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Abstract: Climate change-induced precipitation variability is the leading cause of rainfall erosivity
that leads to excessive soil losses in most countries of the world. In this paper, four global climate
models (GCMs) were used to characterize the spatiotemporal prediction of rainfall erosivity and assess
the effect of variations of rainfall erosivity in Central Asia. The GCMs (BCCCSM1-1, IPSLCM5BLR,
MIROC5, and MPIESMLR) were statistically downscaled using the delta method under Representative
Concentration Pathways (RCPs) 2.6 and 8.5 for two time periods: “Near” and “Far” future (2030s
and 2070s). These GCMs data were used to estimate rainfall erosivity and its projected changes over
Central Asia. WorldClim data was used as the present baseline precipitation scenario for the study
area. The rainfall erosivity (R) factor of the Revised Universal Soil Loss Equation (RUSLE) was used to
determine rainfall erosivity. The results show an increase in the future periods of the annual rainfall
erosivity compared to the baseline. For all GCMs, with an average change in rainfall erosivity of about
5.6% (424.49 MJ mm ha−1 h−1 year−1) in 2030s and 9.6% (440.57 MJ mm ha−1 h−1 year−1) in 2070s as
compared to the baseline of 402 MJ mm ha−1 h−1 year−1. The magnitude of the change varies with the
GCMs, with the largest change being 26.6% (508.85 MJ mm ha−1 h−1 year−1), occurring in the MIROC-5
RCP8.5 scenario in the 2070s. Although annual rainfall erosivity shows a steady increase, IPSLCM5ALR
(both RCPs and periods) shows a decrease in the average erosivity. Higher rainfall amounts were the
prime causes of increasing spatial-temporal rainfall erosivity.
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1. Introduction

Soil is a fragile resource that requires time to recover. Without soil, agricultural production is
inconceivable, and the sustenance of the well-being of people will be impossible [1]. Soil erosion is
the combination of natural and anthropogenic processes foremost to changes in soil functions in the
geosystem, quantitative and qualitative degradation of soil composition, properties, and regimes,
and reduction of the natural and economic importance of lands [2]. Soil erosion by water is the most
common type of soil erosion, affecting about 11 million km2 in the world [3]. Among the continents,
Asia ranks first in soil erosion severity [3,4]. Soil degradation also brings enormous economic damage,
disrupts the ecological balance and worsens social conditions of people [5]. The scientifically grounded
and rational use of lands largely depends on the correct identification and establishment of the degree
or category of erosion of the soil cover and accurate accounting for their correct nomenclature and
classification. Thus, one of the most important tasks of this century is to ensure water and food security
through effective agricultural productivity and reduced soil erosion [6,7].

Currently, agriculture remains an essential sector of the economy of Central Asia, providing
5.2% of gross domestic product (GDP) in Kazakhstan, 7.5% in Turkmenistan, 18.5% in Uzbekistan,
20.8% in Kyrgyzstan and 23.3% in Tajikistan [8], which employs between 20–50% of the Central Asian
workforce [9]. Consequently, a better understanding of the impact of climate change on soil erosion
processes is also paramount to the economy of Central Asia.

It should be noted that in recent years, climatic conditions in the Central Asian countries have
changed owing to the reduction of glacier areas of the Tien Shan [10–12] and Pamir-Alay [13,14]
mountain systems in the south and the drying up of the Aral Sea [15,16] in the north. In this regard, the
shortage of water for irrigation, degraded natural vegetation covers, erosion processes and salinization
are on the rise, while the productive capacity of irrigated lands is decreasing [8]. Humanity faces
an urgent problem—the preservation of existing natural landscapes, which includes, improving and
multiplying its types.

Rainfall erosivity is associated with the influential kinetic energy of raindrops, which often
separates soil elements and transports them along with surface runoff [17]. Rainfall erosivity is the most
significant factor and offers conservation actions by models of soil erosion prediction [18]. The rainfall
erosivity (R) factor is usually adopted in soil erosion calculation models, such as the Universal Soil
Loss Equation (USLE) [19] and its revised version (RUSLE) [20]. Rainfall erosivity in USLE (RUSLE) is
defined as the long-term average product of total rainfall energy and maximum precipitation intensity
over 30 min (EI30) for storm events [19,20]. Data on the pluviograph for at least 20 years is required
to calculate the original rainfall erosivity [20]. However, such data (EI30) is not available in many
countries and regions, and the processing of this data is quite tedious and time-consuming [21,22].
This also applies to Central Asia, where precipitation data with good temporal coverage is still scarce.
However, numerous studies have established a statistical regression equation between R and variable
rainfall, such as annual rainfall [4,23–25]. More recently, there has been evidence of the influence of
climate change on rainfall erosivity in various parts of the globe [7,17,26–28].

Climate change is one of the most significant environmental issues of the 21st century [29,30].
Climate changes that are related to soil erosion mainly include changes in temperature and
precipitation [31]. Climate change may influence rainfall erosivity alteration in precipitation
patterns [17,32]. The characteristics of precipitation (amount of precipitation, its intensity and
spatial-temporal distribution) directly affect soil erosion [33]. Similarly, an increase in temperature
indirectly affects soil erosion [31]. The addition of water vapor to the atmosphere has an impact on
the nature of climate circulation, thereby altering the intensity, frequency of extreme precipitation [7].
In arid and semi-arid climates, such as in Central Asia, there will be a more significant increase in
temperature and rainfall events than in many other regions of the world [34,35].

The spatial and temporal projection of future rainfall erosivity in a changing climate in Central
Asia has not been studied. Thus, the objective of this paper is to predict the value of rainfall erosivity
and erosivity density in the 2030s and 2070s. We used WorldClim data [36] and the climate projections
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from four GCMs, Beijing Climate Center, Climate System Model 1.1 (BCCCSM1.1), Institut Pierre
Simon Laplace Model CM5A-LR (IPSLCM5ALR), Model for Interdisciplinary Research On Climate
version 5 (MIROC5), and the Max Planck Institute for Meteorology (MPIESMLR), with RCP2.6, and
RCP8.5 scenarios.

2. Materials and Methods

2.1. Study Area

Central Asia occupies a vast territory on the Asian continent and includes the Kyrgyz Republic,
the Republic of Tajikistan, the Republic of Turkmenistan, the Republic of Uzbekistan and the
Republic of Kazakhstan entirely [37]. These five countries cover an area of 4 million km2

(46◦45′28.13′′–87◦21′47.81′′ E, 35◦5′2.24′′–52◦33′30.49′′ N) [38], with a combined population of
65 million people [8]. The nations comprising Central Asia were once part of the Soviet Union.
In physical-geographical terms, the region is a separate natural-historical region, sharply differing
from adjacent areas by its natural conditions. All local types of Central Asian climates can be divided
into three types: (1) The climate of the temperate zone, (2) climates of the dry subtropical zone and (3)
the mountain climates of Tien Shan, Pamir-Alai, Pamir and Kopetdag with a well-marked altitudinal
zonation [37]. Average annual precipitation in Central Asia is 254 mm, the minimum is 66 mm, and the
maximum is 1222 mm (Figure 1a), elevation ranges from −229 to up to 7447 m (Figure 1b). Significant
differences in the height of parts of this territory—from the areas lying below the ocean level to the
highest mountain peaks—make here variety of climate and landscape forms. Having a long and
orographically complex territory with extensive lowlands and highest mountain elevations in the
south, southeast, Central Asia is characterized by a variety of climatic conditions. The climate of
Central Asia is distinguished by a high continentality, marked by a great amplitude of fluctuations in
air temperature and a meagre amount of precipitation [37].Water 2019, 11, x FOR PEER REVIEW 4 of 17 
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Figure 1. Study area: (a) Mean annual precipitation from WorldClim and (b) elevation from Shuttle
Radar Topography Mission Digital Elevation Model (SRTM DEM, 90 m).
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2.2. Climate Data

Compared to the Coupled Model Intercomparison Project Phase 3 (CMIP3), CMIP5 is a notable
improvement because it uses a new set of emission scenarios called RCPs [17,39]. Projected precipitation
data from GCMs BCCCSM1-1, IPSLCM5ALR, MIROC5, and MPIESMLR for the RCP2.6 and RCP8.5
greenhouse emission scenarios were used [39] (Table 1; Figure 2). The GCMs were selected because
of their relative independence, good performance in precipitation simulation for Central Asia [40]
and Tibetan Plateau [33]. Global precipitation with 1 km2 horizontal resolution was obtained from
the WorldClim database [36]. In assessing future changes in the erosion of rainfall and possible
consequences, the predicted rainfall data for the “near” (2020–2049) and “far” future (2060–2089)
have been retrieved from the Climate Change Agriculture and Food Security (CCAFS, http://www.
ccafs-climate.org) portal. The data were statistically downscaled to 1 km2 horizontal resolution
using the delta method [41], based on the sum of interpolated anomalies to high-resolution monthly
climate surfaces from WorldClim [36]. These anomalies were then interpolated using thin plate spline
interpolation [41]. These datasets were used as input data for this study.
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Table 1. Global Climate Models (GCMs), from the Climate Change Agriculture and Food Security
(CCAFS, http://www.ccafs-climate.org) portal.

Model Institute Country Resolution

BCCCSM-1.1 Beijing Climate Center, Climate System Model 1.1 China ~2.8125◦ × 2.8125◦

IPSLCM5ALR Institut Pierre Simon Laplace Model, New
Atmospheric Physic at Low Resolution France 3.75◦ × ~1.9◦

MIROC-5 Model for Interdisciplinary Research On Climate Japan 1.4◦ × 1.4◦

MPIESMLR Max Plank Institute for Meteorology Germany 1.875◦ × ~1.9◦

2.3. Estimation of Rainfall Erosivity

In this paper, the rainfall erosivity (R) factor from the RUSLE model was chosen to estimate
the changes in rainfall erosivity. Rainfall erosivity was calculated using the precipitation values of
gridded GCMs, comparing it with WorldClim data. [19,20] described the original method of calculating
erosivity as:

R =
1
n

n∑
j=1

m j∑
k=1

(EI30)k, (1)

http://www.ccafs-climate.org
http://www.ccafs-climate.org
http://www.ccafs-climate.org
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where R is the mean annual rainfall erosivity (MJ mm ha−1 h−1 year−1), n is the number of years of
data, m j is the number of erosive events in the j year and EI30 is the rainfall erosivity index of a storm k.
The event’s rainfall erosivity index EI30 is defined as:

EI30 = I30(
m∑

r=1

ervr) (2)

where er is the unit rainfall energy (MJ ha−1) and vr is the rainfall depth (mm) during a time period r.
I30 is the maximum rainfall intensity during a 30 min period of the rainfall event (mm h−1).

er = 0.29[1− 0.072exp(−0.05ir)] (3)

where ir is the rainfall intensity during the period (mm h−1).
The information needed to calculate the R factor using the proposed method is usually difficult to

obtain in many parts of the world. Therefore, various studies have been conducted to derive regression
equations for the derivation of R factor. These simplified methods offer exceptional ease of studying the
spatial and temporal variability of rainfall erosivity. Researchers [23] proposed the following equations
for estimating the R factor using annual precipitation or Modified Fournier Index (MFI) in the absence
of data on rainfall intensity for a particular site:

R = 0.04830× P1.61, where P < 850 mm (4)

R = 587.8− 1.219× P2 , where P ≥ 850 mm (5)

where R is rainfall erosivity factor (MJ mm ha−1 h−1 year−1), P is the average mean annual precipitation.

R = 0.7397MFI1.847, where MFI < 55 mm (6)

R = 95.77− 6.081MFI + 0.4770MFI2, where MFI ≥ 55 mm (7)

where R is the rainfall erosivity (MJ mm ha−1 h−1 year−1). MFI is Modified Fournier Index, given
below [42,43].

MFI =
12∑

i=1

pi

P
(8)

where P is annual precipitation (mm), and pi is the monthly rainfall.
In this study, rainfall erosivity has been determined using the average annual precipitation,

Equations (4) and (5). We used these equations because they were widely used in other similar
studies [4,17]. The data used to derive R factor are gridded WorldClim data of precipitation and
the GCMs.

2.4. Annual Erosivity Density Ratio

According to Kinnell [44], the erosivity density coefficient is the ratio of rainfall erosivity (R) factor
to precipitation. In practice, it measures the erosivity per unit of precipitation (mm) and is expressed
as MJ ha−1 h−1 (9).

ED =
R
P

(9)

where ED is the erosivity density, R is the average annual rainfall erosivity and P is the average
annual precipitation.



Water 2019, 11, 897 6 of 16

2.5. Model Evaluation Rainfall Erosivity

To evaluate the R factor of the baseline output, we made use of precipitation data from Central
Asia temperature and precipitation (CATP) data (1879–2003), version 1 from the National Snow and
Ice Data Center (NSIDC) [45]. This dataset contains monthly climatic data. The performance of the
rainfall erosivity model was assessed by comparing the rainfall erosivity of observation data (from 269
meteorological stations) with that of the baseline data using coefficient of determination (R2), root mean
squared error (RMSE) and Nash–Sutcliff Efficiency (NSE) [46] Equations (10), (11) and (12) respectively.

R2 = 1−


∑n

i=1

(
Ymod

i −Yobs
i

)2

∑n
i=1

(
Ymod

i −Yobs
i

)2
+

∑n
i=1

(
Ymod

i −Ymean
i

)2

 (10)

RMSE =

√∑n
i=1

(
Yobs

i −Ymod
i

)2

n
(11)

NSE = 1−


∑n

i=1

(
Yobs

i −Ymod
i

)2

∑n
i=1

(
Yobs

i −Ymean
i

)2

 (12)

where Ymod
i is the baseline rainfall erosivity, Yobs

i is the observed rainfall erosivity and Ymean
i is the mean

of observed and baseline rainfall erosivity.

3. Results

3.1. Rainfall Erosivity Under Baseline and Projected Climate

The WorldClim (baseline) and observation precipitation were statistically compared. The correlation
coefficient of about 0.91 was found between the baseline and observed average monthly precipitation.
The average annual rainfall erosivity for observation data ranges from 71.7–2390.3 MJ mm ha−1 h−1

year−1 with mean 497.8 MJ mm ha−1 h−1 year−1 and standard deviation 359 MJ mm ha−1 h−1 year−1.
While baseline data shows the range of rainfall erosivity to be 95–1838.9 MJ mm ha−1 h−1 year−1 with
mean and standard deviation 476.8 and 267.1 MJ mm ha−1 h−1 year−1, respectively. In comparison,
the baseline and observed rainfall erosivity produced 0.81, 156.7 MJ mm ha−1 h−1 year−1 and 0.60 for
R2, RMSE and NSE, respectively. This represents a good model performance. Figure 3 illustrates the
evaluation of rainfall erosivity of both observation and baseline estimates.
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The highest annual R factor was found in the southeastern part of Central Asia, with moderate
values in the northern regions, but decreased westwards, where the lowest values were recorded.
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On the other hand, the values gradually increased towards Tajikistan but reduced in the western parts
occupied by Turkmenistan. The spatial distribution of the R factor constantly varied concerning annual
precipitation in Central Asia. The estimated average annual rainfall erosivity for the baseline period
ranges from 41 MJ mm ha−1 h−1 year−1 to 4510 MJ mm ha−1 h−1 year−1, in the west and southeast,
respectively (Figure 4a).

The MIROC5 RCP2.6 and 8.5 show higher rainfall erosivity, perhaps due to the strongly projected
spatial difference in rainfall with these scenarios. In all the GCMs and baseline precipitation, the R factor
in Tajikistan, Kyrgyzstan, east Uzbekistan, and east Kazakhstan is higher but lower in Turkmenistan,
northwest Uzbekistan, southwest and central Kazakhstan (Figure 5). Also, Figure 6 shows the relative
difference between the four projected scenarios and the baseline.Water 2019, 11, x FOR PEER REVIEW 8 of 17 
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Table 2 presents the effects of rainfall on historical and projected rainfall erosivity and erosivity
density in Central Asia. GCM ensembles show that rainfall erosivity increases from the baseline in all
ensembles, except BCCCSM1.1-8.5 in 2070s and IPSLCM5ALR both RCPs (2030 and 2070). The average
value of all scenarios shows that precipitation increased in the 2030s to 262 mm and 2070s to 268 mm,
from the baseline (254 mm). Nevertheless, MIROC5 (the 2030s and 2070s, both RCP) predicted a higher
increase in precipitation than other models with similar scenarios and periods.

Table 2. Changes in average rainfall erosivity and erosivity density under climate change across
Central Asia.

Climate Models Precipitation Rainfall Erosivity
(MJ mm ha−1 h−1 year−1)

Change (%) Erosivity
Density Change (%)

Baseline 253.57 402.07 0.0 1.38 0.0

2030s

BCCCSM1.1-2.6 263.5 430.01 6.95 1.41 2.2
BCCCSM1.1-8.5 267.12 437.07 8.7 1.42 2.9

IPSLCM5ALR-2.6 247.31 386.65 −3.84 1.36 −1.4
IPSLCM5ALR-8.5 246.48 386.37 −3.9 1.35 −2.2

MIROC5-2.6 266.4 439.64 9.34 1.42 2.9
MIROC5-8.5 283.19 481.98 19.87 1.47 6.5

MPIESMLR-2.6 254.36 404.09 0.5 1.38 0.0
MPIESMLR-8.5 263.94 430.14 6.98 1.41 2.2

Average 261.54 424.49 5.58 1.4 1.6



Water 2019, 11, 897 8 of 16

Table 2. Cont.

Climate Models Precipitation Rainfall Erosivity
(MJ mm ha−1 h−1 year−1)

Change (%) Erosivity
Density Change (%)

2070s

BCCCSM1.1-2.6 273.95 450.35 12.01 1.45 5.1
BCC-CSM1.1-8.5 268.61 437.77 8.88 1.43 3.6
IPSLCM5ALR-2.6 248.82 391.22 −2.7 1.36 −1.4
IPSLCM5ALR-8.5 243.9 381.36 −5.15 1.34 −2.9

MIROC5-2.6 270.33 449.88 11.89 1.43 3.6
MIROC5-8.5 294.11 508.85 26.56 1.51 9.4

MPIESMLR-2.6 278.9 469.3 16.72 1.46 5.8
MPIESMLR-8.5 267.4 435.84 8.4 1.42 2.9

Average 268.25 440.57 9.58 1.43 3.3

Precipitation, erosivity and density differ accordingly given that the GCMs exhibited consistent
variations as shown in Table 2. Although average precipitation and rainfall erosivity demonstrate a
steady increase in all the GCMs in combination with the baseline precipitation output, IPSLCM5ALR
however shows a decline in average precipitation and erosivity in both periods.

3.2. Rainfall Erosivity at the National Level

In the baseline period, Kyrgyzstan had an estimated average rainfall erosivity of
869.7 MJ mm ha−1 h−1 year−1. The MIROC5 and MPIESMLR scenarios (RCP2.6 and RCP8.5),
respectively project an increase in the mean rainfall erosivity ranged from 27.9–50.1% and from 0.9–27%.
The BCCCSM1.1 scenarios also projected a mean increase of 6.3% for all periods and a decrease (−7.8%)
for the BCCCSM1.1-8.5 in the 2070s.
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In Kazakhstan, we calculated the mean values of rainfall erosivity of 374.3 MJ mm ha−1 h−1 year−1

during the baseline period. From MIROC5, BCCCSM1.1 and MPIESMLR (both scenarios), we noted
an increase of 5.3% to 27.3%, 11.6% to 23.2 and 0.6% to 15.7%, respectively, in mean rainfall erosivity in
this country with a slight increase in the northern part and a substantial increase in the eastern part of
this country. We also found results using IPSLCM5ALR for both scenarios, with decreases ranging
from −0.3% to 1.6%, except RCP8.5 (the 2070s) with an increase of 1.5%.Water 2019, 11, x FOR PEER REVIEW 10 of 17 
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The average rainfall erosivity in Turkmenistan for the baseline period was 188.4 MJ mm ha−1 h−1

year−1. This country has the lowest rainfall erosivity among all Central Asian countries. The ensemble
scenarios of IPSLCM5ALR and BCCCSM1.1 (RCP2.6 and RCP8.5) predict decrease from −10.1% to
−19%, and from −7.1% to −16% respectively. However, BCCCSM1.1-2.6 (2070s) predicts about 10.5%
increase in rainfall erosivity. The MPIESMLR and MIROC5 results indicate changes from 2.3% to 14.3,
and from 3.7% to 19.6%, while MIROC5-2.6 (2070s) decreased (−4.7%) during the two-time slices for
the two emission scenarios.

For Tajikistan, an average rainfall erosivity of 1447.7 MJ mm ha−1 h−1 year−1 in the baseline period
was revealed. The increase was observed in the MIROC5 and MPIESMLR scenarios thereby, indicating
the highest rainfall erosivity in the study area. However, there is also a decrease in the average
rainfall erosivity in this country for IPSLCM5ALR (both scenarios and both periods), BCCCSM1.1-8.5
(both periods) and MPIESMLR-2.6 (the 2030s) compared to the baseline. For both scenarios, MIROC5
projected increases in erosivity from 34.3% to 56.3%. IPSLCM5ALR estimated decreases from −8.2% to
−26.2%.
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Uzbekistan had an average baseline rainfall erosivity of 282.1 MJ mm ha−1 h−1 year−1. The MIROC5
scenarios (RCP2.6 and RCP8.5) projected an average increase ranging from 2.1–24.1%. The MPIESMLR
projected a mean increase ranging from 7–15.3%, except for a decrease of −2.7% for the RCP2.6
(the 2030s). IPSLCM5ALR projected decreases in the mean annual rainfall erosivity from −7.7% to
28.2%. In general, all scenarios estimated an increase and decrease in rainfall erosivity over Uzbekistan
(Table 3). Our result (<280 MJ mm ha−1 h−1 year−1) is comparable with [18], which reported low
average erosivity values (<250 MJ mm ha−1 h−1 year−1) in Kazakhstan, Turkmenistan, and Uzbekistan.

Table 3. Rainfall erosivity in Central Asia by country. Mean baseline and estimated (MJ mm ha−1 h−1

year−1) by BCCCSM1.1, IPSLCM5ALR, MIROC5 and MPIESMLR with RCP2.6 and RCP8.5 emission
scenarios models. Projected change to baseline (%).

KGZ KZT TJK TKM UZB

Baseline (1961–1990) 869.7 374.3 1447.7 188.4 282.1

RCP2.6 (2030s)

BCCCSM-1.1 903.8 420.3 1395.9 167.7 258
Change, % 6.3 11.6 0.4 −10.1 −8.1

IPSLCM5ALR 744.1 377.5 1290.8 164.7 240.5
Change, % −17.2 −0.3 −11 −11.2 −11.9
MIROC5 1057 400.6 1697.1 196.9 295.6

Change, % 27.9 5.3 36.9 3.7 2.1
MPIESMLR 870.1 380.8 1388.3 191.2 272.5
Change, % 0.9 0.6 −2.2 2.3 -2.7

RCP2.6 (2070s)

BCCCSM-1.1 910 436.2 1450.2 200.9 291.9
Change, % 6.3 17.7 3.8 10.5 9

IPSLCM5ALR 769 375.1 1350.5 172.9 263.4
Change, % −14.5 −1.5 −8.2 −7.1 −7.7
MIROC5 1062.6 416.8 1699.9 179.9 297

Change, % 28.8 9.8 34.3 -4.7 2.4
MPIESMLR 1081.9 432.5 1702.5 216.9 329
Change, % 27 15.7 24.5 14.3 15.3

RCP8.5 (2030s)

BCCCSM-1.1 909.6 430.9 1386.2 165 256.6
Change, % 6.3 14.9 −5.7 −11.1 −10

IPSLCM5ALR 736.4 380.2 1254.8 171 227.6
Change, % −17.4 −1.6 −15.4 −7.3 −17.7
MIROC5 1216.8 435.9 1818.4 212 336.9

Change, % 49.7 17 51.3 13.5 19.4
MPIESMLR 1041.7 385.2 1664.4 202.8 320
Change, % 22 4.6 20.8 8.8 14.5

RCP8.5 (2070s)

BCCCSM-1.1 794 456.8 1150.6 146.9 228.4
Change, % −7.8 23.2 −26.3 −19 −17.7

IPSLCM5ALR 581.3 400 1082 154.2 182.8
Change, % −35.5 1.5 −26.2 −16.7 −28.2
MIROC5 1224.1 473.1 1800.4 215.3 340

Change, % 50.1 27.3 56.3 19.6 24.1
MPIESMLR 988 409.6 1484.7 195.4 294.5
Change, % 15.7 11.1 9 7.6 7

KGZ-Kyrgyzstan, KZT-Kazakhstan, TJK-Tajikistan, TKM-Turkmenistan, UZB-Uzbekistan.

3.3. Annual Erosivity Density

Separately projected annual erosivity results (Figure 5) are divided by a corresponding average
rainfall data to derive average erosivity density ratio. Density values of erosivity above 1 suggest
that a certain amount of precipitation may lead to relatively higher rainfall erosivity [47]. The annual
erosivity density for baseline period has a mean value of 1.38 MJ ha−1 h−1, with variability ranging
from 0.62–3.69 MJ ha−1 h−1 (Figure 4b). The projected variation of erosivity density is also very high as
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the MIROC5-8.5 has the highest mean erosivity density with 1.47 and 1.51 MJ ha−1 h−1 in the 2030s
and 2070s, respectively. Followed by MPIESMLR-2.6 with 1.46 MJ ha−1 h−1 in 2070s, BCCCSM1.1-2.6
and BCCCSM1.1-8.5 with 1.45 and 1.43 in 2070s. However, IPSLCM5ALR-2.6 and IPSLCM5ALR-8.5
(both periods) have the lowest mean erosivity density with an average of 1.35 MJ ha−1 h−1 (Table 2;
Figures 7 and 8).
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4. Discussion

The influence of climate change on rainfall erosivity is expressed by variations in total precipitation,
as shown in the result section. The Tien Shan, Pamir-Alay and Pamir mountains experience more
torrential rainfall compared to the surrounding low-lying deserts. Changes in precipitation mainly
depend on changes in the water content in the atmosphere, which is transferred from the oceans to the
earth through large-scale atmospheric circulation [40]. Atmospheric circulation over Central Asia is
characterized by the predominance of the west-east transfer of air masses when the main moisture
that gives precipitation comes from the North Atlantic Ocean [37,48–50]. Most of the low-latitude
region (40◦ N) is marked by low-pressure anomalies [50]. As the air masses move from the Atlantic
Ocean, they lose moisture to become dry air mass as they approach the territory—causing little or
no precipitation in summer [37]. El Niño Southern Oscillation (ENSO) has affected precipitation
changes over the arid regions of Central Asia by the southwestward flow of water vapor coming from
the Arabian Sea and tropical Africa [48,49,51]. ENSO-induced precipitation is related to large-scale
atmospheric circulation changes caused by sea surface temperature (SST) [52]. Previous studies have
shown that changes in SST have a significant impact on the transport of water vapor from the oceans
to land [40,53]. The main feature in the distribution of precipitation in Central Asia is their small
annual amount of the lower part of the territory, resulting in vast deserts. At the same time, on the
shores of the Caspian Sea, and especially Balkhash Lake, precipitation is generally low. Only in the
mountains—on the outer windward slopes, where the air masses experience a forced rise, resulting
to cooling, reaching a state of saturation—does the orographic increase in precipitation occur 3–5
times or more compared to the surrounding deserts [37]. This fact explains the spatial distribution of
precipitation in Central Asia and, in turn, may clarify why some parts have higher erosion than other
parts. This results in precipitation variability that consequently influences erosion.

As stated by [17], erosion will be affected by changes in precipitation patterns and quantities
due to climate change. Studies in the Eurasian continent predicted a significant increase or decrease
in erosivity for the future climate. For example, [26] found that 81% of the territory in Europe is
projected to have an increase in rainfall erosivity and 19% rainfall erosivity projected to decrease by
2050 (HadGEM2, RCP4.5 scenario). Likewise, however, our study predicts some spatial variability
in erosivity for Central Asia concerning the anthropogenic influence on the amount of precipitation
based on different GCMs (Tables 2 and 3, Figures 5, 6 and 8).

Also, the dynamic influence of climate change on soil erosion is another essential factor that is
uncertain; however, it may depend on the interacting impacts of the associated factors. Nonetheless,
future soil erosion rates are expected to increase due to increased precipitation and rainfall erosivity.
Moreover, this has been confirmed in other prediction studies (e.g., [17,27,28,54]), an increase in
precipitation and intensity will significantly impact soil erosion rates. The highest percentage of rainfall
erosivity occurs in medium and high regions of Tajikistan, Kyrgyzstan, Eastern Uzbekistan, and East
Kazakhstan. Besides, this suggests that there will be more occasions for soil losses at medium and high
altitudes than has ever been experienced in the past. Consequently, high soil erosion may lead to high
sedimentation in rivers, lakes, and reservoirs, and these are critical for flooding and water pollution [4].
Small percent variations are usually expected in developed areas, which generally have gentle slopes
and less hilly areas. The variability of our results shows the disagreements in scenarios, periods and
climate models, but may also show persistent uncertainty in our models.

Preservation of fertile soils by agricultural lands, pastures, and forests is the primary condition for
the sustainable development of humanity. The possible increase in rainfall erosivity in Tajikistan and
Kyrgyzstan may affect a significant part of agricultural production in Central Asia due to increased
soil loss and reduced soil fertility and water availability. On the other hand, a reduction in the
rainfall erosivity over Turkmenistan and western Uzbekistan can strengthen the trend of agricultural
development in these areas. However, climate change can significantly affect land cover, which can
balance or reinforce some erosion trends. To predict future soil erosion trends, these feedbacks between
precipitation and land cover should be evaluated.
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5. Conclusions

In this research, we estimated the potential influence of climate change on rainfall erosivity and
erosivity density in Central Asia using baseline data (1960–1990) and projected precipitation data
(2020–2049 and 2060–2089). The projected precipitation was taken from the downscaled data of four
GCM, BCCCSM1.1, IPSLCM5ALR, MIROC5, and MPIESMLR, based on two scenarios, RCP2.6, and
RCP8.5. The mean erosion of rainfall in Central Asia was calculated and compared with climate
scenario predictions. The mean rainfall erosivity within the baseline period was 497.8 MJ mm ha−1

h−1 year−1, as compared to 476.8 MJ mm ha−1 h−1 year−1 from the observed rainfall data for 269
meteorological stations points. The Tajikistan and Kyrgyzstan are predicted to be the most affected
countries regarding rainfall erosivity. Increasing trends in annual rainfall erosivity from baseline
climate up to the GCMs and the climate scenarios experienced variations in rainfall erosivity. There
is a positive change in the average annual rainfall erosivity of 5.6% and 9.6% in the 2030s and 2070s
respectively compared to the baseline (1960–1990).

The BCCCSM1.1 scenarios projected both increases and decreases in mean rainfall erosivity in
Kyrgyzstan (−7.8% to 6.3%), Tajikistan (−26.3% to 3.8%), Turkmenistan (−19% to 10.5%), Uzbekistan
(−17.7% to 9%) and increases in Kazakhstan (11.6% to 23.2%). The IPSLCM5ALR scenarios project
decreases in mean rainfall erosivity in Kyrgyzstan (−14.5% to −35.5%), Tajikistan (−8.2% to −26.2%),
Turkmenistan (−7.1% to −16.7%), Uzbekistan (−7.7% to −28.2%) and both increases and decreases in
Kazakhstan (−1.6% to 1.5%). The MIROC5 scenarios project increases in Kyrgyzstan (27.9% to 50.1%),
Kazakhstan (5.3% to 27.3%), Tajikistan (34.3% to 56.3%), Uzbekistan (2.1% to 24.1%), and both increases
and decrease in Turkmenistan (−4.7% to 19.6%). The MPIESMLR scenarios project in mean rainfall
erosivity increases in Kyrgyzstan (0.9% to 27%), Kazakhstan (0.6% to 15.7%), Turkmenistan (2.3% to
14.3%) and both increases in decreases in Tajikistan (−2.2% to 24.4%), Uzbekistan (−2.7% to 15.3%).
The average values of erosion variations presented in this study are average changes in countries,
while within these countries we found both increases and decreases, which emphasize some spatial
variability of rainfall erosivity and soil erosion in Central Asia.

The aggregate average annual precipitation and erosion activity for all climate models for all
scenarios show steady growth compared with the baseline climate, only IPSLCM5ALR (RCP2.6 and
8.5) shows a decrease in the average erosivity for the 2030 and 2070 scenarios. Higher amounts of
rainfall were the main factor for the spatiotemporal variability in rainfall erosivity. Public policies
aimed at preserving soil and water resources should be encouraged and applied at the national land
survey level. Further study is required to consider other essential influences that intensify the erosivity;
particularly the future land cover changes.
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