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Abstract: Design of hydraulic works requires the estimation of design hydrological events by
statistical inference from a probability distribution. Using Monte Carlo simulations, we compared
coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP),
bias-corrected bootstrap (BC), accelerated bias-corrected bootstrap (BCA) and a modified version
of the standard bootstrap (MSB). Different simulation scenarios were analyzed. In some cases,
the mother distribution function was fit to the random samples that were generated. In other
cases, a distribution function different to the mother distribution was fit to the samples. When the
fitted distribution had three parameters, and was the same as the mother distribution, the intervals
constructed with the four techniques had acceptable coverage. However, the bootstrap techniques
failed in several of the cases in which the fitted distribution had two parameters.

Keywords: Monte Carlo simulations; confidence intervals; coverage; bootstrap; maximum
annual precipitation

1. Introduction

In the study and design of hydraulic works, hydrological events must be estimated by statistical
inference [1,2] as predetermined quantiles from a probability distribution [3,4]. A quantile is defined as
a magnitude of a hydroclimatological variable (precipitation, flow, etc.) associated with a return period.
The return period is the average time interval in which said magnitude is reached or surpassed [5].

In hydrology, it is not enough to obtain the value of an event associated with a return period since
there is a level of uncertainty in the estimation of parameters and quantiles from finite samples [6],
which must be considered in decision-making [7]. One way to report this uncertainty is to provide an
interval that has a high likelihood of including the true value of the quantity of interest. Said interval
is known as the confidence interval, and the likelihood that it contains the true value is known as the
confidence level. As the uncertainty increases, so does the width of the confidence interval [8,9].

Traditionally, confidence intervals are obtained from a parametric estimator of the standard error
s of a quantity of interest θ. A confidence interval of 95%, then, is obtained by adding or subtracting
the standard error multiplied by a critical value (for example, θ± 1.96 s). This calculation assumes that
the distribution of the estimator of θ is approximately normal [6,10].
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There are various situations in which the assumption of normality is incorrect. In these cases,
or when the standard error is very difficult to estimate, one alternative is to use techniques based on
bootstrap re-sampling [3,6,11]. In bootstrap resampling, proposed by [12], the distribution of a given
statistic is inferred from the available data [8,13]. For this purpose, many samples are generated from
the original sample using Monte Carlo simulations. There are two basic approaches for the bootstrap:
parametric and non-parametric re-sampling. In parametric resampling, random samples are generated
from a parametric model fit to the data. In non-parametric resampling, the bootstrap samples are
constructed using the resampling with replacement from the original sample [14,15]. The parametric
bootstrap is very similar to Monte Carlo simulation. The difference is that the parameters used for
the parametric bootstrap are estimated from the sample, whereas the parameters for the Monte Carlo
simulation are set, based on the purposes of the simulation. Thus, a Monte Carlo simulation would
be used for a theoretical study, whereas the parametric bootstrap would be used to make statistical
inference from sampled data. In terms of implementation, the parametric bootstrap and Monte Carlo
simulation are the same [16].

Regardless of the approach used to generate the bootstrap samples, the construction of the
confidence intervals requires calculating the quantity of interest for each of the bootstrap samples and,
later, from the calculated values, estimating the confidence limits using order statistics [17,18].

There is a variety of techniques for constructing confidence intervals from bootstrap samples.
Among these are the percentile bootstrap (BP), the bias-corrected bootstrap (BC), the accelerated
bias-corrected bootstrap (BCA) and the standard bootstrap (SB). All of these techniques have their
advantages and disadvantages [8]. However, it is not clear which is convenient for constructing
confidence intervals for quantiles of hydroclimatological variables. One way to verify whether a
technique for the construction of confidence intervals is effective is to calculate the coverage of the
intervals constructed using that technique. Coverage is defined as the percentage of times in which the
confidence intervals include the true value of the quantity of interest. This coverage should coincide
with the confidence level of the interval. That is, for a confidence level of 95%, it is expected that 95%
of the confidence intervals contain the true value of the quantity of interest [19,20].

The aim of this study was to compare the coverage of the confidence intervals obtained with
four bootstrap techniques under different simulation scenarios, analyzing series of 24-h annual
maximum precipitation. The bootstrap techniques are the percentile bootstrap, the bias-corrected
bootstrap, the accelerated bias-corrected bootstrap and a modification of the standard bootstrap that
we propose here.

2. Materials and Methods

2.1. Climatological Information

The data used in this study were 24-h annual maximum precipitation records obtained
from 21 meteorological stations in Mexico (Figure 1) from the National Climatological Database
(CLICOM-Climate Computing) (http://smn.cna.gob.mx/index.php?option=com_content&view=
article&id=42&Itemid=75) [21]. The records vary from 32 to 89 years for the period from 1923 to 2012.
The stations are found in five states and in three different climate types (Table 1).

http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=42&Itemid=75
http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=42&Itemid=75
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Table 1. Geographic location and information from the meteorological stations used in the study.

Station Name Climate Type Latitude (◦ N) Longitude (◦ E) Altitude (masl) Period of Records Mean (mm) Standard Deviation Skewness Coefficient

6017 Madrid Hot subhumid 19.1122 −103.8839 195 1970–2012 112 65.4 2.38
6054 M. Á. Camacho Hot subhumid 19.285 −104.245 376 1978–2012 107 62.3 2.02
6058 Tecomán Hot subhumid 18.9083 −103.8744 30 1954–2012 112 62.2 1.35

14011 Apazulco Hot subhumid 19.3064 −104.8875 5 1961–2011 126 62.1 0.9
14036 Cuautitlán Hot subhumid 19.4506 −104.3592 600 1958–2011 115 50.9 2.08
14067 Higuera Blanca Hot subhumid 19.9942 −105.1625 140 1956–2002 111 68 1.29
14148 Tecomates Hot subhumid 19.5583 −104.5 286 1961–2006 102 32 1.16

11003 Agua Tibia Temperate
subhumid 20.5103 −101.6294 1720 1949–2012 53.2 15.7 0.295

11014 Cuerámaro Temperate
subhumid 20.6256 −101.6758 1732 1967–2012 49.4 16.8 −0.16

11028 Irapuato Temperate
subhumid 20.6689 −101.3372 1729 1923–2011 53.8 16.5 1.55

11035 La Sandía Temperate
subhumid 20.9211 −101.6974 1771 1965–2012 52.9 16.3 −0.31

11036 Adjuntas Temperate
subhumid 20.6753 −101.8442 1727 1944–2012 54 19.3 1.64

11134 El Conejo Temperate
subhumid 20.7158 −101.3697 1740 1978–2012 54.9 15.1 0.586

14038 Cuixtla Temperate
subhumid 21.0519 −103.4389 1000 1954–2011 57.5 13.9 0.65

16100 P. San Isidro Temperate
subhumid 19.8658 −101.5189 2022 1947–1992 46.4 10.2 0.73

27019 Jalapa Hot humid 17.7233 −92.8117 14 1971–2012 161 44.5 0.939
27024 La Huasteca Hot humid 17.52 −92.9267 80 1970–2012 150 53.4 1.59
27037 P. Nuevo Hot humid 17.8542 −92.8792 21 1949–2012 127 46.8 1.33
27042 Tapijulapa Hot humid 17.4611 −92.7775 44 1962–2012 200 66.9 0.417
27044 Teapa Hot humid 17.5489 −92.9533 51 1960–2012 178 44.1 0.891
27061 Puyacatengo Hot humid 17.5133 −92.92 86 1972–2012 193 62.7 1.36
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Figure 1. Location of the meteorological stations used in this study. 
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2.2. Simulation Software

We used Scilab 5.4.1 (http://www.scilab.org), an open source scientific software. Scilab is a high
level programming language which includes a library of around 2000 defined functions. In Scilab,
matrices are the fundamental object for scientific calculations. Thus, Scilab programs are compact and
usually smaller to their equivalents in C, C++, or Java.

2.3. Bootstrap Techniques

We compared four bootstrap techniques for construction of confidence intervals: the percentile
bootstrap (BP), the bias-corrected bootstrap (BC), the accelerated bias-corrected bootstrap (BCA) and a
modification of the standard bootstrap (MSB).

2.3.1. Percentile Bootstrap (BP)

The BP interval is just the interval between the 100
(

α
2
)

and 100
(
1− α

2
)

percentiles of the
distribution of estimates of xT from each resample. BP confidence intervals are based on the assumption
that there exists a monotone transformation φ̂ = h(x̂T), φ = h(xT) such that φ̂ ∼ N(φ, τ2)

(the transformed variable φ̂ follows a normal distribution with mean φ and variance τ2), where τ is
constant, xT represents the true value of the quantile associated to the return period T, x̂T is an estimator
of xT , and h is a normalizing transformation. It can be verified that, for the transformed variable, the BP
intervals are correct, that is, their coverage probability is exactly 100(1− α)%, as claimed. BP intervals
are transformation invariant, which means that if they are correct on the transformed scale φ = h(xT),
then they must also be correct on the original scale xT . The BP method automatically incorporates the
normalizing transformation h, so knowledge of this transformation is not required to implement the
method, but it must exist for the BP intervals to be correct [14,22].

To construct a confidence interval of 100(1− α)% with the BP method, for the quantile xT
corresponding to a T return period, the following procedure was carried out: (1) B random samples
of the mother distribution are generated; (2) for each of the random samples, the parameters of the

http://www.scilab.org
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distribution function fit to the data are estimated, and then the quantiles; (3) the quantiles of all the
samples are ordered from lowest to highest, and (4) the confidence interval is constructed in the
following form: [

x∗Tj; x∗Tk

]
(1)

where x∗Tj represents the jth quantile of the set of ordered quantiles from lowest to highest; x∗Tk
represents the kth quantile of the same set, j =

[
α
2 (B + 1)

]
, k =

[(
1− α

2
)
(B + 1)

]
; and α is the level

of significance. We used B = 1999 and α = 0.05; the quantile corresponding to the lower limit of the
interval was x∗Tj = x∗T 50 (the 50th quantile) and that corresponding to the upper limit was x∗Tk = x∗T 1950
(the 1950th quantile).

2.3.2. Bias-Corrected Bootstrap (BC)

When the estimator x̂T is biased, a transformation φ̂ = h(x̂T) such that φ̂ ∼ N(φ, τ2) does not
exist and BP intervals are not accurate [14,23]. Efron [24,25] introduced a modification of the BP
method which incorporated a bias correction factor z0. This factor is estimated using the expression
z0 = Φ−1(F̂b(x̂T)

)
, in which Φ is the standard normal distribution function and F̂b is the empirical

probability of the estimated quantile x̂T (Equation (2)).

F̂b = P(x∗Ti < x̂T) =
m
B

(2)

where m is the number of bootstrap quantiles smaller than x̂T . The quantile x̂T is that estimated from
the data of the original sample; it should not be confused with the bootstrap quantiles x∗Ti estimated
from the random samples.

If z0 is known, the values of a1 and a2 are obtained:

a1 = Φ
(

2z0 + z α
2

)
(3)

a2 = Φ
(

2z0 + z1− α
2

)
(4)

where z α
2

and z1− α
2

are the percentiles 100
(

α
2
)

and 100
(
1− α

2
)

of a standard normal distribution,
respectively. For α = 0.05 (95% confidence level) z α

2
= z0.025 = −1.96 y z1− α

2
= z0.975 = 1.96.

When a1 and a2 are known, the confidence interval is constructed as in Equation (1):[
x∗Tj; x∗Tk

]
(5)

where x∗Tj is the jth quantile of the set of quantiles ordered from lowest to highest, x∗Tk represents the

kth quantile of the same set, j = a1(B + 1) and k = a2(B + 1).
The bias-corrected (BC) bootstrap method assumes that there is a monotone transformation

φ̂ = h(x̂T), φ = h(xT) such that φ̂ ∼ N(φ− z0τ, τ2), where z0 and τ are constant [14]. Efron [25]
has shown that when such a transformation exists, BC intervals are correct. When z0 = 0, the BC
confidence intervals are equivalent to the BP intervals.

2.3.3. Accelerated Bias-Corrected Bootstrap (BCA)

Efron [26] introduced an improvement of the BC method which corrects for both bias and
skewness. This bias-corrected and accelerated (BCA) method requires calculation of a bias correction
factor z0 and of an acceleration factor a. The coefficient z0 is calculated in the same way as in the BC
technique. The a coefficient can be obtained by jacknife resampling [8]. This involves generating n
number of replicates of the original sample, where n is the number of observations in said sample.
The first jackknife replicate is obtained by leaving out the first value of the original sample, the second
by leaving out the second value, and so on, until n samples of size n− 1 are obtained. For each of the
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samples, the quantile xT(−i) corresponding to the return period of interest is estimated. The average of
these quantities is:

xT(−) =
1
n ∑n

i=1 xT(−i) (6)

The acceleration factor a is calculated with Equation (7):

a =
∑n

i=1 [xT(−i) − xT(−)]
3

6
{

∑n
i=1 [xT(−i) − xT(−)]

2
} 3

2
(7)

With the values of z0 and a, the values a1 and a2 are calculated:

a1 = Φ

z0 +
z0 − z1− α

2

1− a
(

z0 − z1− α
2

)
 (8)

a2 = Φ

z0 +
z0 + z1− α

2

1− a
(

z0 − z1− α
2

)
 (9)

where z1− α
2

is the percentile 100
(
1− α

2
)

of a standard normal distribution. For an α = 0.05 significance
level, the percentile z1− α

2
= 1.96. With the values of a1 and a2, a confidence interval is constructed in

the same way as Equations (1) and (5): [
x∗Tj; x∗Tk

]
(10)

where j = a1(B + 1) and k = a2(B + 1).
The BCA method is based on the assumption that there is a monotone transformation φ̂ =

h(x̂T), φ = h(xT) which satisfies to a high degree of approximation φ̂ ∼ N
(

φ̂− z0τφ, τ2
φ

)
, where τφ =

1 + aφ, and z0 and a are constants [14]. Efron [27] showed that such a transformation does exist. When
the acceleration coefficient a = 0, the BCA intervals are equivalent to BC [23].

2.3.4. Modified Standard Bootstrap (MSB)

According to the standard or Gaussian bootstrap method, the confidence interval of 100(1− α)%
for a quantile xT takes the form of Equation (11):[

x̂T −
(

z1− α
2

)
σb; x̂T +

(
z1− α

2

)
σb

]
(11)

where x̂T is the estimated value of the quantile, z1− α
2

is the percentile 100(1− α)% of a standard normal
distribution, and σb is a bootstrap estimator of the standard deviation. This estimator σb is given by
Equation (12).

σb =

√
1

B− 1 ∑B
i=1 (x∗Ti − x∗T)

2 (12)

where x∗Ti is the ith bootstrap quantile and x∗T is the average of the bootstrap quantiles.
We did not use the standard bootstrap in this study, but instead we propose a modification of

this technique. This modification consists of constructing the standard confidence interval, not for the
quantile, but for a transformation of the quantile.

The standard bootstrap method assumes that the sampling distribution of x̂T is normal, with mean
xT and variance σ2, where σ is constant. If this assumption is not true, the standard bootstrap intervals
will not be accurate [14]. However, in many cases, a transformation that stabilizes the variance will also
give a variable which is closer to a normal distribution [28]. If the transformed variable is normally
distributed, then the MSB will give the correct intervals.
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To find an appropriate transformation, bootstrap samples were generated. The variance of the
x∗Ti (the bootstrap estimates of xT) was then expressed as a function of the mean of the x∗Ti using
a linear regression. A transformation was then chosen which would give nearly constant variance
for the transformed data. This transformation was not the same if the data were generated from a
two-parameter distribution or from a three-parameter distribution. Therefore, the MSB technique
varies slightly, depending on the number of parameters of the probability distribution function (pdf) fit
to the time series. In the case of a three-parameter distribution, the procedure is the following: (1) the
bootstrap quantiles x∗Ti corresponding to a return period T are estimated; (2) for each of these quantiles,
the transformation u∗Ti = 1/x∗Ti is performed for each of the quantiles; (3) the standard deviation
of the transformed values is obtained (Equation (13)); (4) the confidence interval for uT = 1/xT is
constructed, with a lower limit UI = 1

x̂T
−
(

z1− α
2

)
σuT , and an upper limit US = 1

x̂T
+
(

z1− α
2

)
σuT

(Equation (14)); (5) finally, the inverse transformation is applied to obtain a confidence interval for xT ,
with a lower limit XI = 1/US and an upper limit XS = 1/UI (Equation (15)).

σuT =

√
1

B− 1 ∑B
i=1 (u

∗
Ti − u∗T)

2 (13)

where u∗T is the mean of the values u∗Ti.[
1

x̂T
−
(

z1− α
2

)
σuT ;

1
x̂T

+
(

z1− α
2

)
σuT

]
(14)

[{
1

x̂T
+
(

z1− α
2

)
σuT

}−1
;
{

1
x̂T
−
(

z1− α
2

)
σuT

}−1
]

(15)

It should be mentioned that, when the transformation is applied, the order of the limits is inverted.
That is, the reciprocal of the upper limit US for the transformed variable uT becomes the lower limit XI
for xT and the reciprocal of the lower limit UI for uT becomes the upper limit XS for xT .

The procedure to obtain the interval for a two-parameter pdf is similar, except that the
transformation used is u∗Ti = 1/

√
x∗Ti. Later, once the confidence interval is obtained for uT ,

the transformation XI = 1/(US)2 and XS = 1/(UI)2 must be done to obtain the confidence interval
of . This interval is given by Equation (16).[{

1√
x̂T

+
(

z1− α
2

)
σuT

}−2
;
{

1√
x̂T
−
(

z1− α
2

)
σuT

}−2
]

(16)

For a significance level α = 0.05, the percentile z1− α
2
= 1.96.

2.4. Modeling the Coverage of Confidence Intervals

The criterion used to compare bootstrap techniques was coverage of the confidence intervals
obtained by those techniques. Coverage was calculated considering two or three simulation scenarios
that consider different pdf and return periods. Scenario 1 corresponds to the use of the best fitting
pdf (mother distribution). Scenario 2 corresponds to modeling the second best fitting pdf. Scenario 3
corresponds to modeling the pdf which is of the same family as the mother distribution. When the
second best fitting distribution is of the same family as the mother distribution, there are only two
scenarios. The scenarios were obtained by generating samples of a known pdf and then fitting different
pdf and estimating the quantiles using those pdfs. For each of these scenarios, confidence intervals
were constructed using the four bootstrap techniques and their coverage was calculated.

The reason for this approach is the following: in practice, the real distribution of extreme rainfalls
is not known, so it must be inferred from samples of finite size. Therefore, it is not unlikely that
there will be cases in which inappropriate pdf are used to model the extreme rainfalls. With this in
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mind, some simulation scenarios were considered in which an incorrect pdf was deliberately chosen to
fit the simulated data, in order to study the effect that such a choice would have on the confidence
intervals. However, since it was desired that this choice of pdf, although incorrect, was still reasonable,
the second best fitting pdf and the pdf of the same family as the mother distribution were considered
for this purpose.

2.5. Procedure for Determining the Level of Coverage

The general procedure for calculating the coverage of confidence intervals is outlined by Van de
Boogard and Hall [20]. This general procedure is followed in this study, and applied to the different
simulation scenarios that were considered. The methodological process used here can be summarized
in the following six steps (Figure 2):

1. Select the pdf (mother distribution) to generate the random data.

The mother distribution for each site was selected by determining the best fitting pdf to the series
of precipitation among a group of six candidates which included both two and three parameter
pdf. The pdf used were log-gamma (LOGGM) and log-Pearson type 3 (LP3), Gumbel (GMB)
and General Extreme Values (GEV), and log-logistic (LLOG) and generalized logistic (GLOG).
The LP3, GLOG, GEV and GMB are among the most commonly used distributions for frequency
analysis of extreme rainfalls [29]. The LOGGM and LLOG are two-parameter distributions related
to the three parameter LP3 and GLOG distributions, respectively, as the GMB is related to the
GEV. Thus, pairs of related two and three-parameter distributions were considered, allowing for
the more parsimonious model to be chosen when it provided an adequate fit.
Selection of the pdf that best fit the original and simulated series was done by applying the
Bayesian Information Criterion (BIC) [30], which assigns a numerical value to each distribution
that orders them from best to worst fit. In all cases, the best fitting pdf was selected for
the simulations.

2. Calculate the “true value” xT of the quantile for different return periods T.

Quantiles corresponding to the return periods T = 2, 5, 10, 20, 25, 50, 100, 200, 500 and 1000 years
were estimated from the original data. These were considered as the true values of the quantiles
in the simulations. The quantiles of the GMB, GEV, LLOG and GLOG pdf were calculated with
Equations (17)–(20), respectively, where β̂, θ̂, and α̂ are the estimators of the scale, shape and
location parameters of the distributions.

x̂T = θ̂ − β̂ ln
[

ln
(

T
T − 1

)]
(17)

x̂T = θ̂ − β̂

α̂

{
1−

[
ln
(

T
T − 1

)]−α̂
}

(18)

x̂T = exp{θ̂ + β̂ ln (T − 1)} (19)

x̂T = θ̂ +
β̂

α̂
[1− (T − 1)−α̂] (20)

No analytical forms exist for the inverse LOGGM or LP3 pdf. However, in these cases, we used
SCILAB, which calculates the inverse function of the gamma distribution using the algorithm
described by [31] and which served as the basis for calculating the quantiles of the LOGGM and
LP3 distributions.
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3. Generate synthetic samples.

One thousand synthetic samples of size n were generated from the mother distribution for each
of the series that were analyzed.

4. Estimate the quantiles x̂Ti.

For each of the samples generated, a pdf was fitted to estimate the quantiles x̂Ti corresponding to
the return periods analyzed.

5. Construct confidence intervals.

Confidence intervals were constructed for the quantiles x̂Ti with the BP, BC, BCA and MSB
techniques. By generating 1000 synthetic samples, 1000 BP, 1000 BC, 1000 BCA and 1000 MSB
intervals were obtained for each return period.

6. Calculate coverage.

Coverage was calculated as the percentage of times in which the intervals constructed by a
bootstrap technique included the real value xT of the quantile.
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3. Results and Discussion

Precipitation in the tropics is higher than in temperate regions, especially in the hot humid region
(southeastern Mexico) where it can reach annual values of up to 3000 mm [32], which is reflected
in the yearly maximum 24-h precipitation analyzed (Figure 3). Mean values of annual maximum
precipitation recorded by the stations in the hot humid region vary between 127 and 200 mm, while in
the hot subhumid region they vary from 102 to 126 mm. The temperate subhumid region has lower
values, and mean values vary between 46 and 57 mm. As observed in Figure 3, maximum annual
precipitations are more variable in the hot region than in the temperate region. The coefficients of
variation of the hot subhumid region have large variation, from 31% to 62%, and, in the hot humid
region, values are lower, varying from 25% to 37%, while in the temperate subhumid region coefficients
of variation vary from 22% to 34%.
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3.1. Frequency Analysis

The first step was a frequency analysis to determine which pdf best fit to the series of maximum
annual precipitation analyzed. The results show that there is no pdf that adequately represents most
of the series analyzed. In general, the LOGGM pdf was the function that most often had the best fit
to the series, since in a little more than 40% of the series it was the best fitting pdf, particularly in the
series belonging the hot humid region. In addition, in a little more than 20% of the series, it was the
second best fitting function. The LP3 pdf, which is of the same family as the LOGGM, was found to
have the best fit in almost 20% of the series. If the pdf are considered by family, the pdf most often
selected belong to the log-Pearson type 3 family, for a little over 60% of the series. In contrast, the least
selected family was the logistic family. A pdf of this family was selected as the best fitting pdf in
only 14% of the series. On the other hand, if the pdf are considered by number of parameters, it was
observed that two-parameter pdf were selected as the best for 67% of the series, against only 33% of
the series in the case of the three-parameter distributions. This is consistent with the BIC tendency
towards parsimony, that is, selecting the model with the fewest parameters when the goodness of fit of
the models is similar [33].

It is also worth noting that, when the skewness coefficient γ was below 0.30, only three-parameter
distributions were selected. GLOG or GEV were selected when the γ value was slightly negative,
but LP3 was selected for the case in which γ = 0.29. In addition, for γ > 2, the LP3 was selected. On the
other hand, two-parameter distributions were selected in 15 of the 16 cases in which 0.40 < γ < 1.70.
While GLOG, GEV and LP3 can fit data in this range of γ values, the BIC includes a term which
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penalizes the number of parameters in a distribution, so it will select a two-parameter distribution if it
provides a fit similar to that of the best fitting three-parameter distribution. However, for γ < 0.30
and γ > 2, the two-parameter distributions did not provide a sufficiently good fit, so three-parameter
distributions were selected instead.

For each of the analyzed series, the best fitting distribution was used as the mother distribution
for the generation of the random samples. The best and second best fitting distributions for each of the
series are shown in the Table 2.

Table 2. Parameters of the best fitting probability distribution functions.

Name Best pdf Second Best pdf α β θ

Madrid LP3 LOGGM 5.3287144 0.1992481 3.5390657
M. Á. Camacho LP3 GEV 4.1525277 0.2254003 3.6213723

Tecomán LOGGM LLOG 82.634782 0.0555225
Apazulco LOGGM GMB 91.842315 0.0514029
Cuautitlán LP3 GEV 4.376189 0.1731262 3.9173081

Higuera Blanca GMB GLOG 51.898719 80.561081
Tecomates GEV LP3 0.1945382 19.86305 85.816749
Agua Tibia LP3 GEV 11.795387 −0.0914924 5.0066864
Cuerámaro GEV GLOG −0.2865803 16.660192 43.524345

Irapuato LLOG LOGGM 0.1621175 3.9415775
La Sandía GLOG LLOG 0.0823704 9.1261126 54.169179
Adjuntas LOGGM LLOG 154.81554 0.0254319
El Conejo LOGGM GMB 213.81437 0.0185691

Cuixtla LOGGM GMB 286.73673 0.0140327
P. San Isidro GMB LOGGM 8.2309395 41.686879

Jalapa LLOG LOGGM 0.1493782 5.0432277
La Huasteca LOGGM GMB 236.09342 0.0210114

P. Nuevo LOGGM LP3 201.45845 0.0237352
Tapijulapa LOGGM GMB 235.16545 0.0222989

Teapa GMB LOGGM 35.105362 157.71026
Puyacatengo LOGGM GMB 313.25914 0.0166501

α is the scale parameter; β the shape parameter, and θ the location parameter.

For most of the analyzed series, one or more of the considered distributions provided an
adequate fit. Figures 4a, 5a and 6a show the graphs of the fitted distributions for stations 6054,
11035 and 27037. Figures 5a and 6a show examples of adequate fit, whereas Figure 4a provides
one of the scarce examples of poor fit. It was observed that for values of γ between 0.30 and 2,
all the distributions provided a similar fit (as in Figure 6a); this means that, the more parsimonious
two-parameter distributions were selected by the BIC. However, for values of γ above 2 (i.e., Figure 4a),
or below 0.30 (i.e., Figure 5a), there were significant differences between the distribution curves,
and only three-parameter distributions, if any, provided an adequate fit. The similarities between
distribution curves happen mostly within the interpolation region. Outside of this region, differences
between curves become grater, increasing with the return period. The distribution curves spread
out considerably for return periods with orders of magnitude of 100 and above. This behavior is
illustrated in Figures 4b, 5b and 6b, which show the estimated quantiles for stations 6054, 11035 and
27037. It means that for high return periods, the different distributions provide very different estimates
of the quantiles. This is true for all the analyzed series, but more so for the high variance and high
skew series of the hot subhumid region.
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3.2. Construction of Confidence Intervals

Once the best fitting pdf were identified, they were used to estimate the quantiles corresponding
to the return periods T = 2, 5, 10, 20, 25, 50, 100, 200, 500 and 1000 years. The confidence intervals were
then constructed for those return periods using the four bootstrap techniques.

Because of the large number of intervals obtained, Table 3 gives only those intervals obtained for
T = 10, 100 and 1000 years. These intervals show that, for a single series, the intervals increase with
respect to the return period and that, in general, the BC and MSB methods give the widest intervals,
while BP gives the narrowest intervals. The difference between confidence intervals obtained by
the different bootstrap methods is more noticeable when the return periods are longer. In addition,
the results indicate that the intervals for the series from the hot humid and hot subhumid regions
are wider than those of the series from the temperate subhumid region, since the maximum annual
precipitation is more variable (Figure 3).

The blank cells indicate cases in which negative values were obtained for the upper limit.
This anomaly occurred only with the MSB confidence intervals, for the return periods of 500 or
1000 years, indicating a defect in this method. In the methodology section, we mentioned that to
calculate the upper limit of the confidence interval of a quantile x̂T of a three-parameter distribution
with the MSB method, the difference UI = 1

x̂T
−
(

z1− α
2

)
σuT must be calculated. This difference was

negative in some cases, and, therefore, the upper limit XS = 1/UI was also negative, which is
an unacceptable result. Thus, the MSB method does not function in some cases and its use is
not recommended.

It was observed that the size of the confidence intervals was related to both the standard deviation
σ and the skewness coefficient γ of the series. The five series with the widest confidence intervals
were Manuel Ávila Camacho (6054), Madrid (6017), Cuautitlán (14036), Tecomán (6058) and Tecomates
(14148). All five belong to the hot subhumid region, where the estimated values of σ were relatively
high. On the other hand, the series from the temperate subhumid region had the smallest estimates of σ

and therefore, the narrowest confidence intervals. The three series with the widest intervals (6054, 6017
and 14036) also had the highest estimated values of γ. A relationship between the size of the intervals
and the best fitting pdf was also observed. Of the five series with the widest intervals, the best fitting
pdf had three parameters in four of the cases. For the three series with the widest confidence intervals,
the best fitting pdf was the LP3.

3.3. Comparison of Bootstrap Techniques

As we pointed out earlier, the best fitting pdf were used as mother distributions to generate
random samples and, for each of the mother distributions, two or three different scenarios
were considered.

Considering the combination of all the mother distributions, possible scenarios, bootstrap
techniques and return periods, the number of coverage values obtained was very large. Table 4
shows a summary of the obtained results. Only the maximum, minimum and average of all the
coverages for each time series and return periods analyzed are shown. According to the selected
confidence level of 95%, the minimum, maximum and average coverage should be 95%. In practice,
we consider the coverage to be adequate if the maximum coverage is not far above 95%, the minimum
coverage is not far below, and the average coverage is around 95%.
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Table 3. Confidence intervals for the quantiles corresponding to the return periods of 10, 100, and 1000 years.

Station Climate Region Fitted pdf Return Period (Years) Estimated Quantile (mm)
Confidence Intervals (mm)

BP BC MSB BCA

6017 Hot subhumid LP3
10 184 140–237 145–245 146–251 140–256

100 384 221–720 252–927 240–957 223–1501
1000 732 300–2166 377–3619 - 314–8071

6054 Hot subhumid LP3
10 176 133–240 137–250 136–251 133–271

100 380 206–774 232–947 226–1201 211–1374
1000 755 282–2487 351–5165 - 315–9317

6058 Hot subhumid LOGGM
10 191 155–233 157–238 158–240 155–243

100 358 242–543 253–574 254–606 244–608
1000 590 321–1191 345–1328 353–1796 329–1424

14011 Hot subhumid LOGGM
10 213 175–259 177–262 176–263 175–266

100 381 283–512 288–521 287–528 281–536
1000 596 408–887 417–903 416–926 405–920

14036 Hot subhumid LP3
10 174 145–210 149–218 147–214 145–225

100 317 213–522 229–642 220–570 215–789
1000 541 285–1325 323–2169 307–2285 296–2941

14067 Hot subhumid GMB
10 197 164–237 166–240 165–240 163–247

100 319 260–392 262–394 262–398 253–411
1000 439 352–543 357–550 356–555 344–572

14148 Hot subhumid GEV
10 142 122–166 124–172 123–168 123–174

100 234 163–365 171–404 166–392 165–436
1000 375 194–901 211–1095 211–1695 206–1241

11003 Temperate
subhumid

LP3
10 74.1 68.0–80.5 68.1–80.5 68.4–80.8 67.7–81.3

100 92.1 79.4–108 76.8–105 80.0–109 78.0–105
1000 104 83.1–136 77.8–129 84.1–137 81.8–126

11014 Temperate
subhumid

GEV
10 71.2 64.7–77.0 65.1–77.4 65.3–78.1 64.6–77.6

100 86.1 74.5–100 74.1–99.2 75.2–101 73.6–100
1000 93.6 77.4–120 77.0–119 77.1–119 77.3–119

11028 Temperate
subhumid

LLOG
10 73.5 67.1–81.1 67.6–82.3 67.1–81.0 66.5–84.1

100 108 93.2–128 94.9–132 93.3–128 92.3–137
1000 158 127–200 131–208 128–200 126–222

11035 Temperate
subhumid

GLOG
10 72.5 66.7–78.1 67.1–78.4 67.2–78.7 65.9–79.6

100 89.1 78.0–104 78.1–104 78.0–104 76.0–108
1000 102 83.9–134 84.1–135 83.2–133 82.0–140
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Table 3. Cont.

Station Climate Region Fitted pdf Return Period (Years) Estimated Quantile (mm)
Confidence Intervals (mm)

BP BC MSB BCA

11036 Temperate
subhumid

LOGGM
10 77.3 69.4–86.1 69.5–86.4 69.6–86.4 68.8–87.4

100 111 94.5–131 95.4–132 95.0–132 93.7–135
1000 147 119–181 121–185 120–183 117–190

11134 Temperate
subhumid

LOGGM
10 75.3 66.1–85.9 66.7–86.8 66.4–86.2 65.9–87.8

100 102 83.7–125 84.7–127 84.9–126 83.2–131
1000 129 100–168 101–171 102–170 98.6–175

14038 Temperate
subhumid

LOGGM
10 76.0 69.6–83.0 69.9–83.3 69.7–83.3 69.4–84.3

100 99.2 87.0–113 87.5–114 87.3–114 86.5–115
1000 121 103–144 104–145 103–145 102–147

16100 Temperate
subhumid

GMB
10 60.2 54.3–66.7 54.3–66.8 54.5–66.9 53.9–67.6

100 79.6 69.3–91.8 69.4–92.0 69.5–92.0 68.4–92.9
1000 98.5 83.7–116 84.0–117 84.1–117 82.5–118

27019 Hot humid LLOG
10 215 191–246 193–247 190–245 190–254

100 308 253–386 258–392 252–384 251–411
1000 435 329–602 339–610 329–600 325–665

27024 Hot humid LOGGM
10 217 186–253 185–252 187–255 180–264

100 312 248–395 249–395 250–399 236–425
1000 411 307–559 308–564 311–569 289–618

27037 Hot humid LOGGM
10 185 164–208 164–208 165–208 162–212

100 270 226–322 229–327 229–325 224–340
1000 362 289–453 293–465 292–460 284–488

27042 Hot humid LOGGM
10 295 257–337 258–338 259–339 257–342

100 434 355–531 358–542 359–534 355–544
1000 581 450–758 457–771 457–764 452–782

27044 Hot humid GMB
10 237 214–263 215–265 214–263 214–269

100 319 279–368 280–371 279–368 277–376
1000 400 342–472 344–475 343–473 338–483

27061 Hot humid LOGGM
10 270 234–305 235–307 237–309 230–312

100 375 305–450 308–456 311–461 298–470
1000 480 370–611 374–619 378–629 363–652
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Table 4. Coverages obtained for different mother distributions and fitted pdf.

Station Mother Distribution Fitted pdf

Coverage (%)

BP BC MSB BCA

Max Min Mean Max Min Mean Max Min Mean Max Min Mean

6017
LP3, α = 5.33,

β = 0.199, θ = 3.54
LP3 94 89 90 93 90 91 93 51 83 96 93 95

LOGGM 92 44 71 91 48 73 91 50 73 92 57 79

6054
LP3, α = 4.15,

β = 0.225, θ = 3.62

LP3 95 86 88 94 89 90 94 38 78 94 93 93
GEV 94 90 91 93 89 91 92 21 75 94 93 93

LOGGM 90 40 67 89 44 69 89 46 69 91 54 76

6058
LOGGM,

α = 82.6, β = 0.0555

LOGGM 95 93 94 95 93 94 95 94 93 96 95 93
LLOG 98 91 96 98 83 94 98 90 95 99 90 97

LP3 94 92 93 95 91 93 95 90 94 96 93 95

11003
LP3, α = 11.8,

β = −0.091, θ = 5.01

LP3 97 94 96 95 92 93 97 95 96 96 92 94
GEV 95 94 94 95 93 94 95 94 94 96 94 95

LOGGM 99 8 63 99 7 60 99 8 61 99 11 64

11014
GEV, α = −0.287,
β = 16.7, θ = 43.5

GEV 95 93 93 95 91 93 95 92 93 96 94 94
GLOG 99 90 95 99 84 94 99 85 95 100 88 96
GMB 100 1 59 99 0 57 99 0 58 100 1 60

11028
LOGL,

β = 0.162, θ = 3.94

LOGL 95 95 95 95 94 94 95 95 95 97 95 97
LOGGM 94 54 84 94 57 84 94 56 84 96 64 88
GLOG 95 94 94 95 93 94 95 93 94 97 95 96

11035
GLOG, α = 0.0824,
β = 9.13, θ = 54.2

GLOG 95 93 94 94 92 93 94 93 93 96 93 94
LLOG 100 2 59 100 1 55 100 2 60 100 2 59

11036
LOGGM,

α = 155, β = 0.0254

LOGGM 95 94 94 95 94 95 95 94 94 97 94 96
LLOG 98 81 93 98 74 92 98 81 93 99 82 95

LP3 95 92 93 94 92 93 94 93 94 96 94 95

11134
LOGGM,

α = 214, β = 0.0186

LOGGM 94 94 94 95 94 94 94 94 94 97 94 96
GMB 97 94 96 97 95 96 97 94 96 99 95 98
LP3 95 92 93 94 90 92 95 93 94 95 93 94

14011
LOGGM,

α = 91.8, β = 0.0514

LOGGM 95 93 94 94 93 94 94 93 94 96 93 96
GMB 93 23 67 92 25 68 91 27 69 94 33 75
LP3 95 92 94 94 92 93 95 90 94 96 94 95

14036
LP3, α = 4.38,

β = 0.173, θ = 3.92

LP3 95 90 91 94 92 93 95 81 91 96 95 95
GEV 94 91 92 94 91 92 93 61 87 95 94 95

LOGGM 86 25 60 86 28 62 86 28 62 90 35 68
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Table 4. Cont.

Station Mother Distribution Fitted pdf

Coverage (%)

BP BC MSB BCA

Max Min Mean Max Min Mean Max Min Mean Max Min Mean

14038
LOGGM,

α = 286, β = 0.0140

LOGGM 95 93 94 96 93 94 95 93 94 97 96 96
GMB 97 92 95 97 90 94 97 90 94 98 94 97
LP3 94 93 93 95 92 93 94 93 94 96 94 95

14067
GMB,

β = 51.9, θ = 80.6

GMB 95 93 94 95 94 94 95 94 94 97 95 95
GLOG 99 91 96 97 93 95 97 91 95 99 93 97
GEV 95 89 91 95 89 91 94 90 92 95 92 93

14148
GEV, α = 0.195,

β = 19.9, θ = 85.8

GEV 92 87 89 92 86 88 92 66 86 94 90 92
LP3 95 82 87 92 85 88 94 76 86 94 91 93

GMB 90 8 57 88 9 57 88 9 57 91 14 64

16100
GMB,

β = 8.23, θ = 41.7

GMB 94 94 94 94 94 94 94 94 94 97 95 96
LOGGM 94 78 87 94 82 88 94 80 87 96 87 92

GEV 94 91 92 94 91 92 94 91 92 95 93 94

27019
LLOG,

β = 0.149, θ = 5.04

LLOG 95 94 95 95 94 94 96 94 94 97 94 97
LOGGM 94 63 86 94 67 86 94 66 86 97 73 90
GLOG 95 93 93 95 92 92 95 90 93 96 95 95

27024
LOGGM,

α = 236, β = 0.0210

LOGGM 96 95 95 96 95 95 96 95 95 98 95 97
GMB 94 92 93 95 93 94 94 93 93 97 94 96
LP3 95 93 93 94 91 92 94 93 94 96 93 94

27037
LOGGM,

α = 201, β = 0.0237
LOGGM 95 93 93 95 93 94 95 93 94 96 95 96

LP3 94 93 93 94 91 92 94 93 94 95 94 95

27042
LOGGM,

α = 235, β = 0.0223

LOGGM 95 93 94 96 93 95 96 94 95 97 94 96
GMB 95 89 93 94 90 93 95 91 93 97 94 96
LP3 95 92 93 94 90 92 95 93 94 96 93 94

27044
GMB,

β = 35.1, θ = 158

GMB 96 94 95 95 94 95 95 94 95 97 95 97
LOGGM 94 82 88 95 85 89 94 84 89 96 89 92

GEV 95 93 93 95 92 93 95 93 93 96 95 95

27061
LOGGM,

α = 313, β = 0.0167

LOGGM 95 94 94 95 94 94 95 94 94 97 94 96
GMB 96 94 95 96 94 95 96 94 95 98 94 97
LP3 94 92 93 94 90 92 94 93 93 96 93 94



Water 2018, 10, 166 18 of 21

As an example, Figure 7 shows the coverages obtained for the resulting mother distribution in the
series of the Apazulco station (14011). Each of the curves corresponds to the combination of a fitted
pdf and a bootstrap technique. Thus, the curve with the legend “BP—LOGGM fit” corresponds to a
coverage obtained when the pdf used for the fit was LOGGM, and the technique used to construct the
confidence intervals was BP. Each bootstrap technique is distinguished by a different color. The fit by
the LOGGM pdf (which coincides with the mother pdf) is seen as continuous lines, the fit by the GMB
pdf by broken lines, and the fit by the LP3 pdf by dotted lines. In the figure, it can be seen that when
the fitted pdf is LOGGM, the coverage obtained is good for the four bootstrap techniques since it takes
values near 95% for all of the return periods. Coverage is also good when the fitted pdf is LP3 since it
never falls below 90%. In contrast, when the fitted pdf is GMB, the coverage of the bootstrap intervals
is not adequate since it falls below 90% for T ≥ 20, and below 60% for T ≥ 200. In Table 4, it can be
seen that, when LOGGM and LP3 pdf are fitted, the maximum and average coverages always remain
near 95%, while the minimum coverage never falls below 90%. However, for the GMB pdf, average
coverage is always less than 80% and the minimum is always below 35%.
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The results indicate that the BCA coverages were almost always higher than those obtained with
the other techniques. It was observed that the BP coverage was very similar to that of the BC. It was
also found that in scenarios corresponding to the mother distributions taken from the series Madrid
(6017) and Manuel Ávila Camacho (6054) the MSB technique failed, while BP and BC performed well.
This is due to the defect pointed out above that when a negative value is obtained for the upper limit,
the quantile value is outside the confidence interval.

In those scenarios in which the fitted pdf was equal to the mother pdf, the coverages were
generally good. When the mother distribution had three parameters, the BCA intervals had the
coverage closest to the 95% confidence level. This is because the wider BCA intervals are more likely to
contain the true values of the larger quantiles estimated for the three parameters distributions. On the
other hand, when the mother distribution had two parameters, all techniques performed similarly well.

For the scenarios in which a pdf different from the mother pdf was fitted, coverage was always
good when the fitted pdf had three parameters (≥90%). When the fitted pdf had two parameters,
coverage was not always poor, however, when coverage was poor (<60%), the fitted pdf had two
parameters. This makes sense since, when there was great variability, the confidence intervals for
three-parameter distribution quantiles were generally wider than for two-parameter distribution
quantiles. Thus, the confidence intervals for the three-parameter distribution quantiles were wide
enough that it was highly probable that they contained the quantiles of the mother distribution.
The same was not always true for the confidence intervals for two-parameter distributions. It may
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be assumed that it is convenient to always use three-parameter distributions, because that would
assure that the confidence intervals have adequate coverage. However, there is more uncertainty in
the estimation of the quantiles of a three-parameter distribution, which would affect decision-making.

On the other hand, the BIC selects a distribution following two criteria: the degree of fit and the
number of parameters. According to the law of parsimony, the BIC will select the simplest model
(the model with the least parameters) that adequately fits the data. Therefore, when it selects a
three-parameter distribution instead of a two-parameter distribution, it does so necessarily because
of its better fit. Surely, the two-parameter distribution could not approximate well the form of the
distribution of the data, while the three-parameter distribution, which can adopt a larger variety
of forms, could. However, if several two-parameter distributions are considered as hypothetical
distributions, it is possible that together they can adopt the variety of forms that the three-parameter
distribution can take, and that one of them could fit well the analyzed series. This distribution
would be selected, avoiding the higher level of estimation uncertainty associated with the use of
three-parameter distributions.

4. Conclusions

No single distribution provided the best fit always. Two-parameter distributions were selected
more frequently than those of three parameters by the BIC. However, in cases in which the coefficient
of skew was below 0.30, or when it was greater than 2.00, the two-parameter distributions did not
provide a good fit, so three-parameter distributions were selected.

In some cases, there were considerable differences in the tails of the fitted distributions,
which resulted in vastly different estimates of the quantiles for large return periods. Both two- and
three-parameter distributions should be considered for frequency analysis of hydrological extremes,
and an adequate selection criterion should be used to select the best fitting distribution. The advantage
of two-parameter distributions is that there is less uncertainty in the estimation of the quantiles,
which results in narrower confidence intervals. However, there will be cases in which two-parameter
distributions will not provide adequate fit. Three-parameter distributions provide a good fit for
a wider variety of cases than two-parameter distributions, so they should be considered for those
cases in which the later do not provide an adequate fit. Whenever both two- and three-parameter
distributions provide an adequate fit, the two-parameter distribution should be selected, since the
estimation uncertainty is lower.

We recommend that log-gamma, which is seldom used in hydrology, should be considered among
the two-parameter distributions used for frequency analysis of hydrological extremes. In this study,
it was the most frequently selected distribution (9 of the 21 series analyzed), outperforming the Gumbel
and GEV distributions, which are used in Mexico for analysis of annual maximum precipitations.

The confidence intervals obtained in this study with bootstrap techniques had adequate coverage
in cases in which the fitted pdf was correct. In addition, when the fitted pdf was incorrect but had
three parameters, the coverage was adequate when that distribution was either the second best fitting
or of the same family as a best fitting two parameter distribution. In contrast, in all cases in which
the four techniques performed poorly, an incorrect two-parameter pdf was fit, and it did not provide
an adequate fit. Therefore, the quantiles estimated from the two-parameter distributions were very
different from the quantiles of the mother distribution, and the confidence intervals were not wide
enough to include these quantiles with a high probability. This confirms the need of an adequate
criterion for selecting the distribution for frequency analysis. If an inappropriate distribution is chosen,
not only the quantiles will be incorrectly estimated, but the confidence intervals will give a false idea
of the estimation uncertainty.

In general, the widest confidence intervals were obtained with the BCA and MSB techniques,
while the narrowest were obtained with the BP technique. When the fitted pdf has three parameters
the use of BCA is recommended. On the other hand, it was observed that when the fitted pdf was
correct and had two parameters, the BP, BC and BCA techniques had similar performance. Therefore,
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when the fitted pdf has two parameters, it is recommended to use the BP technique, since it gives
narrower intervals and is easier to program. The MSB technique is not recommended because it failed
in situations in which the other techniques had better results.
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