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Abstract: Korea experienced an unexpected drought in the southern Seoul metropolitan area from
2015 to 2017. After that, the Korean government has been drafting various policies to mitigate
the effects of drought. However, these are primarily long-term drought policies, such as reservoir
expansion. A comprehensive water demand reduction policy, which considers both short-term and
long-term droughts, is also required. To confirm the effectiveness of the water pricing policy in Korea,
we estimated the water demand reduction volume during droughts by assuming the drought and
water pricing policy. We used two models for simulation: the severe drought area prediction (SDAP)
model and the SD (system dynamics) model. The results showed the water demand reduction by
price would not be significantly effective in Korea. We indicated that the effectiveness of policies
could differ in each situation so that appropriate policies are needed for each country. This discussion
could provide policy implications for other countries being at risk of droughts as well as the Korean
government. Furthermore, we discussed non-price water policies that could be implemented in
combination with the pricing policy in cases where the water pricing policy does not effectively
reduce water demand.

Keywords: water pricing; water demand reduction; machine learning; system dynamics; simulation;
drought mitigation

1. Introduction

Historically, Korea has been relatively rich in water supplies and has not had significant threats to
water supply in drought. However, the southern Seoul metropolitan area suffered from unprecedented
spring droughts during 2015–2017 [1,2]. The Korean government recognized the necessity for
developing drought mitigation policies after this drought and begun proposing new policies since
2018. The proposed policies are mainly targeted to long-term droughts preparation using facilities
such as dams and reservoirs to increase water supply [3].

Brears (2017) suggested that prior to planning to increase this water supply, improved water supply
could be achieved by reducing existing water demand [4]. These reductions could be accomplished
through the conservation of water by reducing usage derived from a water pricing system, setting
public water saving targets, and encouraging people to save water by changing their lifestyle [4].

When looking at California’s drought management policies that were implemented during a
drought they experienced in 2012–2016 [5], the state seems to have improved its existing water usage,
per Brears’s (2017) [4] suggestions. The California government mentioned that the water pricing policy
implemented in the last drought was an effective tool to reduce water demand and that it played an
important role in conserving water over the long and short-term as a result [6]. California’s successful
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policy for reduction by pricing of water demand provides a lesson [7] to Korea that existing water
usage should be changed. Water is not an endless resource; therefore water demand reduction policies
need to be implemented in addition to long-term policies that address increasing water supply [8,9].

However, In Korea, implementation of pricing policy for water demand reduction is challenging.
The effectiveness of water pricing policy in Korea has not been well known, and the water price
elasticity of demand in Korea has been quite different depending on the researchers, data, and models
used [10]. Not only was there a negative response from politicians regarding the attempt to research
water pricing policies [11] but Korean citizens are sensitive to raising water prices [10], even though the
water rates are comparatively cheaper [12]. The Korean government might have focused on long-term
drought mitigation, such as the water supply expansion, because of the difficulties of implementing a
pricing policy to reduce the water demand. Thus, Korea’s current drought mitigation policy is still
insufficient to considering both long and short-term drought by improving existing water usage.

In this regard, our study simulated the policy effect by assuming that the water price policy was
implemented during the spring drought in Korea. In particular, we have estimated the amount of
available emergency agricultural water derived from the reduction in residential water usage during
the drought period. To be specific, during the drought of Korea in 2015–2017, there was significant
damage to agriculture, while the use of residential water was inconvenienced a little. Most cities
worldwide do not face the risk of running out of the drinking water, but agriculture is not safe from the
effects of drought [8]. Agricultural droughts require immediate mitigation because the crop death or
stunted growth by the lack of water cannot be recover. Thus, the prompt water supply for agricultural
drought mitigation is important in a drought period.

This study investigated whether the policy of water usage regulation by price would be effective
in these severe drought areas in Korea. We predicted the severe agricultural drought area in the
region spatially and simulated the effects of water pricing policy using the severe drought area
prediction (SDAP) model [13] and the system dynamics (SD) model. The SDAP model was developed
by our previous research [13] based on machine learning (ML). ML can produce good prediction
performance based on big data; hence, it is already widely used as a means of prediction in many
fields. In addition, SD was developed by Jay W. Forrester, a professor at Massachusetts Institute of
Technology (MIT), [14] and is widely used in various fields, such as the military, politics, society,
economy, and environment [15]. The SD model, which is composed of several causal connections,
looks similar to the structural equation in that there are several independent and dependent variables.
However, unlike the structural equation, it includes the concept of time and loop, which allows human
behavior to be analyzed dynamically. Therefore, SD is a useful tool to analyze the effects of the policy
changes in advance [16].

Based on the results from these models, we discussed whether the water pricing policy is
appropriate to reduce water demand for drought mitigation in Korea, and the reason for the occurrence
of differences between the countries. In addition, we stated the water demand reduction policy using
the non-pricing that could be complemented when pricing policies were not effective.

2. Study Area and Data

2.1. Study Area

We conducted a case study in the southern Seoul metropolitan area in Korea, called Gyeonggi
Province. This study area is located between 36◦50′ N and 37◦35′ N latitudes and 126◦30′ E and
127◦35′ E longitudes (Figure 1), has been severely affected by unprecedented droughts during the
spring from 2015 to 2017.

The south Gyeonggi Province in Korea has an average annual precipitation of approximately
1300 mm. During the spring drought of the south Gyeonggi Province from 2015 to 2017, however,
the province only had 50% of the usual annual precipitation [2]. Accordingly, we simulated a policy of
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the water pricing effect in this southern Seoul metropolitan area on the assumption that there was a
drought in 2018 and that water rates were raised.
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Figure 1. Location of the study area.

2.2. Data

The data used in the SDAP model were the Landsat 8 images and the Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) with 30 m resolution downloaded from the USGS
EarthExplorer [17]. The programming language for analysis was Python 3.6.1 version for 64-bit
windows platform and the software for spatial data processing was ArcGIS pro.

The data used in SD model, the daily usage of water per person, water price, population,
and the information of the water source was referenced from My Water website [18] and Korean
Statistical Information Service (KOSIS) [1]. Policy simulation was conducted using Vensim PLE version
for Windows.

3. Methods

This study has the framework of two linked models, as shown in Figure 2, which is a structure
that simulates policy by SD model based on the result of SDAP model [13]. The SDAP model (Figure 3)
predicts the spatial distribution pattern of soil moisture after non-rainfall period using drought function
trained by random forest (RF) algorithm [13]. The SD model (Figure 4) estimates the amount of water
available to the provincial government by simulating the price increase policy for the drought-tolerant
areas predicted in the previous process. We estimate the effectiveness of the policy through the
estimated amount of water resources.

Similar to this, simulations method using linked two models (spatial information model and
simulation model) already exist [19], and this is continuously influenced by the internal parameters
between the two models connected to each other. In contrast, two models of our study are driven
independently like modules so that the parameters of the simulation model are adjusted sequentially
based on the predicted results from the spatial information model. Therefore, these models are easy
to understand and apply. In addition, it can be improved by model and be used separately for each
model depending on the purpose of use.
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3.1. SDAP Model: Prediction Drought Spatial Distribution

Agricultural drought was trained and predicted by the following concept [13]. The soil moisture
after non-rainfall periods remains different depending on the condition of the present land surface [20].
In this regard, we classified the land surface factors that affect the soil moisture into four categories:
vegetation, topographic, water, and thermal factors during the non-rainfall period [13]. Thermal
factors reduce soil moisture, whereas vegetation retards the loss of soil moisture by slowing down the
increase in land surface heat [21]. Topography is another important determinant of soil moisture [22].
The land initial conditions such as existing water-containing state are also related to the soil moisture
remaining after a drought period [20]. Thus, the present environmental conditions, such as these land
surface factors, being regressed on the soil moisture after the non-rainfall period will make enable the
short-term drought prediction of soil moisture.

Table 1 shows the 15 features (variables) that correspond to four land surface factor. These 15
features are regressed on the soil moisture index (SMI) of three months later of no precipitation and it
is the input variables for the RF regression [13].

Table 1. Variables of the SDAP model for prediction severe drought area.

Land Surface Factors Input Variables Formula or Description References

Vegetation

Enhanced vegetation index (EVI) 2.5 × ((NIR − Red)/(NIR + 6.0 ×
Red − 7.5 × Blue + 1) [23–25]

Normalized difference
vegetation index (NDVI) (NIR − Red)/(NIR − Red) [24–26]

Soil-adjusted vegetation index (SAVI) ((NIR − Red)/(NIR − Red + B))
× (1 + 0.5) [24,25,27]

Modified soil-adjusted
vegetation Index (MSAVI)

(2 × NIR + 1 − sqrt((2 × NIR +
1)2
− 8 × (NIR − Red)))/2 [25,28]

Topography
Topographic wetness index (TWI) Ln (α/tan β) 1 [29]

Slope Degree of slope [30,31]

Aspect Degree of aspect [30,32]

Water

Normalized difference
moisture index (NDMI) (NIR − SWIR1)/(NIR + SWIR1) [25,33]

Modification of normalized difference
water index (MNDWI)

(Green − SWIR1)/(Green +
SWIR1) [34]

Moisture stress index (MSI) MidIR/NIR [35]

Thermal

Near infrared (NIR) 0.851–0.879 µm [36]

Short-wavelength infrared 1 (SWIR1) 1.566–1.651 µm [36]

Short-wavelength infrared 2 (SWIR2) 2.107–2.294 µm [36]

Thermal infrared sensor 1 (TIRS1) 10.60–11.19 µm [36]

Thermal infrared sensor 2 (TIRS2) 11.50–12.51 µm [36]
1 Where α is upslope area per unit contour length (m) which calculated as (flow accumulation + 1) × (cell size); β is
the slope expressed in radians.

The RF algorithm that produces the drought function (hereafter f (x)) for predicting the SMI is
one of the machine learning methods developed by Breiman [37]. The f (x) was trained the actual
drought that occurred in 2017 in this region, from March 23 to June 23 (approximately three months).
We verified the f (x) in our previous study. The training performance of f (x) was R2 = 0.91 and it can
predict the SMI of the same period drought in the other year as R2 = 0.58. Additionally, this f (x) is
characterized by the fact that the closer the drought is from the selected training area to be trained,
the higher is the accuracy, and the f (x) should be separately generated for each region and period. We
predicted the soil moisture index of 26 June 2018 using the 15 features of 22 March 2018 and the f (x).

The SMI from Sandholt et al. [38] was used as an output variable (target variable) for RF regression,
which is suitable for representing soil moisture during the growing season of crops [35] since this
index includes a vegetation index. Thus, the SMI is effective at predicting agricultural drought in the
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spring-summer period, which is the season examined in this study. For reference, this SMI has a real
value between 0 and 1 and is most correlated with soil moisture at 20 cm soil depth [35].

We performed the following procedure to obtain a smooth SMI map, the final the severe drought
area prediction map, after a non-rainfall period. Within the study area, 400,000 random points were
generated and then the SMI value was inserted at the points. Subsequently, predicted agricultural
drought maps were generated by the interpolation (natural neighbor) of all the points.

3.2. SD Model: Simulation of Increased Water Price Policy Implementation

Based on the predicted agricultural drought distribution map for the three months after the
above analysis, we identified drought-critical areas. Then, we identified a water source that supplies
water to the severe drought area and then found an administrative area used this water source jointly.
The hypothetical policy simulated in this analysis applies to severe drought areas and collective-use
residents temporarily in a three-month drought period. In a similar concept, in 2015, the California
government announced that it must reduce water use by 25% in cities and towns of the severe drought
area during the drought period [39,40].

To design a simulation model of a policy, it is preferable to create a causal map that can represent
the causal relationship between the policy and changes in human behavior caused by the policy.
Based on this causal map, the model is transformed into a model that can be simulated by entering
a formula with variables and constants. These variables may be cumulative or contain constants.
Figure 4 illustrates the process, which includes variables, where price increases result in the reduction
of water usage. The definitions of SD model variables for the simulation are listed in Table 2.

Table 2. Variables of the SD model for policy simulation.

Variable Type Equation

Daily water usage per person Level water usage per day + (-) water saving effort
initial value = 48.60 gallon 1

Monthly water usage per person 2 Auxiliary water usage per day × 30 days × 0.003785

Billing Auxiliary fixed fee + (monthly water usage × billing rate)

Billing rate Constant Base = 0.92, Plan 1 = 1.10, Plan 2 = 1.28,
Plan 3 = 1.46 (Unit: USD/m3)

Fixed fee Constant 1.50 USD

Recognition of increase water price Auxiliary whether (desired billing < current billing)

Desired billing 3 Constant 6.63 USD/person per month

Price elasticity of water demand Constant −0.175

Water saving effort Auxiliary
4 the water demand changes rate (%) ×water

usage per day

Population 5 Constant 7,969,432

Monthly water usage per local Auxiliary Monthly Water Usage per person × Population
1 Average water usage per day in Korea [18]; 2 where 0.003785 is unit conversion (gallon to m3). Water fee is charged
per m3; 3 existing monthly billing price; 4 water demand changes rate = water price changes rate (%) × the price
elasticity of water demand; 5 severe drought area population + water source sharing area population.

The price elasticity of demand was primarily used to show the change in water usage caused by
price fluctuations; it is calculated as follows:

Price elasticity of demand =
dQ/Q
dP/P

(1)

where Q is the quantity of the demanded good and P is the price of the demanded good.
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The price elasticity of demand for residential water is between −0.156 and −0.189 [10] in Korea,
and we used the median value of −0.175 for this study. In addition to the average water rate for each
municipality, the water rate used for the simulation was composed of the water billing based on a
fixed fee and the usage rate.

We have assumed three policies based on increased water price. The base rate is 0.92 USD/m3,
which is the same as the current rate. Plan 1 was increased by 120% from the base rate to 1.10 USD/m3;
Plan 2 was increased by 140% to 1.28 USD/m3; and Plan 3 was increased by 160% 1.46 USD/m3. We then
ascertained the amount of water saved for the three-month period by changing the individual water
use of each plan. In particular, in Table 2, the desired billing implies the desire that the water billing
will return to the previous level, thus the desired billing is calculated using the base rate.

We used the system dynamics model to simulate the amount of water used and the amount of
water acquired for six months in advance for each rate plan. Ultimately, we want to identify water
conservation and, specifically, water conservation in the three months following the drought.

4. Results

4.1. Predicted Agricultural Drought Severity Areas

As a result of applying the SDAP model, we found four potential severe drought area and have
confirmed that five farmland areas within the study area had a lower SMI than other areas, excluding
the impervious areas (dark gray section in Figure 5). Following this, four water sources that are used
in the four predicted agricultural drought severity areas (five administrative districts) were identified.
The water sources are shared by nine administrative districts, including the four severe drought
areas [18].
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Figure 5. Predicted agricultural drought map (excluding for the impervious areas) after non-rainfall
during the three-month period from 22 March 2018 to 26 June 2018.

4.2. Simulation of Water Pricing Policy Effect

When water price increase policies were implemented in the nine administrative districts during
drought periods, the resulting individual water usage and the amount of water available for local
governments are as shown in Figure 6. The effects in daily water usage began to appear three months
after the implementation of the policy and thus little effect was observed during the period when water
to be used for drought mitigation needed to be secured.
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Figure 6. Changes in the amount of the water demand by increased water rate.

Table 3 shows how much water was secured each month after the plan had been implemented. It
is expected that the amount of water to be secured during the three months of drought period will be
considerably low and will not be an effective way to control water demand.

Table 3. Quantity of available water for drought mitigation.

Policy (Unit:
Gallon) One Month Two Months Three Months Cumulative

Amount

Plan 1 0 63,290 253,160 316,450
Plan 2 63,290 189,870 443,030 696,190
Plan 3 63,290 316,450 822,771 1,202,511

5. Discussion

5.1. Effectiveness of Water Demand Reduction Policy Price in Korea

Korea needs an effective policy to restrict water demand that can be implemented quickly during
drought periods. However, our simulation results show that the water demand control policy based
on water price increase during the 2015–2017 drought would not have been effective in Korea. This
result also supports other studies that have shown that the price elasticity of water is inelastic in Korea
and very high water rate is required to manage water demand [10]. Thus, if the policy to reduce water
usage is based on only water price, it would not be effective in Korea.

We considered that the different outcomes were not only due to differences in the amount of water
resources in each country, but also owing to culture differences in the water rate recognition and water
use. For instance, most Koreans are reluctant to increase water rates [10] even though the water price
is cheaper than in other countries [12]. Therefore, drought mitigation and water demand reduction
policies must be developed considering the specific factors and situations within a region or country
and not based solely on a policy’s success elsewhere. While the water pricing is one of many ways to
reduce water demand, it is not the only solution. For example, in California, a considerable amount of

Figure 6. Changes in the amount of the water demand by increased water rate.

Table 3 shows how much water was secured each month after the plan had been implemented.
It is expected that the amount of water to be secured during the three months of drought period will be
considerably low and will not be an effective way to control water demand.

Table 3. Quantity of available water for drought mitigation.

Policy (Unit: Gallon) One Month Two Months Three Months Cumulative Amount

Plan 1 0 63,290 253,160 316,450
Plan 2 63,290 189,870 443,030 696,190
Plan 3 63,290 316,450 822,771 1,202,511

5. Discussion

5.1. Effectiveness of Water Demand Reduction Policy Price in Korea

Korea needs an effective policy to restrict water demand that can be implemented quickly during
drought periods. However, our simulation results show that the water demand control policy based on
water price increase during the 2015–2017 drought would not have been effective in Korea. This result
also supports other studies that have shown that the price elasticity of water is inelastic in Korea and
very high water rate is required to manage water demand [10]. Thus, if the policy to reduce water
usage is based on only water price, it would not be effective in Korea.

We considered that the different outcomes were not only due to differences in the amount of water
resources in each country, but also owing to culture differences in the water rate recognition and water
use. For instance, most Koreans are reluctant to increase water rates [10] even though the water price
is cheaper than in other countries [12]. Therefore, drought mitigation and water demand reduction
policies must be developed considering the specific factors and situations within a region or country
and not based solely on a policy’s success elsewhere. While the water pricing is one of many ways to
reduce water demand, it is not the only solution. For example, in California, a considerable amount of
water is utilized for watering residential lawns. The California government, therefore, attempted to
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reduce the water use of individuals by restricting this activity, which resulted in a significant water
use reduction [7]. In contrast, in Korea, there are not many houses with lawns. Thus, restricting this
activity in Korea would not be effective. It would be more effective to reduce the demand of water,
which is used indiscriminately in everyday life such as for showers, car washes, and dishwashing,
because of the low water price.

A variety of results have been found after examining other studies about the effectiveness of
pricing for reducing water demand. While some studies showed that water pricing is not effective at
all [41], there are also opposing studies that showed it was effective [42]. In addition, there are several
studies with the neutral position that the pricing policy is not completely ineffective, but only effective
in a short period of time [43].

Our research aimed at confirming the effectiveness of water pricing policy in Korea to secure
emergency agricultural water. During this process, we found a difference in the supply method
of agricultural water between Korea and California. While Korea uses the direct water supply to
the drought area, California supported the water indirectly. For example, in Korea, the residential
water is used directly as emergency agricultural water during a severe drought. Korea is attempting
to introduce the concept as the ‘Smart Water Grid’ to develop a system for managing and sharing
water to support areas with water scarcity. Similarly, Singapore already operates an integrated water
management system [44]. In contrast, California indirectly supported agricultural water by excluding
agriculture from water regulations. The water demand reduction regulations of 25% only applied to
residential, industrial and commercial water use [5,7,39]. Thus, depending on the circumstances of the
region and country, both the water demand reduction method for drought mitigation and the water
supply methods can vary. Therefore, in regions and countries facing a drought crisis, appropriate
water demand reduction policies should be designed to fit the circumstance of each country using
simulations considering both price and non-price policies.

5.2. Non-Price Policy for Water Demand Reduction

In Korea, the non-price policies should be implemented with high-level water pricing to achieve
effective water demand reduction [10]. There are some related studies on the effectiveness of non-price
factors for controlling water demand to support this view. For example, one study showed that
water use can be reduced by simply increasing the frequency of water bills without a price control
policy [45]. Another study found that the non-price method for reducing water demand, such as
water-saving campaigns in times of drought or water-saving equipment for showers and toilets,
can also be effective [12].

The use of system dynamics techniques, including human dynamics by policy, can be repeatedly
verified and tested against policies that have never been implemented, thus helping to develop policies
tailored to each country’s circumstances. In addition, the results of the analysis can be used as a
resource for public consensus for the implementation of amicable policies. Furthermore, in Korea,
SD can be used to simulate and repeatedly revise policies that include both price and non-price factors,
creating an effective water management policy for drought response.

Figure 7 presents our proposed combination model including price and non-price factors that
may be helpful for future research to develop a plan and understand the relation between reducing
water demand and human actions. This SD model includes non-price factors that can be used to
reduce water demand, such as increasing the billing frequency by using tax incomes generated from
the increased water rate, implementing water-saving campaigns to raise awareness, and supplying
water-saving household devices (such as water-saving faucets and toilet seats), which would thereby
lead to effective water saving. However, these causal relationships along with the concepts and ideas
depicted on the graph are beyond the scope of this research.
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