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Abstract: Pressure Reducing Valves (PRV) have been widely used as a device to control pressure at
nodes in water distribution networks and thus reduce leakages. However, an energy dissipation
takes place during PRV operation. Thus, micro-hydropower turbines and, more precisely, Pump As
Turbines (PAT) could be used as both leakage control and energy generating devices, thus contributing
to a more sustainable water supply network. Studies providing clear guidelines for the determination
of the most cost-effective device (PRV or PAT) analysing a wide database and considering all the costs
involved, the water saving and the eventual power generation, have not been carried out to date.
A model to determine the most cost-effective device has been developed, taking into account the Net
Present Value (NPV). The model has been applied to two case studies: A database with 156 PRVs
sites located in the UK; and a rural water supply network in Ireland with three PRVs. The application
of the model showed that although the investment cost associated to the PRV installation is lower in
the majority of cases, the NPV over the lifespan of the PAT is higher than the NPV associated with the
PRV operation. Furthermore, the ratio between the NPV and the water saved over the lifespan of the
PAT/PRV also offered higher values (from 6% to 29%) for the PAT installation, making PATs a more
cost-effective and more sustainable means of pressure control in water distribution networks. Finally,
the development of less expensive turbines and/or PATs adapted to work under different flow-head
conditions will tip the balance toward the installation of these devices even further.

Keywords: pumps as turbines; pressure reducing valves; energy recovery; leakage reduction;
water-energy nexus

1. Introduction

World water use has risen considerably in recent decades and this growing tendency is likely to
continue due to the expected population growth in the coming years [1]. In addition, large cities are
increasingly concentrating a higher number of people, leading to water scarcity conditions in many
urban areas [2]. One quarter of the largest cities in the world were recently estimated to be water
stressed [3]. In Europe, and more specifically in its southern regions, a 24% decrease in renewable water
resources has been detected during the period 1960–2010 [4]. Moreover, world energy consumption is
also expected to increase by 28% in 2040 with respect to 2015 [5]. Therefore, the sustainable use of
water and energy resources is currently one of the main concerns worldwide.

Water abstraction and distribution are among the activities in which the water-energy nexus plays
an important role. In the European Union, as an example, 8% of the total energy consumption in 2014
was related to water supply [6]. In addition, it is estimated that 32 billion cubic meters per year (66%
of the treated water) are lost in the water distribution process globally [7]. This is mainly due to the
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ageing infrastructure, the non-optimal design of the water supply systems, and the increase in water
stress in urban areas [8]. Different strategies have been proposed to reduce energy consumption from
fossil fuels in the water industry sector, by using renewable energy sources [9] or by recovering the
excess of heat at the wastewater treatment plant [10], to name a few.

Leakage management can also play a major role in the reduction of energy consumption in the
water sector. Thus, pressure control in water distribution networks is one of the most effective measures
to reduce leakages because of the direct relation between pressure and leakage rate [11,12]. Hence,
Pressure Reducing Valves (PRVs) play an important role in reducing water losses. The determination
of the best location and the number of PRVs to install in a network has been widely analysed as an
effective measure to decrease leakages. Gupta et al. [11] applied an optimization algorithm to determine
the optimal PRVs location in a network, resulting in a leakage reduction of 21%. Fontana et al. [13]
used real time control to manage the pressure in a PRV placed in a network inlet. This enabled optimal
operation conditions by reducing pressure at nodes and therefore, leakages.

PRVs are a convenient device for reducing leakage. However, the energy dissipation that takes
place in a PRV is wasteful of energy resources, and this energy could be recovered by substituting the
PRV with a hydropower turbine. Thus, in addition to the reduction of water losses, a certain part of the
energy in the network could be recovered, reducing greenhouse gas emissions and making the water
supply system more sustainable [14]. Due to the potential of hydropower in these systems, several
investigations have focused on the evaluation of the installation of these devices in water networks,
showing that up to 40% of the gross power potential available in a PRV could be recovered by replacing
the PRV with a PAT [15]. Other potential locations for installing hydropower turbines, such as break
pressure tanks, water storages or water treatment plants, were also evaluated, estimating significant
energy generation potential in some locations [16].

The main disadvantage historically associated with hydropower installations in water distribution
networks was their lack of cost-effectiveness when the power output capacity is small [17]. The majority
of power output capacities in typical PRVs in water distribution networks has been shown to lie in the
range 1 to 15 kW [18]. However, recent developments in new micro-turbines which can operate under
low flow/head conditions or new in-line Banki turbines with mobile regulating flap which enable the
adaptation of the characteristic curve according to flow or pressure with reasonable high efficiencies
may alter the results of these historical assessments which considered traditional turbine types [19–22].

A particular class of micro-turbines consists of pumps working in reverse mode, i.e., Pump As
Turbines (PAT). These are devices that can be installed along distribution pipes to reduce pressure at
nodes and recover energy [23–25], with significantly reduced investment costs compared to traditional
turbines [26]. Optimization techniques have focused on identifying the best PAT location within
water distribution networks to reduce leakage and generate energy. Giugni et al. [27] proposed a
methodology to determine the optimal PAT location in water distribution networks considering two
approaches: The reduction of leakage, and the maximization of energy. The authors demonstrated
that the second approach involved higher energy production without decreasing pressure at nodes
significantly. Other methodologies have considered the joint optimization of energy generation by
means of PATs, leakage reduction and pump operation in order to reduce the energy costs associated
with the water network [25,28]. The use of PATs as energy recovery devices within irrigation water
distribution networks has also been proved feasible, with calculated annual energy recovery of up to
58 MWh and 271 MWh in selected networks [29,30].

The replacement of PRVs with PATs as a measure to generate energy and reduce leakage represents
an efficient strategy to improve the sustainability of water supply networks. However, the sometimes
small amounts of energy generated by a PAT can be interpreted as not achieving economic viability in
some cases, making PRVs more attractive. For example, Fecarotta et al. [25] proposed an optimization
procedure to determine the best location and the number of PATs considering both the maximization
of the net present value (NPV) and the reduction of leakage. They included the water cost saving by
leakage reduction in the estimation of the NPV and the algorithm provided a solution with 16 PATs
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to install on a selected network. However, 10 out of the 16 PATs were considered not economically
feasible due to the low power generated. Therefore the authors proposed the installation of PRVs
instead of PATs for those sites.

Some investigations have evaluated the replacement of PRVs by PATs as a measure to control
pressure and generate energy, also analysing the most convenient element from an economic point of
view [24,31,32]. However a comprehensive study giving guidelines for the installation of pressure
reducing devices (PRV or PAT) for pressure reduction at specific nodes taking into account all the cost
involved in both, and the eventual power generation have not been provided to date.

Therefore in this work a model has been developed to aid in choice between PAT and PRV in
water distribution networks. The model focuses on the determination of the Net Present Value (NPV)
taking into account the total cost associated with the installation of a PRV and a PAT as well as the
cost savings associated with the reduction of leakage volume and the energy savings related to the
PAT performance. The methodology has been applied to two case studies: The first one included a
database with 156 PRVs sites located in Wales and West Midland regions of the UK; while the second
case study included a water distribution network with three PRVs currently operating, located in a
rural area in Ireland.

2. Methodology

2.1. Problem Approach

The model proposed in this work took into account all costs involved in the installation of a PRV
and a PAT, as well as the sum of the incomes associated with the operation of both devices during
their lifespan. Thus, NPV (€), which was previously used to determine the economic feasibility of the
installation of PATs [25], was selected in this work to compare both devices:

NPV = −TC +
L∑

t=1

CSt

(1 + r)t (1)

where TC (€) is the total installation cost, t is an index related to year, L is the lifespan of the device
considered, PRV or PAT (assumed as 15 years for both elements in this work). CS is the total cost saving
at year t (€), and is determined by adding up the water cost saving, WCS, associated with the reduction
of leakage volume after installing these devices and the energy cost saving, ECS, obtained by the PAT
performance. r is the discount rate. A value of 0.05 for r was assumed in this work [33]. No management
costs have been considered since the same cost has been assumed for both installation types.

The total installation cost was determined using Equation (2):

TC = CPRD + CHE + IC (2)

where CPRD is the cost of the pressure reducing device, PRD (PRV or PAT), CHE the cost of the hydraulic
elements required in the installation of each pressure reducing device, and IC is the installation cost.
The determination of each term in Equation (2) is described in the following sections.

The estimation of WCS was carried out by the calculation of the water saving derived from the
installation of a PRV or a PAT. When any of these devices is installed in a water supply network,
pressure at nodes decreases and hence the leakage flow is reduced.

When the leakage flow at each pipe is known, this value can be assigned to each node and the
discharge coefficient, ci, which relates the leakage flow to pressure can be determined according to
Equation (3):

qli = ci·P
β
i (3)
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where qli is the leakage flow at node i (l s−1), β is the emitter exponent which takes into account the pipe
material and the shape of the orifice (1.18 has been assumed in this work [34]) and Pi is the pressure
(m) at node i. The coefficient ci was determined by Equation (4):

ci = α·0.5·
Kji∑
j=1

L ji (4)

α is a coefficient (l s−1 m−1−β), j is an index related to pipe, Kji is the number of pipes connected to
node i, and Lji is the length of the pipe j connected to node i (m). The coefficient α was determined
using EPANET [35] which enabled the pressure dependent demand analysis. Once the coefficient α
was determined, the effects of the performance of a PRD were evaluated in EPANET and WCS was
estimated by:

WCS = cw·(Vl0 −VlPRD)·ndays (5)

where cw is the water cost (0.3 €m−3 was assumed in this work [25]) and Vl0 and VlPRD (m3 day−1)
are the leakage volume in the current situation and after installing the pressure reducing device,
respectively. ndays was the number of days of the year. The leakage volume was obtained by applying
Equation (6):

Vl =
1

1000
·

24∑
h=1

Qlh·∆h (6)

where the term 1/1000 is used to convert units from l s−1 to m3 s−1, Qlh is the total leakage flow at time
h and ∆h (s) is the time in which Qlh (l s−1) is applied.

However, in most of the cases, the leakage flow of the entire network is the only available data.
For these analyses, methodologies to estimate the leakage flow at each node from the total leakage
rate have been proposed. In this work, the methodology proposed by Araujo et al. [36] was used.
From the current leakage rate, which is usually estimated as a percentage of the minimum total night
flow, an iterative process was carried out to determine the value of ci which accomplished Equations
(3) and (4) using the software EPANET [35]. This iterative process was required to set the value
of ci at each node and thus determine the leakage flow according to the pressure received at each
node [37]. After that, two types of demand were applied to the nodes, one associated with the human
consumption, while the other was pressure-dependent and related to leakage. Therefore, a genetic
algorithm was applied to determine the new demand pattern which, multiplied by the base demand
and added up the leakage flow, matched with the actual measured hourly demand of the network.
A detailed description of the above methodology can be found in [36]. Once the leakage flow after
installing a PRV or a PAT was obtained, the water cost saving was determined by Equation (5).

The procedure to determine the water saving was carried out in MATLAB [38].
As for the energy cost saving, Equation (7) was used to estimate its value:

ECS =
1

1000
·ndays·

24∑
h=1

ρ·g·Q PAT,h·HPAT,h·ηh·ep (7)

where the term 1/1000 is used to convert units from W to kW, ρ is the water density (kg m−3), g the
gravity acceleration (m s−2), QPAT,h (m3 s−1) and HPAT,h (m) the flow and head provided by the PAT at
time h, respectively. ηh was the efficiency of the PAT and ep the savings from displaced electricity costs
(0.17 € kWh−1 has been assumed in this work, [39]).

Different methodologies to estimate the friction losses in a PAT have been developed [40,41].
A simplified approach similar to the one proposed by [23] was considered in this work. According
to [42], the maximum PAT efficiency, i.e., the efficiency of a PAT at the Best Efficiency Point (BEP) is
achieved when the flow at the PAT is 75% of the maximum flow, considering 0% as the minimum flow
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rate through a PAT and 100% as the maximum flow at the same speed. Therefore, two considerations
were assumed in this work: (1) QPAT,h was QBEP when the input flow was higher than QBEP and ηh
matched with the maximum PAT flow-to-wire efficiency, ηmax, assumed here as 0.65 [18,25]. In this
case, the rest of the flow was bypassed; (2) QPAT,h matched with the input flow when it was lower
than QBEP and the ηh was determined according to the methodology proposed by [42], in which they
evaluated the performance of 113 PATs by characterising the relationship between head and specific
speed. The 113 PATs performance database was included in EPANET, to estimate the hydropower
potential according to the instant flow and head at a certain site.

A flow chart with a summary of the methodology above described is shown in Figure 1.
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2.2. PRV Total Installation Costs

The installation of a PRV in addition to the valve itself usually requires an upstream isolation
valve, a strainer, a downstream isolation valve and an air valve (Figure 2a). In order to select the PRV
to be installed in a certain pipe, the flow through it, its diameter and the pressure setting range need to
be considered.Water 2019, 11, x FOR PEER REVIEW 7 of 20 
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Data related to the cost of PRVs from several manufacturers for a wide range of diameters (50,
65, 80, 100, 125, 150, 200, 250, 300, 400, 500 and 600 mm) and for different pressure settings, were
collected [43–51]. Likewise, the costs of the hydraulic elements required in the installation of a PRV for
different diameters were gathered. Civil works were also considered, and assumed here as the 10% of
the total costs [52].

2.3. PAT Total Installation Cost

The cost in the European context of a centrifugal PAT with a connected four-pole asynchronous
motor used as a generator can be estimated as function of its nominal flow and head working conditions
at the Best Efficiency Point (BEP) through a set of linear correlations [53]:

CPAT+gen(¤) = 12, 717.29·QPATBEP
√

HPATBEP + 1038.44 (8)

The above equation was determined from a database of 343 commercially available pumps and
286 generators [53]. Only asynchronous induction motors which can efficiently work as generators and
are commonly sold as standard prime movers of hydraulic pumps were selected. More specifically,
four-pole asynchronous motors have been considered as their moderate nominal speed of about
1500 RPM prevents PATs from reaching an excessive speed under runaway conditions, compared to
two-poles units.

Apart from the purchase of the turbine and the generator, the final cost of a typical
Micro-Hydropower (MHP) scheme includes additional contributions (see Figure 2b) which can
be grouped as follows:

- Civil works and hydraulic equipment, including:
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# a bypass pipe;
# a set of actuated or manually operated control and sectioning valves;
# a PRV (in certain installations). The necessity of installing this device depends on whether

the PAT will operate far from its BEP at a given site, and the capability of the actuated
valves to control the pressure received at downstream nodes. If the pressure is too high to
be controlled by the actuated control valves, a PRV installed in the bypass is required.

# a Y-strainer;
# a powerhouse hosting the equipment.

- Electric cabinet and control system
- Grid connection fee
- Commissioning
- Other project costs (including consultancy)

The cost of the above elements in PAT energy recovery installations is unclear, since no
comprehensive study has provided a cost breakdown of PAT-based MHP schemes embedded in
water infrastructures to date. Some authors have suggested that the contribution given by the purchase
of a conventional turbine and generator may account typically for the 35% [54] up to a maximum of
70% of the final cost figure of a MHP scheme [18]. However, such figures are not directly applicable to
the context of this research since their authors did not consider the use of PATs, which allows for a
considerable reduction of the turbine purchase price (5 to 20 times less expensive). In addition, they
did not refer specifically to hydropower stations within water distribution networks.

In order to evaluate more accurately the cost of such plants, data from 9 energy recovery schemes
in water networks from different countries have been compiled [24,55–57]. All of the selected plants
adopted a PAT as a generating device, and had nominal powers ranging from 9 to 120 kW. The location
and power rating of all 9 schemes is displayed in Figure 3. According to the available information,
it was possible to sub-divide the total cost of the installation into single components:

- turbogenerator alone;
- turbogenerator and control system;
- commissioning;
- civil works and hydraulic equipment;
- grid connection;
- other project costs.

From the purchase price of a PAT and a generator by means of Equation (8), the resulting cost
breakdown allowed the realistic quantification of the total expected cost of a PAT-based MHP plant in
water infrastructures from its nominal values of flow rate and hydraulic head.

2.4. Case Studies

The first case study consisted of a database with 156 PRVs placed in water infrastructure in Wales
and the West Midland regions of the UK (see Figure 4). Information related to average flow, pressure
and pipe diameter were collected at those sites [18]. The average flow ranged from 0.2 l s−1 to 296.5 l s−1

with associated head values of 32 m and 15 m, respectively. As for diameters, the values were 150 mm,
200 mm, 250 mm, 300 mm and 400 mm.
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The second case study focused on Ballinabranna Group Water Scheme (BGWS), a water supply
network located in a rural area in Ireland. BGWS is a gravity network which supplies an average
demand of 6.16 l s−1 to 44 consumption nodes. This network covers an area of almost 54 km2,
with diameters ranging from 50 mm to 150 mm. Three PRVs are currently operating in the network.
However, in an analysis to determine the optimum PAT locations in this network, a new potential
site was detected [37]. This site showed higher MHP potential than that of the current PRV locations.
Hence, the analysis carried out in this work took into account the determination of the NPV in two of
the current PRVs and at the proposed additional site (site 3 in Figure 5).
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3. Results

3.1. PRV Cost Model

The cost of 110 PRVs from different manufacturers were collected. The diameter of the selected
PRVs ranged from 50 mm to 600 mm while the pressure setting range was 6–60 m, 15–60 m, 10–100 m
10–160 m, 14–72 m, 40–120 m, 50–120 m, 10–70 m, 17–86 m and 7–70 m. The average PRV cost was
3516 €with a minimum value of 162 € for a 50 mm diameter and a maximum price of 31,765 € for a
500 mm diameter (see Figure 6). As could be expected, the greater the diameter the higher the PRV
cost. However, a clear difference between the range of the pressure setting and the PRV cost was not
detected. The differences in the PRV cost were mainly related to the different manufacturers who
provided the data.

To estimate the total cost, the cost of the two required gate valves, the strainer and the air valve
were also considered (Table 1). The cost of the two gate valves ranged from 146 € to 6370 € for diameters
of 50 mm and 600 mm respectively, whereas the strainer cost varied from 148 € to 18,063 € for the same
diameters. As for the air valve, the cost ranged from 543 € for the 50 mm diameter to 19,286 € for the
600 mm diameter.

These additional costs and the amount of civil works were added to the PRV cost to estimate the
total installation cost. Considering an average PRV cost for each diameter according to the values
provided by the different manufacturers, the average total cost was 18,762 €, ranging from 1738 € for a
50 mm diameter pipeline to 72,621 € for a 600 mm diameter (see Figure 7). When the minimum PRV
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cost for each diameter was taken into account the average total cost was 16,931 €, varying from 1099 €
to 72,621 € for diameters of 50 mm and 600 mm. As for the total cost when the maximum PRV cost
for each diameter was selected, the average value was 21,258 € ranging from 2520 € to 72,621 € for
diameters of 50 mm and 600 mm.Water 2019, 11, x FOR PEER REVIEW 11 of 20 
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3.2. PAT Cost Model

The model developed by [53] was used to determine the PAT cost. A flow range between
0.01·10−3 m3 s−1 and 0.4 m3 s−1 and pressure values varying from 5 m to 100 m were considered.
The average PAT cost was 18,666 €, ranging from 1039 € for the minimum values of flow and pressure
to 51,908 € associated with a flow of 0.4 m3 s−1 and a pressure of 100 m (see Figure 8).
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The analysis of the cost components from the 9 evaluated PAT schemes according to the categories
listed in Section 2.3, did not lead to any identifiable trends according to the nominal power of the
scheme. Instead, it is reasonable to assume that a number of site-specific conditions (e.g., amount of
civil works required, distance from the electric grid, and effectiveness of the design) resulted in varied
percentages of each analysed cost category. The overall results of the analysis are shown in Figure 9,
where the vertical error bars indicate the minimum and maximum percentages for each cost category.
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The results from Figure 9 showed that across the 9 analysed schemes the purchase of the PAT and
generator accounted for 26% of the total cost of the installation on average, ranging from 14% to 48%
(see Figure 9). Hence, the results from Equation (8) were divided by a factor of 0.26 in order to achieve
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a realistic estimation of the total expected cost for a PAT-based energy recovery scheme according to its
mean operating conditions (Figure 10).
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Apart from the turbine and generator, the PAT control devices (with an average cost share of
24%) the civil work and hydraulic equipment (involving an average of 21% of the total cost) and the
other project costs (accounting for 19%) were found to be the most expensive elements in a typical
PAT installation.

Considering the PAT cost as 26% of the total cost, the total PAT installation cost was estimated for
the flow range 0.01·10−3 m3 s−1–0.4 m3 s−1 and pressure values from 5 m to 100 m. The average total
PAT cost was 72,518 €, varying from 4035 € to 201,662 €.

When the PAT cost was assumed as 48% of the total cost, the average PAT installation cost was
39,214 €, with a minimum cost of 2182 € for the lowest values of flow and pressure, and a maximum
cost of 109,050 €. Taking the PAT cost as the 14% of the total cost, instead, the average total cost was
134,288 €, varying from 7473 € to 373,436 €.

3.3. Determination of the Most Feasible Pressure Reduction Device, PRV or PAT, in the Case Studies

For case study 1, only average flow and head data were available. Hence, the generated power
was determined considering that the average values matched with the flow and head of the PAT at
the BEP. 140 sites out of 156 showed an average power higher than the minimum threshold value
(400 W), with an average value of 4338 W, ranging from 460 W to 31,455 W (see Table 2). As for the total
installation cost, the PRV cost was related to the pipe diameter while the PAT cost varied according to
the generated power (see Figure 11).

Table 2. PRV/ PAT analysis in case study 1.

Power,
kW

Total PRV
Cost, € Total PAT Cost, € PAT NPV, € PAT Payback Period, years

26% 1 48% 2 14% 3 26% 1 48% 2 14% 3 26% 1 48% 2 14% 3

Ave. 4338 7236 10,397 5567 20,831 57,960 61,489 59,163 4 3 6
Max. 31,455 32,909 60,770 32,862 112,534 451,467 467,421 421,875 10 7 10
Min. 460 5284 4761 2575 9097 2695 4197 5079 2 2 3

1 Considering the PAT cost as 26% of the total cost. 2 PAT cost as 48% of the total cost. 3 PAT cost as 14% of the
total cost.
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Figure 11. PAT vs. PRV total cost according to the average power at the evaluated sites.

Considering in this case the average total cost of both PRV and PAT, the PRV was the less expensive
option in the majority of the sites, with an average total cost of 7236 € (see Table 2). In only 15 sites
(10%) the PAT showed lower capital costs. Analysing these sites, the PAT total cost was slightly cheaper
in 6 sites with a 150 mm diameter and power lower than 1 kW. When the generated power was higher
the PRV was the best option considering this diameter. As for the 200 mm diameters, the PAT was the
best option in 3 sites with an average power lower than 2300 W. When the generated power at the sites
with a 200 mm diameter was higher, the PRV was cheaper. A similar tendency was found for pipes of
250, 300 and 400 mm. The lower the generated power the higher the probability that the PAT would be
less expensive (see Figure 11).

As for the economic analysis in case study 1, only the energy cost saving was estimated since
information about the effects of the PRV performance on nodes pressure was not available. The NPV
was determined considering the energy that could be generated in each evaluated site during the PAT
lifespan (15 years). Considering that the PAT cost was 26% of the total cost, the NPV showed positive
values in all the 140 sites. The estimated average NPV was 57,960 €, ranging from 2695 € to 451,467 €
(see Figure 12). The average payback period was 4 years (see Table 2). Under this assumption, three
sites showed payback periods higher than the threshold established (see Figure 13).Water 2019, 11, x FOR PEER REVIEW 15 of 20 
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Figure 12. Net present value in the evaluated sites considering that the PAT represents 26% of the total
installation cost.
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Figure 13. Payback period in the evaluated sites.

When the PAT cost was considered as 14% of the total cost, 113 out of the 140 sites with power
higher than 400 W showed a payback period lower than 10 years, with an average payback period
of 6 years (see Figure 13). As for the NPV, under this assumption the average value was 59,163 €,
varying from 5079 € to 421,875 € (see Table 2). Finally, when the PAT cost was assumed as 48% of the
total cost, the payback period was lower than 10 years in all 140 sites with average power higher than
400 W (see Figure 13), showing an average payback period of 3 year. In this case, the average NPV was
61,489 € with a minimum and a maximum value of 4197 € and 467,421 € (see Table 2). Considering the
evaluated sites in case study 1, the PAT installation costs could be even lower since a current PRV is
already operating, making the PAT installation as a retro-fit, more feasible.

For case study 2, the replacement of the three PRVs with PATs would involve powers at the BEP of
1223 W, 1533 W and 457 W (see Table 3). As for the total installation cost, the PRV showed the lowest
values in the majority of the cases. The PAT installation cost was only lower at site 1, with a diameter
of 150 mm, when the PAT cost was assumed as the 48% of the PAT total cost. The average installation
cost ranged from 3009 € to 5284 € when the PRV was considered and from 5323 € to 6268 € for the
PAT installation.

Table 3. PRV/ PAT analysis in Ballinabranna Group Water Scheme (BGWS).

PRV PAT

Site Number 1 2 3 1 2 3

Diameter, mm 150 100 100 150 100 100
Power BEP, W 1223 1533 457

Energy, kWh year−1 7346 9203 2744
Ave cost, € 5284 3009 3009 5919 6268 5323
Min cost, € 3574 2303 2303 3201 3390 2879
Max cost, € 7074 4067 4067 10,984 11,633 9879

Water saving, m3 year−1 15,559 15,559 15,559 15,559 15,559 15,559
Water cost saving, € year−1 4668 4668 4668 4668 4668 4668

Energy cost saving, € year−1 1249 1565 466
Payback period, year 3.0 2.0 2.0 3.0 3.0 3.0

NPV, € 43,164 45,440 45,440 55,493 58,420 47,967
NPV/Water saving, €m−3 0.18 0.19 0.19 0.24 0.25 0.21

The economic analysis in case study 2 was carried out considering both the energy cost saving
and the water saving as a result of the PRV/PAT operation. As initial leakage rate, 80% of the minimum
night-time flow was assumed [36,58]. The same pressure drop was considered for the PRVs and the
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PATs. Hence, the water saving and the water cost saving showed the same values for both devices:
15,559 m3 year−1 and 4668 € year−1 per pressure reducing device (see Table 3). The operation of the
three PATs would involve an annual energy cost saving of 1249 €, 1565 € and 466 €. Thus, the NPV
considering the PAT lifespan and the average installation cost showed values of 55,493 €, 58,420 € and
47,967 € at sites 1, 2 and 3, respectively. This was 29%, 29% and 6% higher than the estimated NPV
considering the average PRV installation cost. The ratio between the NPV and the water leakage that
could be saved during the PAT/ PRV lifespan offered values for the PATs of 0.24 €m−3, 0.25 €m−3 and
0.21 €m−3, again higher than the estimated values for the PRVs (see Table 3).

Therefore, this work shows that although the required investment for a PRV installation is lower in
most cases, the energy and hence, the cost savings that could be achieved by considering a PAT justify
its installation. While both devices are equally efficient in terms of leakage reduction, the additional
energy cost savings achieved by the PAT performance make its installation as a device to reduce
leakage and generate energy more feasible.

4. Discussion

PATs are considered to be a cheaper technology compared to traditional turbines for small
hydropower energy recovery [26,59]. However, information related to the total PAT cost, also including
installation cost, is not easily accessible. Overall, methodologies focused on the use of PATs took
into account a PAT cost according to the generated power. Thus, [60] considered an average PAT
investment cost of 545 € kW−1 for generated power lower than 10 kW, including the PAT cost and the
civil, electrical and electronic equipment. [25] determined the total installation cost considering an
average PAT cost related to the generated power of 220 € kW−1 plus two additional costs of 450 € and
2500 € (associated to piping and grid connection). Other methodologies established the installation cost
either as a percentage of the total installation cost or as a cost associated to the generated power. [30]
considered the installation cost as 65% of the total cost, whereas [23] proposed an installation cost of
350 € kW−1.

The methodology presented in this work analysed the installation cost and categories of 9 MHP
plants in different countries, thus determining an average installation cost and the range. The installation
cost determined in the sites of case study 1, using the methodology presented in this work compared
with previous methodologies, showed higher total PAT costs using the values obtained from the 9 MHP
plants. Thus, the average total PAT cost at the sites in case study 1 was 3904 €, 2364 €, 4159 € and 4251 €
applying the methodologies proposed by [23,25,30,60], respectively. These were all considerably lower
than the average total value presented in this work, 10,397 €.

Above all, the model presented here shows that when the total costs and benefits of the installation
of PATs or PRVs as pressure reduction devices are compared, the PAT is the more feasible option with
greater long term benefits. These greater long term benefits were also consistently found when a
sensitivity analysis of the assumed variables was conducted (i.e., using min, average and maximum
values for percentage contribution of differing cost components).

5. Conclusions

A model to determine the most feasible device, PRV or PAT, considering all the costs involved
in a PRV and a PAT installation, as well as the water cost savings associated to leakage reduction,
and the energy cost saving related to the PAT operation has been proposed. This work highlights the
potential of MHP installations in general and PATs in particular as a tool to improve the sustainability
of water distribution networks and reduce electricity costs. The analysis carried out showed that a
wider database with the real PAT installation cost would be required to better estimate the feasibility of
the installation of these devices. Limitations of the current methodology include: The limited amount
of information available on PAT costs at very low powers; the lack of significant amounts of case
studies on which to base estimates of civil works and other project costs; and the lack of information
on the cost and performance of PAT types other than centrifugal.
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The main finding of the work is that the use of a PRV over a PAT as a pressure reduction tool is not
the most economically viable or sustainable option. While installing a PRV reduces leakage and thus
energy consumption, it wastes the opportunity to recover electricity in the network. The development
of less expensive turbines and/or pump as turbines adapted to work under low flow-head condition
will tip the balance toward the installation of these devices even more.
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