and
validation. The objective of this study is to assess two commonly used watershed models and
their parameter sensitivity to reduce model loadings and to gain a better understanding of the
model performances. The Hydrological Simulation Program-Fortran (HSPF) model and Storm Water
Management Model (SWMM) were applied to a mostly forested Taiwanese reservoir watershed
with pollution from tea plantations. Statistical analysis showed that both models are suitable for
the studied watershed, but the performances of the flow and water quality simulations are different.
The mean flow simulated by SWMM was lower than the experimental observations. The HSPF model
performed better, possibly because the soil in the study area is highly permeable and the HSPF model
has more precise soil layer calculations. SWMM may underestimate the total phosphorous (TP) and
suspended solid (SS) loads following small storm events in highly permeable watersheds. The Latin
Hypercube-One factor At a Time (LH-OAT) method was used to determine the parameter sensitivity
of the HSPF model and SWMM. In both of the models, the parameters related to infiltration and
soil characteristics strongly affected the flow simulation, except when using the Horton infiltration
method in the SWMM. Manning’s roughness coefficient for pervious areas was more sensitive in
SWMM than in the HSPF model because SWMM has fewer parameters.

Keywords: watershed management; HSPF; SWMM; sensitivity analysis

1. Introduction

Nonpoint source (NPS) pollution occurs when storm runoff carries pollutants accumulated on
surfaces to receiving water bodies. When sediment and nutrients in runoff accumulate in deep water
bodies, such as reservoirs and lakes, eutrophication can occur. Therefore, NPS pollution control is
important for reservoir and lake watershed management. NPS pollution has a diffuse source with
high spatial variability; thus, field studies of NPS pollution are more difficult than those of point
source (PS) pollution. Without a sufficient number of samples, it is impossible to determine the effects
of NPS pollution on the water quality of a receiving water body. Therefore, additional measures
are required to assess the generation and distribution of NPS pollution, such as the use of NPS
models [1]. Given the many available models, a major question is how to choose the appropriate
model. Many watershed models can simulate hydrology and water quality, but their underlying
calculations differ. Additionally, a model must be calibrated and verified before it can be applied
to real cases. Therefore, it is unrealistic to test all of the possible candidate models for one case.
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For example, Nasr et al. [2] tested three watershed models in Irish catchments and explored their
suitability throughout Ireland. In this study, we test two commonly applied watershed models and
discuss the conditions under which each should be used based on their performance and effectiveness.

The Hydrological Simulation Program-Fortran (HSPF) model and Storm Water Management
Model (SWMM) are two of the most commonly used watershed models. Both of the models can
simulate runoff quantity and quality for a single storm event or for continuous events. Some examples
of the applications of the HSPF model and SWMM are as follows. Xu et al. [3] used the HSPF
model for the Occoquan watershed in Virginia to discuss the hydrological calibration and validation.
Choi et al. [4] applied the HSPF model to assess the hydrological impact of potential land use in the
Midwestern USA. Hunter et al. [5] used the HSPF model to assess the effects of land use on fluxes
of suspended sediment, nitrogen, and phosphorus in North Eastern Australia. Chung and Lee [6]
determined the priorities of water management alternatives by HSPF simulation in South Korea.
Yang and Wang [1] applied the HSPF model in a case study in Northern Ireland. SWMM is usually
applied to estimate runoff through storm water drainage systems that include channels, pipes, and
manholes with storage [7,8]. Temprano et al. [9] applied SWMM in a combined sewer system catchment
in Santander, Spain. Di Modugno et al. [10] assessed the first flush of pollutants by SWMM in
an urban area of Southern Italy. SWMM has also been applied in non-urban areas. For example,
Pretorius et al. [11] applied SWMM to a large rural area in Southern Africa. Others have also used
SWMM for modeling a rural watershed in the Lower Coastal Plains of the United States (Moynihan
and Vasconcelos) [12]. Talbot et al. [13] used SWMM for a rural Ontario watershed. Chen et al. [14]
used SWMM to assess a non-urban watershed in Taiwan.

Computational inefficiency is a major limitation of the existing models, particularly during
model calibration and validation; this is especially true of comprehensive watershed models [15].
Sensitivity analysis (SA) is therefore an essential step in building models and evaluating their
performance [16]. SA can identify the relative influence of each input parameter on model outputs, such
as runoff and water quality [17]. SA can be divided into local and global approaches. Local SA methods
evaluate the effects of changing one input parameter at a time. They have a low computational cost,
but the local character of the analysis can lead to biased results for non-linear systems [18]. Global SA
techniques search the entire parameter space in a random or systematic way. The computational cost is
higher for this method than it is for local methods, but sampling is applied to guarantee full coverage of
the parameter space, which is advantageous for complex environmental models [14]. Some examples
are global screening methods [19], Latin Hypercube-One factor At a Time (LH-OAT) [20], and Latin
Hypercube Sampling-Partial Rank Correlation Coefficient (LHS-PRCC) [21]. Nossent et al. [22],
Muleta M.K. [15], and Holvoet et al. [23] used the LH-OAT method to evaluate the Soil and Water
Assessment Tool (SWAT) model, and Li et al. [17] applied LHS-PRCC to the SWMM.

In this study, we compared the performance of the HSPF model and SWMM for simulating the
watershed water quantity and quality. The study area is the Feitsui Reservoir watershed in northern
Taiwan, where the major NPS pollution comes from tea plantations. Although both models have been
shown to be suitable in this area, they simulate flow and water quality differently. We evaluate the
modeling results and investigate the reasons for their differences based on the model calculations.
We also implement SA for the model parameters using the LH-OAT method, and thus determine the
most important parameters for the HSPF model and SWMM. The results of this study will be helpful
in applications of watershed models and interpretations of their performances, especially for high
pervious watersheds in subtropical climatic zones.

2. Materials and Methods

2.1. Case Study

The Feitsui Reservoir supplies drinking water to five million citizens in the city of Taipei. The total
watershed area is 303 km2 and includes three sub-watersheds, the Peishi, Jinggoaliang, and Daiyuku.
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Of the three sub-watersheds, the Peishi sub-watershed has the largest area and is regarded as the
main watershed for the Feitsui Reservoir (Figure 1). In this study, we examine the Peishi watershed.
Peishi Creek is 50 km long and occupies an area of 10,825 ha. The study area has a subtropical climate.
The annual average temperature is 21.7 ◦C, and the monthly average temperature is 15 ◦C in January
and 27.5 ◦C in June. The weather is wet, the annual average rainfall is 3700 mm to 5900 mm, and the
average relative humidity is 85%. Peishi Creek is located upstream of the reservoir, where the major
land use is forest (accounting for 93% of the total area). Agricultural land occupies the second largest
area, accounting for 4.04%. Buildings and roads occupy 2.67% of the total watershed area, and other
land uses account for less than 0.5%. Considering the area size and unit pollution loadings, NPS from
agriculture is the main source of pollution in this watershed.
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Figure 1. Location of the Peishi watershed.

2.2. Watershed Models

In this study, we used the HSPF model and SWMM as watershed modeling tools. Both are
included in the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) platform.
Multiple GIS data layers are needed to capture land use, watershed boundaries, digital elevation
grids, and river systems. After combining the boundary and digital elevation grids, 23 sub-watersheds
were automatically defined. These sub-watersheds were used in the HSPF model (Figure 2A) and
SWMM (Figure 2B).
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The models require different input data. The HSPF model uses precipitation, evaporation,
temperature, wind speed, solar radiation, potential evapotranspiration, dew point temperature, and
cloud cover. In contrast, SWMM only uses precipitation, evaporation, temperature, and wind speed.
The models also have different requirements for watershed characteristics. The land use data were
obtained from the National Land Surveying and Mapping Center in Taiwan. The attributes were
recorded in detail according to their geometric space information by aerial photo technology, GIS data,
and ground surveys. The HSPF model uses GIS layers to capture the data it needs; for example, it
infers hydraulic data from the depth, slope, bottom width of the stream channel, and the flow route.
In contrast, SWMM requires pipe characteristics, such as the shape, length, depth, slope, width, and
number of junctions. For facile comparison, the delineation of the watershed in SWMM follows the
results of the HSPF model, in which 23 subwatersheds were delineated. Table 1 summarizes the model
input data for the HSPF model and SWMM.

Table 1. Summary of the input data for the Hydrological Simulation Program-Fortran (HSPF) model
and Storm Water Management Model (SWMM).

Input Data HSPF SWMM

GIS layers land use, elevation, boundaries, rivers Optional

Hydraulic automatically generated by GIS data manhole, pipe length, depth,
width, slope

Meteorology
precipitation, evaporation, temperature, wind
speed, solar radiation, potential evapotranspiration,
dew point, cloud cover

precipitation, evaporation,
temperature, wind speed

Monitoring stream discharge, water quality stream discharge, water quality

Taipei Feitsui Reservoir Administration (TFRA) has implemented monitoring stations in the
watershed, including two weather stations, one flow monitoring station, and one water quality
monitoring station. The locations of these stations are shown in Figure 1. The rainfall data from the
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two weather stations were merged with the Thiessen Polygon method, in which the contributing area
is divided and used as a weighting factor. The water quality was sampled and analyzed once a month
for TP and once a season for SS. The observed data are used to verify the model simulation results.

2.2.1. HSPF Model

The HSPF model can simulate the runoff and NPS pollutant loads that leave a watershed,
as well as estimate fate and transport processes in streams and one-dimensional lakes [24].
The HSPF model is an extremely data-intensive and over-parameterized model and requires a large
amount of site information to accurately represent hydrology and water quality processes in
a watershed [25]. The large number of parameters makes the calibration of distributed watershed
models more challenging.

Table 2 defines the important parameters for hydrologic components of the HSPF model that
have been discussed in the literature [26,27], including the INFILT (index to infiltration capacity),
UZSN (upper zone nominal soil moisture storage), LZSN (lower zone nominal soil moisture
storage), IRC (interflow recession), INTFW (interflow inflow), LZETP (lower zone evapotranspiration),
AGWRC (fraction of remaining evapotranspiration from active groundwater), and KVARY (variable
groundwater recession) parameters. A study by Al-Abed and Whiteley [28] in southern Ontario,
Canada showed that LZSN was the most sensitive parameter, followed by the LZSN, PETMAX (temp
below which ET is reduced), PACKSNOW (initial quantity of snow), INFILT, and DEEPER (fraction of
groundwater inflow to deep recharge) parameters. The PACKSNOW and PETMAX parameters are
used when snow is being simulated. Taiwan is located in subtropical and tropical zones. As no snow
is in the studied watershed, snow simulation is ignored during modeling.

In this case, the suspended solid (SS) and total phosphorous (TP) concentrations are of concern.
From the literature [29,30], JRER (exponent in the soil detachment equation), JSER (exponent in
the sediment wash-off equation), and JGER (exponent in soil matrix scour equation) are sensitive
parameters for SS simulation. For phosphorous modeling, the method used assumes a first-order
kinetics equation to represent each of the soil phosphorous processes. Each equation contains two
parameters, the kinetics rate, which is calibrated manually, and the temperature coefficient, which is
maintained at a specified value [31].

Table 2. Important parameters for the hydrologic components of the HSPF model.

Parameters Description

INFILT Index to infiltration capacity a, b, c, d
IRC Interflow recession parameter a, c, d

INTFW Interflow inflow parameter a, b, c, d
UZSN Upper zone nominal soil moisture storage a, c, d
LZSN Lower zone nominal soil moisture storage a, b, c, d
LZETP Lower zone evapotranspiration parameter a, d
KVARY Variable groundwater recession a, d
ARWRC Base groundwater recession a, c, d
DEEPER Fraction of groundwater inflow to deep recharge b, c, d
BASETP Fraction of remaining evapotranspiration from baseflow c, d

AGWETP Fraction of remaining evapotranspiration from active groundwater c, d
SLSUR Slope of overland flow plane d
LSUR Length of overland flow d

CEPSC Interception storage capacity d
NSUR Manning’s roughness coefficient for overland flow d

Note: a: Parameters from Donigian et al. [26]; b: Parameters from Al-Abed and Whiteley [28]; c: Parameters from
Seong et al. [27]; d: Selected parameters from the BASINS Technical Note 6 by US EPA [31].

2.2.2. SWMM

SWMM is a dynamic hydrologic-hydraulic water quality simulation model that is primarily used
for urban areas; however, it also has applications for drainage systems in non-urban areas [12,13].
The model conceptualizes a drainage system as a series of water and material flows between several
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environmental compartments. The runoff is calculated by approximating a non-linear reservoir model,
considering depression loss, infiltration, evaporation, and storage. SWMM offers three methods
to simulate how rainfall infiltrates into the upper soil zone in a sub-catchment: Horton infiltration,
Green-Ampt infiltration, and Curve Number infiltration. Table 3 shows the important parameters for
the hydrologic components of SWMM. In this study, the version we used is SWMM 5.0, which can be
downloaded freely from the US EPA website.

Table 3. Important parameters for the hydrologic components of SWMM.

Parameters Description

Geometric characteristics:

Area, slope Sub-catchment area and slope a, c
Width Sub-catchment width a, b, c, d
N-Perv, N-Imperv Manning’s roughness coefficient for pervious and impervious areas a, b, c, d
Dstore Depth of depression storage a, b, c

Horton infiltration method:

I-Max, I-Min Maximum and minimum infiltration rate a, c, d
Green-Ampt infiltration method
Cond Saturated hydraulic conductivity d
D-Ini Initial moisture deficit d
SucH Suction head at the wetting front d

Note: a: Parameters from Li et al. [17]; b: Parameters from Barco et al. [32]; c: Parameters from Beling et al. [33];
d: Selected parameters in this study.

Because forests are the major land cover in the study area, perviousness is a more important factor
than imperviousness. Six parameters were chosen for sensitivity analysis: width, N-Perv (Manning’s
roughness coefficient for pervious and impervious areas), and I-Max (maximum infiltration rate) for
the Horton infiltration method, and Cond (saturated hydraulic conductivity), D-Ini (initial moisture
deficit), and SucH (suction head at the wetting front) for the Green-Ampt infiltration method.

SWMM uses build-up and wash-off functions for simulating water quality. In this study, a power
function is used for the build-up function, and the event mean concentration is used for the wash-off
function. When simulating water quality, the user chooses one of the build-up and wash-off functions
and determines the parameter values with a calibration and validation process. These parameter
values will be different for different pollutants and land uses.

2.3. Parameter Sensitivity Analysis

SA can identify the most influential parameters and assess which parameters contribute
most to the variability in the output. A one-factor-at-a-time (OAT) approach can be used to
determine the sensitivity of an individual parameter by repeatedly varying that parameter and
calculating the resulting changes in output while holding all of the other model parameters constant.
However, accurate output distribution results depend on a complete sampling of input distributions;
that is, the sampling must guarantee full coverage of the parameter space.

Latin Hypercube (LH) sampling is a stratification of the input probability distributions.
Stratification divides the cumulative curve into equal intervals on the cumulative probability
scale (0 to 1). A sample is randomly taken from each interval or “stratification” of the input
distribution (Figure 3). The LH method ensures that sample values more accurately reflect the
input probability distribution. As a more efficient sampling method, LH offers great benefits in terms
of increased sampling efficiency and faster runtimes (due to fewer iterations). All parameters are
assumed to follow a normal distribution, and the probability distributions are expressed in cumulative
form. The input ranges of each parameter are assigned based on technical notes and previous literature.
The initial parameters are the results of previous model validation. LH sampling is a sophisticated
way to perform random sampling and provides robust and effective results [18].
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Therefore, we used the LH-OAT method, which combines OAT design and LH sampling by
taking the LH samples as initial points in the OAT approach [20]. For a model with N total parameters,
LH-OAT divides each parameter into K intervals and generates K LH sample points. Each one of
the K LH samples is altered N times, changing only one of the N parameters at a time. For an LH
sample point m, a partial sensitivity index Si,m can be calculated as the variance for each parameter pi,
as follows [15,22]:

Si,m =
100× { O(p1,p2 .....pi+∆pi ,pi+1 .....pN)−O(p1,p2 .....pi ,pi+1 .....pN)

[O(p1,p2 .....pi(1+ fi),pi+1 .....pN)+O(p1,p2 .....pi ,pi+1 .....pN)]/2}
fi

(1)

where O is the sum of the square of errors between the simulated and the observed output, fi is the
fraction by which parameter Pi is changed and j is the LH point. Each sample point requires N + 1
model runs. In this study, we evaluated 15 hydrology parameters for the HSPF model and 6 parameters
for SWMM; each parameter was divided into 20 intervals for the LH-OAT method. The final sensitivity
index was calculated for each parameter by averaging the partial indices shown in Equation (1).

3. Results and Discussion

3.1. Model Performance Evaluation

3.1.1. Simulation of Daily Flow

The observed flow data included continuous daily flow measurements, and the observed water
quality data consisted of monthly monitoring data. The water quality was sampled and analyzed
once a month and once a season for TP and SS, respectively. The data from 2008 to 2010 were used for
model calibration to identify adequate model parameters, and the data from 2011 to 2012 were used
for model validation to verify the feasibility of the model parameters. Flow calibration and validation
are required for using a water quality model. During the calibration process, the sensitive parameters
were changed iteratively, and a statistical method was used to find an acceptable fit to the observed
data. Figures 4 and 5 shows the flow simulation results from both models.
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Figure 5. Flow simulation results for the SWMM model.

We used two statistical methods to evaluate the goodness-of-fit of each model’s flow simulation:
the correlation coefficient (r), the coefficient of determination (R2). The values of r and R2 range from
0 to 1, with higher values indicating better agreement between the modeled and observed data.

Table 4 shows the results of the model fitness analysis for daily flow. In the HSPF model, the r
and R2 values obtained from the calibration tests were 0.78 and 0.61, respectively. According to the
performance rating by Donigian [26], r ≥ 0.85 or R2 ≥ 0.7 indicates good model performance. For the
HSPF validation, the r and R2 values obtained were 0.86 and 0.74, respectively. In SWMM, the r and R2

values obtained from the calibration tests were 0.84 and 0.71, respectively, and were 0.78 and 0.62 for
the validation period. These results suggest good performance for both models. The flow simulations
of both models were satisfactory.
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Table 4. Results of the model fitness analysis for daily flow.

HSPF SWMM

Index Calibration Validation Calibration Validation

Correlation coefficient, r 0.78 0.86 0.84 0.78
Coefficient of determination, R2 0.61 0.74 0.71 0.62

3.1.2. Simulation of the Water Quality

After the flow simulations were shown to be acceptable, water quality simulations were
performed, and the model parameters related to flow were held constant. Figures 6 and 7 show
the SS and TP simulation results for both models. Unlike the 365 daily flow data measurements, only
4 water quality measurements were taken each year for SS and 12 each year for TP. Therefore, we
used the mean percentage error (MPE) to evaluate the TP and SS results. Table 5 summarizes the
calibration and validation of water quality for both models. For the SS simulation, the MPE values for
calibration and validation were 35.3% and 38.9% in the HSPF model, and were 28.3% and 36.3% in
SWMM. For the TP simulation, these values were 34.3% and 30.1% in the HSPF model and 33.5% and
36.1% in SWMM.
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3.2. Sensitivity Analysis for the Hydrology Simulation

Tables 6 and 7 give the final sensitivity index of each chosen parameter obtained from the HSPF
model and SWMM. A larger sensitivity index indicates that a parameter has a greater influence on the
simulated flow output.

Table 6. Sensitivity index values for parameters from the HSPF model.

Rank Parameter Range Sensitivity Index

1 UZSN 0.05–2.0 129.4
2 INFILT 0.001–0.50 108.1
3 LZSN 2.0–15.0 23.8
4 NSUR 0.05–0.5 6.6
5 SLSUR 0.001–0.30 5.6
6 LSUR 100–700 4.1
7 BASETP 0.0–0.20 3.4
8 AGWETP 0.0–0.20 2.3
9 DEEPER 0.0–0.50 1.2

10 INTFW 1.0–10.0 0.9
11 ARWRC 0.85–0.999 0.21
12 IRC 0.3–0.85 0.20
13 KVARY 0.0–5.0 0.01
14 LZETP 0.1–0.9 <0.01
15 CEPSC 0.01–0.4 <0.01

Table 7. Sensitivity index values for parameters from SWMM.

Rank Parameter Range Sensitivity Index

1
Cond

0.1–1.5 504.7(Green-Ampt infiltration method)

2
D-Ini

5–15 126.4(Green-Ampt infiltration method)

3 N-Perv 0.01–0.8 22.0

4 Width 0–100% 21.9

5
SucH

1.5–4.5 2.39(Green-Ampt infiltration method)

6
I-Max

1.5–4.5 0.07(Horton infiltration method)

For the HSPF model, the five most sensitive hydrologic parameters were UZSN, INFILT, LZSN,
NSUR, and SLSUR. The UZSN, INFILT, and LZSN parameters have much stronger effects than the
other parameters. The UZSN and LZSN parameters reflect the upper and lower zone nominal soil
moisture storage, respectively. The LZSN parameter is related to both precipitation patterns and soil
characteristics, and the UZSN parameter is related to land surface characteristics and topography.
The INFILT parameter is an index of the mean soil infiltration rate and controls the division of the
available moisture from precipitation into surface and subsurface flow and storage components in the
HSPF model. When the value of INFILT increases, more water enters the lower zone and groundwater
and the infiltration volume increases. Low INFILT values produce more upper zone and interflow
storage and result in high direct surface flow.

Sensitivity analysis on the HSPF model has been performed in many previous studies
(e.g., Jacomino and Fields, 1997; Fonseca et al., 2014) [34,35]. However, due to the use of different values
of the HSPF model parameters, the major factors affecting model output for each watershed may be
different. Al-Abed and Whiteley [28] and Fonseca et al. [35] found that LZSN is the major factor, INFILT
is the most sensitive parameter in a complex geomorphological river basin (Kourgialas et al. [36]) and
in the South National watershed in Eastern Ontario (Iskra and Droste, [37]), and DEEPFR is the most
sensitive parameter in mountainous basins containing coal mines (Atkins et al. [38]). However, we
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found that UZSN and INFILT are more sensitive. The main reason for this difference is that the studied
watershed is located in a subtropical area and experiences no snow effects.

For SWMM, the sensitivity index values of Manning’s roughness coefficient for pervious areas and
the width were 22.0 and 21.9, respectively; these results indicate that these parameters have a similar
effect on the flow simulation. In the Horton infiltration method, the value of the sensitivity index for
the maximum infiltration rate was 0.1. When compared with the Manning’s roughness coefficient
and the width, the maximum infiltration rate is a less sensitive parameter. This result is consistent
with the results of Li et al. [17], who also used the Horton infiltration method; they found that in
a sub-catchment area, the width and Manning’s roughness coefficient for pervious and impervious
areas had a greater effect on the total runoff volume than the maximum infiltration rate. A study in
the Ballona Creek Watershed in Southern California showed that total runoff and peak flow were
most strongly affected by imperviousness and impervious depression storage; surface flow was least
sensitive to Manning’s roughness coefficient [32]. Manning’s roughness coefficient for the conduit had
the highest influence on the total runoff volume [17].

Sensitivity analysis was also applied to the Green-Ampt infiltration method in SWMM. For this
method, the infiltration, conductivity, and initial deficit parameters were much more sensitive than
Manning’s roughness coefficient for pervious areas and the width. The hydraulic conductivity of soil
depends on the soil characteristics. The sensitivity index for the soil hydraulic conductivity was the
largest in this study.

In general, the parameters related to infiltration and soil characteristics have a relatively large
effect on the flow simulation in both models, except when using the Horton infiltration method in
SWMM. The Manning’s roughness coefficient for pervious areas was much more sensitive in SWMM
than in the HSPF model. This difference can be explained by the calculations in each model. The HSPF
model uses the Chezy-Manning equation to calculate runoff, as well as several empirical equations.
In contrast, a nonlinear storage equation is used in SWMM.

3.3. Comparison of the Model Simulation Results

Table 8 compares the daily flow simulated by both models to observations from 2007 to 2012.
Although statistical analyses suggests that both models simulated daily flow well, there are clear
differences between the simulated results from each model and observations. The observed average
daily flow was 12.9–18.8 m3/s. The average daily flow simulated by the HSPF model exceeded these
values, ranging from 25.3 to 31.4 m3/s. In contrast, the average daily flow simulated by SWMM was
lower than the observations, ranging from 8.4 to 11.2 m3/s. This difference is related to the calculations
in each model. The HSPF model uses complex calculations for the various soil layers of pervious areas
to simulate flow, while SWMM only has one infiltration function for pervious areas and a constant
dry weather flow as groundwater. Therefore, for SWMM, the model parameters involved in the
infiltration function control the simulated flow for pervious areas. For the minimum daily flow, the
results simulated by the HSPF model were close to the observed values; however, the SWMM results
were fixed at 4 m3/s, which is the input base flow.

Table 8. Comparison between daily flows simulated by the HSPF model and SWMM and observed
data (m3/s).

Year
OBSERVED HSPF SWMM

Mean Max Min Mean Max Min Mean Max Min

2007 18.8 299.5 1.2 31.4 331.3 1.8 11.2 430.3 4.0
2008 12.9 626.5 1.9 28.0 416.2 1.4 9.1 281.1 4.0
2009 13.9 340.1 1.6 24.2 214.9 1.5 9.6 280.6 4.0
2010 13.9 368.9 3.1 25.3 464.3 1.4 9.6 503.2 4.0
2011 14.0 214.3 4.6 29.4 291.6 1.2 10.9 334.1 4.0
2012 14.0 270.9 0.3 30.2 379.4 1.9 8.4 241.8 4.0
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Both models could capture high flow values during peak flow simulations. Peak flows result from
high precipitation. However, the model performance for each storm event was different. The peak
flows in the SWMM simulations were generally higher than the peak flows in the HSPF simulations;
recession was quicker in the SWMM simulations than in the HSPF simulations. These differences
meant that SWMM simulated lower flows following a heavy storm event than both the HSPF model
and the observations. This difference was apparent in each simulated year, including the events on
21 October 2010, 3 October 2011, and 2 August 2012 (Figure 8). The quick recession in the SWMM
simulations might be caused by the infiltration calculation and constant groundwater assumption.
If the groundwater behavior is considered, the recession might be extended. However, there were
fewer differences between small storm events. For small storms, the HSPF model simulated slightly
higher flows than the observations, and the SWMM simulated flows were slightly lower than the
observations. These results suggest that the NPS loadings could be underestimated by SWMM in small
storm events.
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Figures 9 and 10 compare the SS and TP values simulated by the two models with observations.
The maximum SS concentration was 286.0 mg/L in the HSPF model but only 4.3 mg/L in SWMM.
The SS concentrations simulated by the HSPF model were closely linked to precipitation. In contrast,
the SS concentrations did not vary significantly with precipitation in SWMM. This difference could
be derived from the effects of wash-off and build-up on the maximum pollutant load in both models.
However, the SWMM simulations of SS achieved a slightly better validation result than the HSPF
simulations, mainly because no samples were collected during storm events. Rather, samples were
most often collected on sunny days, and thus, the observations do not reflect the SS concentration
during intense precipitation events.

Water 2017, 9, 780  13 of 16 

 

Figures 9 and 10 compare the SS and TP values simulated by the two models with observations. 
The maximum SS concentration was 286.0 mg/L in the HSPF model but only 4.3 mg/L in SWMM. The 
SS concentrations simulated by the HSPF model were closely linked to precipitation. In contrast, the 
SS concentrations did not vary significantly with precipitation in SWMM. This difference could be 
derived from the effects of wash-off and build-up on the maximum pollutant load in both models. 
However, the SWMM simulations of SS achieved a slightly better validation result than the HSPF 
simulations, mainly because no samples were collected during storm events. Rather, samples were 
most often collected on sunny days, and thus, the observations do not reflect the SS concentration 
during intense precipitation events.  

The maximum observed TP concentration during the study period was 0.051 mg/L; the 
maximum simulated TP concentrations were 0.097 and 0.047 mg/L for the HSPF model and SWMM, 
respectively. This difference between the observed and simulated TP concentrations is small when 
compared to the SS data.  

We note that there are significant differences in the TP and SS trends simulated by the HSPF 
model and SWMM. In the HSPF model, pollutants are produced with rainfall and are affected by 
hydrologic routes; thus, the trend in simulated water quality follows rainfall. However, the SWMM 
uses build-up and wash-off functions to simulate water quality rather than considering pollutant 
transport and distribution. Pollutant build-up is a function of the number of preceding dry weather 
days; pollutant wash-off occurs during wet weather, at which time runoff is calculated as a function 
of the amount of buildup. While the HSPF model simulates the pollutants lost from the surface to 
groundwater flow within a watershed, the simulation of pollutants in the HSPF model is extremely 
sensitive to hydrology, particularly the amount and timing of surface runoff. Basically, pollutants are 
produced with rainfall, and their distribution is affected by hydrologic routes in the HSPF model, 
while SWMM considers pollutants that accumulate before rainfall and then wash out with the runoff. 
Finally, there is a lag between the results of the HSPF model and SWMM: the peak TP and SS 
concentrations occur at different times. SWMM is usually applied in urban areas rather than 
upstream watersheds, like the study area where permeable land is prevalent. In the study area, the 
HSPF simulations followed precipitation; the HSPF simulation of NPS pollution seems to be more 
consistent with observations than the SWMM simulation. 

 
Figure 9. SS concentrations obtained from the HSPF and SWMM simulations and observations. 
Figure 9. SS concentrations obtained from the HSPF and SWMM simulations and observations.Water 2017, 9, 780  14 of 16 

 

 

Figure 10. TP concentrations obtained from the HSPF and SWMM simulations and observations. 

4. Conclusions 

In this study, the HSPF and SWMM watershed models were used to simulate NPS pollution in 
a watershed where 93% of the land cover is forest. Both of the models are acceptable according to 
statistical analysis, but their simulation performances are different because of their underlying 
calculation mechanisms. The average daily flow was higher than observations in the HSPF 
simulations and lower in the SWMM simulations. Recession occurred more rapidly in the SWMM 
simulations because the model only considers surface infiltration in underground flow routes. In the 
HSPF model, underground flow routes in pervious areas are more complex, resulting in a slow 
recession flow curve that more closely resembles observations. Both of the models can simulate 
continuous SS and TP concentrations with acceptable goodness-of-fit results. However, the SS 
concentrations simulated by the HSPF model were consistent with precipitation, while the SS 
concentrations simulated by SWMM were not. In the HSPF model, once pollutants are generated, 
they are transported along flow routes, but pollutants in SWMM are controlled by build-up and 
wash-off functions. There is a clear lag time between peak pollutant concentrations in the HSPF 
model and SWMM.  

In the HSPF model, the UZSN, INFILT, LZSN, NSUR, and SLSUR parameters were the five most 
sensitive hydrologic parameters. The UZSN, INFILT, and LZSN parameters had the greatest effects 
on the model output. These parameters relate to the infiltration function, precipitation patterns, and 
soil and land surface characteristics. This result differs from the results of a previous study (AL-Abed 
and Whiteley et al., 2002) that examined a watershed with a polar climate. In that study, the authors 
found that LZSN was the most sensitive parameter, followed by the snow-related parameters. For 
SWMM, the conductivity and the initial deficit in the infiltration calculations were more sensitive 
than the geometric characteristics (width) and Manning’s roughness coefficient for pervious areas. 
The sensitivity analysis results show that the parameters related to soil characteristics have the 
greatest influence on the stream flow simulation in both of the models.  

SWMM is usually applied in urban watersheds rather than forested upstream watersheds, such 
as the study area. However, our results show that the SWMM simulations are comparable to those of 
the HSPF model, suggesting that both models can be applied in these watersheds. However, users 
should be aware that in highly pervious areas, SWMM might underestimate the daily flow and 
pollutant concentrations for small storm events. 

Author Contributions: All authors were involved in designing and discussing the study. Lin-Yi Tsai drafted 
and finalized the manuscript. Chi-Feng Chen and Chi-Hsuan Fan collected the required data and executed the 
model. Jen-Yang Lin coordinated the group and revised the manuscript. All authors have read and approved 
the final manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 10. TP concentrations obtained from the HSPF and SWMM simulations and observations.

The maximum observed TP concentration during the study period was 0.051 mg/L; the maximum
simulated TP concentrations were 0.097 and 0.047 mg/L for the HSPF model and SWMM, respectively.
This difference between the observed and simulated TP concentrations is small when compared to the
SS data.

We note that there are significant differences in the TP and SS trends simulated by the HSPF model
and SWMM. In the HSPF model, pollutants are produced with rainfall and are affected by hydrologic
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routes; thus, the trend in simulated water quality follows rainfall. However, the SWMM uses build-up
and wash-off functions to simulate water quality rather than considering pollutant transport and
distribution. Pollutant build-up is a function of the number of preceding dry weather days; pollutant
wash-off occurs during wet weather, at which time runoff is calculated as a function of the amount
of buildup. While the HSPF model simulates the pollutants lost from the surface to groundwater
flow within a watershed, the simulation of pollutants in the HSPF model is extremely sensitive to
hydrology, particularly the amount and timing of surface runoff. Basically, pollutants are produced
with rainfall, and their distribution is affected by hydrologic routes in the HSPF model, while SWMM
considers pollutants that accumulate before rainfall and then wash out with the runoff. Finally, there is
a lag between the results of the HSPF model and SWMM: the peak TP and SS concentrations occur
at different times. SWMM is usually applied in urban areas rather than upstream watersheds, like
the study area where permeable land is prevalent. In the study area, the HSPF simulations followed
precipitation; the HSPF simulation of NPS pollution seems to be more consistent with observations
than the SWMM simulation.

4. Conclusions

In this study, the HSPF and SWMM watershed models were used to simulate NPS pollution
in a watershed where 93% of the land cover is forest. Both of the models are acceptable according
to statistical analysis, but their simulation performances are different because of their underlying
calculation mechanisms. The average daily flow was higher than observations in the HSPF simulations
and lower in the SWMM simulations. Recession occurred more rapidly in the SWMM simulations
because the model only considers surface infiltration in underground flow routes. In the HSPF model,
underground flow routes in pervious areas are more complex, resulting in a slow recession flow curve
that more closely resembles observations. Both of the models can simulate continuous SS and TP
concentrations with acceptable goodness-of-fit results. However, the SS concentrations simulated by
the HSPF model were consistent with precipitation, while the SS concentrations simulated by SWMM
were not. In the HSPF model, once pollutants are generated, they are transported along flow routes,
but pollutants in SWMM are controlled by build-up and wash-off functions. There is a clear lag time
between peak pollutant concentrations in the HSPF model and SWMM.

In the HSPF model, the UZSN, INFILT, LZSN, NSUR, and SLSUR parameters were the five
most sensitive hydrologic parameters. The UZSN, INFILT, and LZSN parameters had the greatest
effects on the model output. These parameters relate to the infiltration function, precipitation patterns,
and soil and land surface characteristics. This result differs from the results of a previous study
(AL-Abed and Whiteley et al., 2002) that examined a watershed with a polar climate. In that study, the
authors found that LZSN was the most sensitive parameter, followed by the snow-related parameters.
For SWMM, the conductivity and the initial deficit in the infiltration calculations were more sensitive
than the geometric characteristics (width) and Manning’s roughness coefficient for pervious areas.
The sensitivity analysis results show that the parameters related to soil characteristics have the greatest
influence on the stream flow simulation in both of the models.

SWMM is usually applied in urban watersheds rather than forested upstream watersheds, such as
the study area. However, our results show that the SWMM simulations are comparable to those of the
HSPF model, suggesting that both models can be applied in these watersheds. However, users should
be aware that in highly pervious areas, SWMM might underestimate the daily flow and pollutant
concentrations for small storm events.

Author Contributions: All authors were involved in designing and discussing the study. Lin-Yi Tsai drafted
and finalized the manuscript. Chi-Feng Chen and Chi-Hsuan Fan collected the required data and executed the
model. Jen-Yang Lin coordinated the group and revised the manuscript. All authors have read and approved the
final manuscript.
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