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Abstract: Flood prediction is difficult in urban areas because only sparse gauge data and radar
data of low accuracy are usually used to analyze flooding and inundation. Sub-basins of urban
areas are extremely small, so rainfall data of high spatial resolution are required for analyzing
complex drainage systems with high spatial variability. This study aimed to produce three types
of quantitative precipitation estimation (QPE) products using rainfall data that was derived from
190 gauges, including the new high-density rain-gauge network operated by the SK Planet company,
and the automated weather stations of the Korea Meteorological Administration, along with weather
radar data. This study also simulated urban runoff for the Gangnam District of Seoul, South Korea,
using the obtained QPE products to evaluate hydraulic and hydrologic impacts according to three
rainfall fields. The accuracy of this approach was assessed in terms of the amount and spatial
distribution of rainfall in an urban area. The QPE products provided highly accurate results and
simulations of peak runoff and overflow phenomena. They also accurately described the spatial
variability of the rainfall fields. Overall, the integration of high-density gauge data with radar data
proved beneficial for quantitative rainfall estimation.

Keywords: high-density gauge network; rain gauge; weather radar; quantitative precipitation
estimation; urban runoff simulation

1. Introduction

Recent climate change and abnormal weather phenomena have resulted in increased occurrences
of localized torrential rainfall in South Korea, including urban areas. The urban hydrological
environment has changed in relation to precipitation, in terms of reduced concentration time, decreased
storage rate, and increased peak discharge. These changes have altered and increased the severity
of damage to urban areas. The notable recent Seoul floods in 2010 and 2011 are examples of such
disasters [1]. Accordingly, extensive research has been conducted on urban flood forecasting using only
point rain gauges; however, this approach is inadequate for developing efficient disaster prevention
measures, as such gauges, can not detect the spatial variations in rainfall [2].

The mean areal precipitation (MAP) is usually used as input to hydrologic and hydraulic models.
When MAP is measured with a low-density gauge network, noticeable errors are found in the simulated
peak discharge [3,4]. Previous studies have confirmed that the spatial resolution of rainfall data
substantially affects rainfall runoff simulations [5]. In particular, previous rainfall and hydrologic
studies in urban basins, using high-density rain-gauge networks, have mentioned the necessity of
accurately measuring intense heavy rainfall that is occurring in a specific area over a short period of
time, and using spatially distributed rainfall for urban flood analysis [6,7]. However, it is not always
realistic to install numerous rain gauges to measure spatially representative rainfall estimates over
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a metropolitan area for geographic and economic reasons [8]. Therefore, various researchers have
attempted to use radar rainfall data. Nevertheless, the results of studies using radar rainfall data to
prevent urban flood disasters in Korea were found to be inefficient because of the low accuracy and
low spatial resolution of these radar rainfall data.

For the design and analysis of urban hydrological systems, rainfall data should have minimum
temporal and spatial resolutions of 5 min and 1 km2, respectively. Furthermore, the uncertainty of
rainfall intensity should be less than 10%, and within a range of 10–50 mm/h [9]. In particular, recent
research has suggested a minimum resolution of 1 min/100 m for smaller catchments with an area of
0.01 km2 or less [10]. Urban areas are usually divided into small catchments for urban hydrological
applications; therefore, the use of high-resolution radar data is recommended [11].

Thus far, research on urban flood estimation and forecast has mostly employed radar data as
inputs to a hydrological model. James et al. [12] studied flood forecasting using radar and gauge data
on the Yockanookany watershed of the Mississippi River in the United States (U.S.) The results showed
that the accuracy of the hydrographs was improved after the radar data were calibrated, using gauge
data based on a Kriging coefficient method. Pessoa et al. [13] used a Distributed Basin Simulation
model (DBS) to test the sensitivity of rainfall estimations to radar data input. They reported that flood
estimation was improved because the radar provided more accurate average rainfall accumulations
and improved the determined spatial distribution of rainfall. Improved flood forecasting results were
obtained by Mimikou and Baltas [14] by using both radar and gauge rainfall data as inputs to the HEC-1
(Hydrologic Engineering Center) rainfall-runoff model. Sun et al. [15] compared flood forecast results
with different rainfall estimates, including those from rain-gauge data alone, Kriging of rain-gauge
data, radar data alone, and co-Kriging of both radar and rain-gauge data. They concluded that rainfall
that was estimated by the co-Kriging method considerably improved flood estimation. Therefore,
rainfall data have also been obtained from weather radars for hydrological applications. Kim et al. [16]
used various approaches combining radar and rain gauges, including Kriging of rain-gauge data alone,
using only radar data, using the mean-field bias of both radar and rain gauges, and the conditional
merging of both radar and rain gauges. Subsequently, they evaluated the performance of flood
estimates with the product of these approaches using a physics-based distributed hydrologic model.
Their results showed that the conditional Kriging method provided the most accurate results for
flood estimation.

As shown in the literature review, ground-observed rainfall is necessary for the improved accuracy of
radar-estimated rainfall in order to reflect the true quantitative value. For this purpose, various techniques
have been suggested to improve the accuracy of radar rainfall estimates by using rain gauges [17,18].
One approach is to merge radar estimates with gauge measurements operationally in order to obtain
quantitatively accurate and spatially continuous radar-derived rainfall fields [19,20]. Past studies
have shown the necessity of denser rain-gauge networks for improving the accuracy of radar rainfall
field data. In the past, rain gauges were quite scarce in urban areas; however, high-density networks
have been recently established over wide areas, such as in metropolitan cities, states, and countries,
for research and commercial purposes. In the U.S., Japan, and other countries, telecommunication
companies have built local observation networks to provide meteorological information. Using the
base stations of these companies saves additional costs related to the transmission of data, because
the networks are already established and the stations provide optimal locations for gauge system
installation without any surrounding canopy (vegetation and trees). For example, WeatherBug
operates the large surface weather network in the world with over 8000 surface weather stations
across the U.S.; the observed data are used for severe-weather prediction [21]. Minnesota’s
high-density rain gauge network combines many observer organizations with different aims and
different instruments for estimating extreme rainfall frequencies, using 45 years of observed daily
rainfall [22]. NTT Docomo, which is a major telecommunications company in Japan, established an
environmental sensor network for its 4000 mobile network base stations around the country in 2011
and 2012. The stations are approximately 10 km from each other and the installed equipment observes
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temperature, humidity, direction and speed of wind, and precipitation for weather forecasting and disaster
mitigation [23]. Currently, SK Planet (SKP), a subsidiary of SK Telecommunication Company in Korea,
has established 1089 weather observatory facilities in the Seoul region. Compared to other high-density
observation networks, SKP created the world’s densest weather observatory network with similar or
newer equipment.

The aims of this study were to produce quantitative precipitation estimation (QPE) products by
using data from the densest rain gauge network and weather radar data, and to analyze the effect
of high rain-gauge density and radar data in terms of the amount and spatial distribution of rainfall.
The availability of QPE products for urban runoff simulation was also analyzed. The objectives
were (I) to produce and assess high-resolution QPE products for Seoul, using high-density observed
rainfall and radar rainfall data and (II) to assess the applicability of the simulated runoff with QPE
products using an urban runoff model. The study area, data sources, and methodologies are explained
in Section 2, and the storm water management model is presented in Section 3. The results of the
QPE products according to high gauge density and radar data in terms of urban runoff analysis are
presented for a rainfall event in Section 4 and the conclusions are presented in Section 5.

2. Study Area and Data

2.1. Study Area

The study area is located in the Gangnam District of Seoul, the capital of South Korea. It covers
an area of 605 km2 (126◦46′15” to 127◦11′15” E longitude, 37◦25′50” to 37◦41′45” N latitude; Figure 1a).
Seoul is one of the most highly urbanized cities in Korea; impervious areas reached 48.64% of the
total urban area in 2014. In addition, several residential areas and industrial facilities are located
near flood plains, such that the damage that is caused by urban flooding is exacerbated. For instance,
Seoul experienced heavy rainfall events in 2010 and 2011. One of these (26–29 July 2011) resulted in
67 casualties and 37.7 billion KRW (Korea Republic Won) worth of property damage, which amounted
to 50% of the total damage that was caused by natural disasters in Korea in 2011. Moreover, the greatest
volume of rain among all of the rainfall events recorded since the beginning of 1908 was deposited in
Korea on 21 September 2010. These torrential rains flooded 4727 residential areas, 1164 shopping areas,
and 126 factories.
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Figure 1. (a) The boundary of Seoul metropolitan area for which quantitative precipitation estimation
(QPE) products were obtained and the study area rain gauge stations of the Korea Meteorological
Administration (KMA) (black stars) and SK Planet (red circles); (b) drainage system and observation
stations of rain and water depth (black triangles).
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The drainage system of Seoul is managed by dividing it into 16 drainage zones. These are
separated by the tributaries and the main outfalls of the Han River that flow directly into the river.
These 16 drainage zones are further divided into 239 drainage districts within the region.

Gangnam District lies at the intersection of Gangnam-dong and Teheran-ro; it is representative of
Seoul’s downtown area where residential and commercial areas are concentrated. Geomorphically,
it is a relatively low-lying location with a complicated sewer network as compared to the surrounding
areas. Thus, this area is vulnerable to flooding during heavy rainfall and the events in 2010 and
2011 caused flood damage to it. Gangnam has five drainage districts (Nonhyeon, Yeoksam, Seocho 1,
Seocho 2, and Seocho 3), which collectively cover an area of 7.4 km2. The drainage system comprises
4170 manholes, pipelines with a total length of 200,698 km, and two drainage pump systems at the
Sapyeong and Seocho stations (indicated by black boxes in Figure 1b).

2.2. High-Density Rain-Gauge Network

In Korea, weather observations are traditionally carried out through the observation network of
the Korea Meteorological Administration (KMA). This network has 95 automated surface observing
systems (ASOS) and 493 automatic weather stations (AWSs) nationwide. Of these stations, 34 are used
for meteorological observations in Seoul.

In recent years, SKP has been operating an integrated meteorological sensor network, using the base
station infrastructure of the SK Telecom company. This network provides meteorological information,
thereby offering weather services that can be used in disaster prevention. By May 2013, SKP had installed
264 operational meteorological sensors over the city of Seoul (Figure 1a), and another 131 around
Incheon. In 2014, it also established 694 sensors in Gyeonggi Province. A total of 1089 meteorological
sensors have been installed at intervals of 1–3 km, forming the world’s densest weather observatory
network. The meteorological information that was collected by SKP can be used to enhance the
accuracy of weather observations by the existing disaster prevention system. The SKP sensors are set
to the KMA standard to collect meteorological data, such as from the AWS of the KMA, every minute
in real time [24]. In addition, SKP regularly maintains the observed data by using automatic and
semi-automatic observation information quality-management systems (www.weatherplanet.co.kr).

The data used in this study were collected through the AWSs of SKP and KMA. The data contained
errors that had occurred at the AWSs, such as system malfunctions, calibration deviations, and bias errors,
in addition to errors that were associated with electronic and communication malfunctions [25–27]. Using
data with such errors decreases the accuracy of (or increases the uncertainty of) the hydrological runoff
products. Therefore, data quality tests were conducted, and gauge stations with high missing rates
were eliminated following a quality control technique in order to use the observed data from the AWSs
of SKP and the KMA, effectively. The criteria of quality control were determined for missing values or
outliers, as shown in Table 1. Here, R10min is the 10-min accumulated rainfall, Pi is the observed rainfall
at station “i”, and σ is the spatial standard deviation of rain gauges within 7 km. The Madsen-Allerup
method [28,29] is a non-parameterized spatial checking method that is based on analyses of median
values and upper and lower quartiles of data from stations in the surrounding area. If Tit exceeds 2.0,
then it is judged to be “suspicious”.

Table 1. Criteria of missing and outlier data.

Status Criteria

Missing value Recorded observation data as “NULL” value

Outlier

� Physical limit: R10min > 100 mm
� Included in the criteria after spatial checking:
- Spatial standard deviation: Pi > µ + 3σ, Pi < µ − 3σ

- Madsen-Allerup method: |Tit| > 2.0

www.weatherplanet.co.kr
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The accuracy of SKP data from 262 stations was evaluated for three months from July to September
2013, targeting the KMA data using the abovementioned criteria to ensure data stability. The time
interval of observations was 1 min. The average missing ratio was 18.71% for the three months, and the
missing ratio of the 262 stations ranged from 2.00% to 77.11%. Missing values were caused by system
errors during wire transmission and equipment defects. In order to ensure data stability, 156 SKP
stations were selected, which had less than 20% missing ratio and less than three times the average
standard deviation of cumulative rainfall for three months. The cumulative rainfall average of these
stations was 878.2 mm and the standard deviation (σ) was 136.6 mm for three months.

The average missing ratio, which was recorded as “null”, was 7.09% for SKP and 0.46% for KMA
for three months. The density of available rain gauges was approximately 3 km2 per gauge and the
average distance between rain gauges was 977 m in the Seoul area. SKP rain gauge stations nearest
to the KMA stations were selected and the observed rainfall estimates were compared one-to-one.
The average relative error was within 0.25% for all of the evaluated stations. The error was determined
according to the difference between observation equipment and location; therefore, the accuracy of
the SKP data matched that of the KMA data [30]. The 156 SKP rain gauge stations were selected among
the 262 stations through the quality control and the 34 gauge stations operated by the KMA were used
additionally (indicated by black stars in Figure 1a). In total, 190 rain gauge stations were used in this study.

2.3. Weather Radar Data

For the purpose of rainfall estimation in terms of spatial variability in urban areas, radar-derived
rainfall was estimated using data from the Gwangdeok Weather Radar Station (GDK). The radar site is
located on Gwangdeok Mountain in Gangwon Province, approximately 100 km northeast of Seoul,
and it is used to investigate the three-dimensional structure of clouds. The GDK radar is an S-band
type, with a beam width of 1◦ and a gate size of 250 m. The GDK radar data are in the Universal
Format (UF), and most of the noise, such as ground, sea, sun strobe, and AP clutter, was removed using
the Worldwide Integrated Sensors for Hydrometeorology group (WISH) algorithms from the Next
Generation Weather Radar (NEXRAD), U.S. As there are many mountains near the radar site and study
area, volume data for the radar reflectivity data were extracted to obtain constant altitude plan position
indicator (CAPPI) data at a height of 1.5 km in order to eliminate ground clutter using a bilinear
interpolation program, which was based on the algorithm, as suggested by Mohr and Vaughan [31].
The spherical coordinates of the volume data were transformed to Cartesian coordinates. The spatial
and temporal resolutions of the extracted CAPPI data are 250 × 250 m2 and 10 min, respectively.

2.4. Drainage Network and Topographic Data

To obtain input data for urban runoff analysis, the data from pipes and manholes were collected
from the Seoul drainage network map and then simplified. The pipe input data were simplified into an
urban hydrological model using diameters of 600 mm and lengths of 100 m. In total, input data from
773 manholes, 1059 pipes, and 772 sub-basins were used. The Gangnam area is mostly occupied by
buildings and paved streets that extend up to the foot of Umyeon Mountain. The areas of the sub-basins
range between 0.0002 km2 and 0.435 km2, with an average area of 0.01 km2. There are no manholes
at the sub-basins of the southwestern part of the area, including Umyeon Mountain. The slope was
calculated using a digital elevation model (DEM) at a resolution of 5 m, with slopes ranging from
0.001% to 10.092%. The average slope of the northeast region is gentle and the Gangnam area is a
relatively low-lying area. Furthermore, the Seoul Biotope Map was used to determine the distribution
of runoff curve numbers (CN) and impermeability rates, which were 47–95 and 10.6–100%, respectively.
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3. Methodology

3.1. Quantitative Precipitation Estimation

In this study, ordinary Kriging, conditional merging, and Z–R relationships were used to produce
three types of QPE products. The ordinary Kriging method was used to distribute the point rainfall
from the KMA and SKP AWSs. In addition, the Kriging method was used in the conditional merging
method. The Kriging method involves the use of partial information to estimate the value of
an unknown point through interpolation, based on the least-squares regression analysis method.
To estimate the value of a point with this method, the weight of the given point needs to be determined
first. Among the methods that are used to calculate a weight, ordinary Kriging uses an unbiased
estimation equation and the least error variance [32,33]. The Geostatistical Software Library (Gslib)
was used in this study for the computational implementation of the Kriging method, and a Gaussian
model was assumed for the variogram [34].

To use only radar data, the raw radar data (dBZ) were converted into rainfall intensity data using
the Z–R power-law relation (Z = aRb), with a = 200 and b = 1.6. This equation is not applicable to
heavy rainfall; however, the objective of this study was to identify the usefulness of a high-density
rain-gauge network for QPE. Accordingly, the Marshall-Palmer equation was selected to exclude
factors that could affect accuracy. To merge the radar and rain-gauge data, the conditional merging
method was used. This method is based on the assumption that rain gauges measure the amount
of rainfall accurately, but only at discrete points, whereas radar data could be faulty, but provide a
reliable spatial distribution of rainfall occurrences. The efficiency of this combination in reducing the
bias and variance of the error estimates was evaluated through simulation experiments. The technique
uses radar observations of rainfall fields to estimate errors that are associated with Kriging, and to
interpolate between rain-gauge observations and the Kriged gauge fields. In this manner, the spatial
information in the final merged field is improved, while the mean field characteristics that are recorded
by the gauges are maintained [18,35].

The evaluation was carried out using the k-fold cross validation technique to examine
improvements in the accuracy of each estimated rainfall field against the rain-gauge observations.
This approach analyzes data that are first partitioned into k equally sized segments or folds.
Subsequently, k iterations of training and validation are performed at each iteration, and a different fold
of the data is held for validation, while the remaining k − 1 folds are used for training. A comparison
of the cross validation of three types of rainfall fields (QPE1–QPE3) was made for all of the events
using the following four evaluation factors: root mean squared error (RMSE), correlation with the
rain-gauge data (C-CORR), mean error (ME), and the mean absolute error (MAE). In this study, where
k of the k-fold cross validation was set to 10, 19 of the 190 ground rain-gauge stations were randomly
extracted and divided into ten groups. This analysis was designed to avoid duplication of the extracted
stations in the same group, while trying as far as possible to accommodate all of the gauge stations.
Ten operations were performed for each rainfall event, and the rainfall of any gauge station excluded
from the ten operations was estimated and validated against the actual observed rainfall.

3.2. Urban Runoff Simulation

In this study, the Storm Water Management Model (SWMM) was used to compare the simulated
water depth using three QPE products. The SWMM, which was developed under the support of
the U.S. Environmental Protection Agency, is commonly applied for quality and quantity processes
of runoff in urbanized areas [36,37]. It simulates real storm events based on rainfall and drainage
system characteristics to estimate the quantitative discharge and water quality information, and it is a
comprehensive water quantity and quality simulation model developed for simulating flow movement
in an urban drainage system. The model simulates runoff and quality constituents from rainfall with
simple routing and kinetic wave approximation. Hydraulic routing was simulated using the full
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Saint-Venant equation, and the model can simulate dynamic backwater conditions, looped drainage
networks, surcharging, and pressure flow.

4. Applications and Results

4.1. Cross Validation of Quantitative Precipitation Estimates

The QPE products for the Seoul region were classified into three types when considering the
uncertainty that was related to observation rainfall data and the rainfall estimation method in this
study. The QPE1 product was derived using the Kriging method, with a combination of the KMA and
SKP rain-gauge networks, the QPE2 product was derived from the Gwangdeok weather radar rainfall
estimate using the Marshall-Palmer equation, and the QPE3 product was derived from all 190 rain
gauges (all KMA and SKP rain gauges) using the conditional merging method with the weather radar
data. All of the QPE products had a resolution of 250 m.

A rainfall field was generated every 10 min for four heavy rainfall events, namely, 12–14 July 2013
(Case 1), 15 July 2013 (Case 2), 22 July 2013 (Case 3), and 23 July 2013 (Case 4). A period without ‘null’
values or outliers was selected for each event. All of the events comprised heavy rainfall in the central
region of the Korean Peninsula, including Seoul, owing to seasonal rain weather fronts.

Figure 2 presents the results of using QPE products on 22 July 2013 (Case 3). Figure 2a shows
QPE1, employing observed data from the 34 KMA AWSs and the 156 SKP AWSs by applying ordinary
Kriging. As the figure shows, the central area of heavy rainfall was clearly identified in the southeast
region of Seoul, although with more spatial fluctuations within the rainfall field. However, QPE1
shows a spatially smoothed pattern because the Kriging method is a least-error regression analysis
method that can estimate a value with a tendency to have a minimized distribution at an unobserved
point. Figure 2b shows QPE2, which was obtained by converting the reflectivity of the Gwangdeok
weather radar to rainfall intensity with the Z = 200R1.6 equation. However, the amount of QPE3
rainfall is significantly different from the amount of observed rainfall from rain gauge stations.
This underestimation occurred when the Marshall-Palmer equation was used, as this equation is
normally used for stratiform precipitation in Korea. Figure 2c show the result of the conditional
merging of the first two QPE products; in other words, QPE3 was generated by rainfall data from rain
gauge networks of different densities and from weather radar. The estimated rainfall field of QPE3
appeared to adequately simulate the spatial irregularity of rainfall with a less smoothed pattern, while
maintaining the quantity of rainfall close to that of the ground-observed rainfall. The results for the
other three cases were similar to those of Case 3.

Figure 3 shows scatter plots of the ground-observed rainfall against each QPE product, which
were constructed by randomly extracting data from gauge stations from data that was used for the
cross validation of Case 2. Figure 3a shows the results of QPE1, in which the high-density gauge
network was used. In this instance, the scatter plots showed a more dense distribution around the
45◦ (solid) line, indicating a small deviation from the validating gauge station. Figure 3b represents
analyses of the Gwangdeok weather radar rainfall field (QPE2), in which the distributions occurred
below the 45◦ line, indicating that the radar rainfall data were underestimated. The conditionally
merged QPE3 results shown in Figure 3c also display a small deviation.

Table 2 shows a statistical assessment of the cross-validation analysis. The result shows that QPE2
had correlations between 0.49 and 0.77, RMSE values between 0.36 mm and 1.54 mm, and ME values
between 0.08 mm and 0.32 mm when compared with ground-observed rainfall for four heavy rainfall
events; all of these indicate a tendency to underestimate the four rainfall events. The MAE of QPE2
ranged from 0.07 mm to 0.44 mm and QPE2 showed the least accurate results when compared with
the results of the other QPE products. For QPE1, the correlation ranged from 0.92 to 0.96 and RMSE
ranged from 0.15 mm to 0.69 mm. The ME values were between 0.00 and 0.002 mm and the MAE
ranged from 0.04 mm to 0.17 mm. For QPE3, the C-CORR ranged from 0.88 to 0.96, the RMSE values
were between 0.20 mm and 0.72 mm, and the ME was−0.01 mm, indicating that QPE3 underestimated
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rainfall for the four events. The MAE of QPE3 was between 0.04 mm and 0.18 mm. QPE1 and
QPE3 were quantitatively closer to the ground-observed rainfall than QPE2. Although the difference
between QPE1 and QPE3 was small, the results of QPE1 were slightly superior to those of QPE3.
The conditional merging method, which is used for QPE3 estimation with both rain gauges and radar,
is very dependent on the rain gauge value in terms of quantitative rainfall amount. This is especially
true at the rain gauge location when it used with data from very high density rain gauge networks.
Therefore, the impact of radar data is very small.Water 2017, 9, 931  8 of 18 

 

 
(a) (b) 

(c)  

Figure 2. Accumulated rainfall distribution determined on 22 July 2013 using quantitative 
precipitation estimation methods: (a) QPE 1; (b) QPE 2; (c) QPE 3. 

 
(a)  (b)  (c)  

Figure 3. Scatter diagrams of three quantitative precipitation estimation products by cross validation 
for 22 July 2013: (a) QPE 1; (b) QPE 2; (c) QPE 3. 

Table 2. Statistics of the comparison between the cross-validation estimates of each quantitative 
precipitation estimations and rain gauge observations. 

Event Item Test Stations QPE1 QPE2 QPE3 

Case 1 

Total rainfall 4174.221 4186.78 1653.51 4024.08 
C-CORR - 0.95 0.66 0.94 

RMSE (mm) - 0.34 0.91 0.37 
ME (mm) - 0.001 −0.23 −0.01 

MAE (mm) - 0.10 0.29 0.11 

Case 2 

Total rainfall 193.38 197.77 72.07 159.52 
C-CORR - 0.92 0.49 0.88 

RMSE (mm) - 0.15 0.36 0.20 
ME (mm) - 0.002 −0.04 −0.01 

MAE (mm) - 0.04 0.07 0.04 

Figure 2. Accumulated rainfall distribution determined on 22 July 2013 using quantitative precipitation
estimation methods: (a) QPE 1; (b) QPE 2; (c) QPE 3.

Water 2017, 9, 931  8 of 18 

 

 
(a) (b) 

(c)  

Figure 2. Accumulated rainfall distribution determined on 22 July 2013 using quantitative 
precipitation estimation methods: (a) QPE 1; (b) QPE 2; (c) QPE 3. 

 
(a)  (b)  (c)  

Figure 3. Scatter diagrams of three quantitative precipitation estimation products by cross validation 
for 22 July 2013: (a) QPE 1; (b) QPE 2; (c) QPE 3. 

Table 2. Statistics of the comparison between the cross-validation estimates of each quantitative 
precipitation estimations and rain gauge observations. 

Event Item Test Stations QPE1 QPE2 QPE3 

Case 1 

Total rainfall 4174.221 4186.78 1653.51 4024.08 
C-CORR - 0.95 0.66 0.94 

RMSE (mm) - 0.34 0.91 0.37 
ME (mm) - 0.001 −0.23 −0.01 

MAE (mm) - 0.10 0.29 0.11 

Case 2 

Total rainfall 193.38 197.77 72.07 159.52 
C-CORR - 0.92 0.49 0.88 

RMSE (mm) - 0.15 0.36 0.20 
ME (mm) - 0.002 −0.04 −0.01 

MAE (mm) - 0.04 0.07 0.04 

Figure 3. Scatter diagrams of three quantitative precipitation estimation products by cross validation
for 22 July 2013: (a) QPE 1; (b) QPE 2; (c) QPE 3.



Water 2017, 9, 931 9 of 18

Table 2. Statistics of the comparison between the cross-validation estimates of each quantitative
precipitation estimations and rain gauge observations.

Event Item Test Stations QPE1 QPE2 QPE3

Case 1

Total rainfall 4174.221 4186.78 1653.51 4024.08
C-CORR - 0.95 0.66 0.94

RMSE (mm) - 0.34 0.91 0.37
ME (mm) - 0.001 −0.23 −0.01

MAE (mm) - 0.10 0.29 0.11

Case 2

Total rainfall 193.38 197.77 72.07 159.52
C-CORR - 0.92 0.49 0.88

RMSE (mm) - 0.15 0.36 0.20
ME (mm) - 0.002 −0.04 −0.01

MAE (mm) - 0.04 0.07 0.04

Case 3

Total rainfall 1647.38 1635.78 519.06 1606.39
C-CORR - 0.93 0.73 0.93

RMSE (mm) - 0.69 1.54 0.72
ME (mm) - 0.001 −0.41 −0.01

MAE (mm) - 0.17 0.44 0.18

Case 4

Total rainfall 910.85 909.08 331.17 877.06
C-CORR - 0.96 0.77 0.96

RMSE (mm) - 0.29 0.84 0.31
ME (mm) - −0.0006 −0.21 −0.01

MAE (mm) - 0.08 0.23 0.09

The estimated rainfall field is affected by the inaccuracy of radar QPEs when the rainfall field is
conditionally merged. However, although the quantitative accuracy of QPE3 was lower than that of
QPE1, QPE3 adequately simulated the irregularity of the spatial distribution. When considering this
result, the spatial structure of rainfall was analyzed according to the contours of the QPEs. Figure 4
shows normalized rainfall contours that were derived from each accumulated QPE for 22 July 2013
(Case 3). This case had the largest coefficient of variation among all of the storm events. Accumulated
rainfalls were normalized such that the spatial distribution could be confirmed without any absolute
rainfall variation between QPEs; the contour interval was 0.02 mm. The general structure of the rainfall
surface was substantially different than the contour of QPE1, which was estimated using only ground
gauges. Figure 4a shows rainfall features that are smooth and circular with long lines. Figure 4b shows
rainfall contours that are derived from radar data and the contours are very detailed. The contours
of QPE3 feature much less smoothing than QPE1, but the rainfall distribution is not as detailed as
QPE2. The spatial fluctuation of radar data was weakened because the quantitative rainfall error
was compensated by the kriging field. However, it still shows that the irregularities in the rainfall
distribution and the quantitative accuracy of radar rainfall were improved. The effect of the spatial
distribution reproducibility of rainfall on hydrological simulations in the urban watershed with large
spatial variations in rainfall is presented in Section 4.2.

To be used as an input to the hydrological model, the grid rainfall must be converted to MAP.
For this purpose, the spatial variability of rainfall was confirmed in a small watershed of 7.4 km2 in
Gangnam, while cross-validation was performed for the whole Seoul area (605 km2). The Gangnam
area was then divided into 772 sub-basins, and the mean areal precipitation of each sub-basin was
estimated using three types of QPEs. Two rain gauges (Gangnam and Seocho AWS), which were used
for rainfall analysis in the study area before the installation of SKP stations, are used as a reference for
this study (Figure 1b). The time series rainfall information from the Gangnam and Seocho rain gauge
stations are shown in Figure 5 for all of the rainfall events. The observed rainfall data at these stations
were similar for some events; however, the difference was 2 times for 10 min maximum rainfall and
1.5 times for 60 min maximum and total rainfall, although the distance between them was only 4123 m.
Furthermore, the difference was observed even when peak rain occurred.
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Subsequently, the spatial variation of mean areal rainfall was analyzed using a box-whisker plot.
As shown in Figure 6, the range varied for each QPE type. Eighteen rain-gauge stations affected QPE1,
and QPE2 was underestimated in comparison with the other QPE products. These analyses enabled



Water 2017, 9, 931 11 of 18

the display of the difference and variability of rainfall within the sub-basin areas. As shown in the
results of QPE1 and QPE3, the higher rain gauge density network provided wider variations for MAP
estimation. Even though the basins are very small, large spatial differences of rainfall exist due to
localized heavy rainfall. These results are in general agreement with previous experimental studies for
the spatial variability of rainfall [38–40].Water 2017, 9, 931  11 of 18 
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Figure 6. Distribution of Mean Areal Precipitation for 772 sub-basins: (a) 2 July 2013; (b) 4 July 2013;
(c) 12–14 July 2013; (d) 15 July 2013; (e) 22 July 2013; (f) 23 July 2013.

4.2. Urban Runoff Simulation with Various QPE Products

In this study, urban runoff simulations were performed using optimized parameters to confirm
the effect of the QPE products. First, to optimize the parameters of the SWMM, water depth data were
collected from a sewer pipe in July 2013. Water depth data, which are applicable to the target area,
were observed at three water depth stations (22-0006, 22-0002, and 23-0006) at 1 min intervals using an
ultrasonic sensor. Sewage from the Seocho 2 and Seocho 4 drainage districts passes through station
22-0002 and station 23-0006 is affected by the Yeoksam drainage district. Sewage from the Nonhyeon
and Seocho 5 drainage districts passes through station 22-0006. The sewage passing through 22-0002
was combined with that passing through 23-0006 (Figure 1b). The initial depth of the combined sewer
water was determined by the water depth using sewage data for each district per capita per day when
there was no rainfall. The parameters (basin width, roughness coefficient, and curve number) of the
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SWMM model were determined by the measured water depth data and a trial and error method.
The rainfall field of QPE1 was assumed to be the closest to the true value.

As shown in Figure 7, all rainfall data effectively simulated the peak water depth occurrence
time and water depth change patterns. In addition, the simulation results were nearly the same
when either QPE1 or QPE3 were used as input. However, as regards QPE2, in which the rainfall was
underestimated, a significant reduction in the simulated sewer water depth was noted when compared
with the other inputs of rainfall data.Water 2017, 9, 931  12 of 18 
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Figure 7. Comparisons between observed and simulated depths in manholes: (a) 2 July 2013;
(b) 4 July 2013; (c) 12–14 July 2013; (d) 15 July 2013; (e) 22 July 2013; (f) 23 July 2013.

Figure 8 and Table 3 show the evaluation results as the relative error of peak depth (REPD) and
root mean square error (RMSE) for each simulation result using various QPE products for six rainfall
events. The colored boxes in Figure 8 are drawn using the highest and lowest value of each statistic
(RMSE, REPD) from each of the simulated QPF results. The applied events include Case 1 to Case 4,
with the addition of Case 5 (2 July 2013) and Case 6 (4 July 2013). The average RMSE of QPE3 was the
lowest (0.127 m), and the average RMSE of the Gangnam AWS was the highest (0.165 m). The average
REPD of QPE3 (7.695%) was the lowest, followed by QPE1 (9.152%), Gangnam AWS (13.276%), Seocho
AWS (16.331%), and QPE2 (56.792%). Figure 8 plots all of the evaluation results for these six storm
events and three water depth observations. In the figure, the plot range of QPE3 is smaller than
that of the other QPEs. As regards the runoff simulation results, the results of QPE3 were superior
when compared with those of the other QPEs. QPE3 was slightly less accurate than QPE1 in the cross
validation of rainfall analysis. However, the mean areal precipitation of the sub-basins using QPE3
combined with radar data showed better results for urban runoff simulation in terms of peak flow
because QPE3 can provide the spatial description of rainfall for very small sub-basins, which is not
produced by rain gauges.
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22-0002 0.21 7.74 0.16 17.42 0.16 7.10 0.31 60.65 0.16 7.74
23-0006 0.21 26.12 0.16 3.82 0.11 11.47 0.36 69.43 0.11 12.10

Case 2
22-0006 0.10 6.72 0.08 0.84 0.11 14.29 0.20 69.75 0.10 15.97
22-0002 0.12 3.55 0.09 0.71 0.10 7.80 0.18 56.03 0.10 7.09
23-0006 0.06 7.81 0.09 9.38 0.04 0.78 0.18 60.94 0.04 0.78
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22-0006 0.23 1.20 0.39 19.60 0.31 25.60 0.88 72.80 0.26 16.00
22-0002 0.32 18.58 0.27 31.42 0.23 15.04 0.66 68.14 0.23 15.04
23-0006 0.38 24.64 0.33 36.23 0.23 3.38 0.69 61.84 0.24 1.93

Case 4
22-0006 0.11 6.62 0.13 19.12 0.11 3.68 0.27 61.77 0.11 0.74
22-0002 0.17 16.67 0.11 13.33 0.12 15.83 0.17 37.50 0.11 8.33
23-0006 0.10 16.42 0.11 18.66 0.08 14.18 0.16 45.52 0.08 9.70
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22-0006 0.10 23.76 0.10 20.79 0.08 4.95 0.18 51.49 0.09 5.94
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Average 0.165 13.276 0.162 16.331 0.129 9.152 0.327 56.792 0.127 7.695

This study analyzed the effect of QPE products by simulating the spatial runoff pattern in an urban
area. The analysis was performed using observed inundation information for 22 July 2013, an event
that caused actual inundation damage in the target area (side streets near the Gangnam subway station).
The inundation information consists of digital photos that were taken at the inundation area and data
from the National Disaster Management System (NDMS), such as information on inundated residences
and buildings. No significant floods that were equivalent to those in 2010 or 2011 occurred in 2013;
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however, the NDMS confirmed inundation in buildings and roads. The white stars in Figure 9 indicate
the locations of inundated areas. According to the NDMS, inundation depth reached more than 0.2 m.
The circles in Figure 9 indicate the locations where the maximum simulated overflows occurred, which
are color coded according to the type of QPE products. The black box and pentagon represent the
locations of the maximum amount of overflow simulated using Seocho AWS and Gangnam AWS,
respectively. The maximum overflow locations of QPE1, QPE3, and Gangnam AWS are very near the
actual inundated area, but locations of other QPEs and Seocho AWS are quite distant from the actual
inundated area. The size of circles, box, and pentagon represent the relative amount of the maximum
overflow. The simulated node flooding results are summarized in Table 4.
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Figure 9. Locations where real flooding occurred and locations of maximum simulated total flood
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Table 4. Simulated node flooding results using Storm Water Management Model (SWMM) for
22 July 2013.

Item GN SC QPE1 QPE2 QPE3

No. of Flooded Nodes 29 71 33 1 38
Hours Flooded 2.38 2.12 2.56 0.16 2.57

Maximum Rate (CMS) 13.00 25.75 14.88 0.33 15.31
Total Flood Volume (106 Ltr) 22.07 34.89 25.52 0.10 25.14

For QPE2, the quantitative rainfall overflow was underestimated at only a few manholes; therefore,
the flooding locations were quite few. The time series of overflows varied with the type of QPE product
at flooding locations, as shown in Figure 10. The red graph lines of Figure 10 indicate the time series
of overflows at the circles, box, and pentagon of Figure 9. The result of QPE3 appeared to be the
most accurate in flow rate and overflow because QPE3 best estimated the spatial pattern of rainfall.
In general, the simulated flows of each sub-basin area were affected by the spatial distribution of
rainfall. Consequently, these results indicate that the use of high-resolution and highly accurate rainfall
data is desirable in order to improve urban runoff analysis.
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Figure 10. Timeseries overflow of each QPEs at all flooding occurred locations.

5. Conclusions

In this study, quality-controlled rainfall data from high-density ground-based rain-gauge networks
covering Seoul, South Korea, were used with radar data to examine the estimations made by the QPE
products at a resolution of 250 m and for urban runoff simulation. To examine the accuracy of the QPE
products and for hydrological analysis, the data from the integrated meteorological sensors from the
KMA and SKP were analyzed. A real-time quality control technique that can eliminate missing values
and outliers was applied. The QPE products were used to make estimations based on four rainfall
events that occurred in 2013. In addition, the three QPE products, which were classified according to
the data used and the QPE method, were cross-validated. The quantitative accuracy of QPE2, which
was only using weather radar data, was found to be underestimated when compared with the values
that were derived from the ground gauge data. The accuracies of QPE1 and QPE3 were found to be
good considering the rainfall amounts. Although the quantitative accuracy of QPE3 was lower than
that of QPE1, QPE3 adequately simulated the irregularity of the spatial rainfall distribution. Each
estimated QPE product was used for urban flood analysis and was tested for its applicability to urban
flood analysis. In the evaluation of urban hydraulic and hydrologic impacts, according to three rainfall
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fields, QPE3, using both available rain gauges and radar data, simulated the peak runoff and overflow
phenomena most accurately. This is because rainfall is generally non-homogeneous and QPE3 best
reproduced spatial fluctuations of rainfall for small sub-basins. Therefore, urban runoff was reasonably
simulated at the surface and in pipes. Hence, this study confirmed that spatial variations in rainfall
and runoff can exist in a small urban area and that the use of high-resolution rainfall data is desirable
for urban runoff analysis.

This study’s results show that radar data has few advantages over a sufficiently dense rain
gauge network when estimating spatial rainfall distribution. However, the heterogeneity of the
spatial distribution of rainfall can be better realized by radar; our results show that the accuracy of
runoff analyses in urban watersheds is improved by this method. A radar will generally provide
better quantitative precipitation estimates with a higher resolution, especially at the considered basin
(30~50 km) in this study.

The limitation of this study lies in its generalization, as only a particular watershed was assessed
for a few storm events. However, it is meaningful that the spatial variability of rainfall and the
hydrological analysis of the urban watershed performed well using high density observation network
and radar data for a wide urban area. In order to build on these results, future work should be
conducted with more various storm events, and the errors should be corrected at each analysis step.
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