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Abstract: Flood forecasting is an essential requirement in integrated water resource management.
This paper suggests a Long Short-Term Memory (LSTM) neural network model for flood forecasting,
where the daily discharge and rainfall were used as input data. Moreover, characteristics of the data
sets which may influence the model performance were also of interest. As a result, the Da River basin
in Vietnam was chosen and two different combinations of input data sets from before 1985 (when the
Hoa Binh dam was built) were used for one-day, two-day, and three-day flowrate forecasting ahead at
Hoa Binh Station. The predictive ability of the model is quite impressive: The Nash–Sutcliffe efficiency
(NSE) reached 99%, 95%, and 87% corresponding to three forecasting cases, respectively. The findings
of this study suggest a viable option for flood forecasting on the Da River in Vietnam, where the river
basin stretches between many countries and downstream flows (Vietnam) may fluctuate suddenly
due to flood discharge from upstream hydroelectric reservoirs.

Keywords: flood forecasting; Artificial Neural Network (ANN); Recurrent Neural Network (RNN);
Long Short-Term Memory (LSTM); deep neural network; Da river

1. Introduction

Flooding is a significant cause of social and economic losses, as well as the loss of human life.
It poses a potential danger to densely populated areas located next to and downstream of major rivers.
Accurate forecasting of flood flow is an essential requirement for reducing the risk of flooding and
is important for planning and managing water resources systems. However, accurate forecasting of
river discharge is a difficult problem because river flood stage analysis is a complex dynamic process
characterized by spatial and temporal variations. In addition, the river flow process is nonlinear and
influenced by many factors such as river basin surface mantle, the rainfall process, as well as riverbed
terrain and climatic characteristics. Many predictive measures, which require an enormous amount of
data for forecasting, have been proposed to mitigate or prevent the effects of floods.

Currently, there are two approaches for flow prediction. The first method consists of mathematical
models that simulate the hydrodynamic process of the water’s flow. This first approach is a widely
used method because the mathematical models are based on concepts of hydraulics and hydrology.
These models generally have a tendency to require a large amount of input data (i.e., rainfall forecasts
and topography data) which may not always be available or could be difficult to obtain. In addition,
the parameters of the model need to be tested and evaluated carefully as these parameters are regionally
dependent, and sometimes it is difficult to estimate or calibrate the parameters that fit the model.
As a result, models do not gain good performance especially in areas where available data is limited.
Moreover, process-based methods have limitations regarding flood warnings because the runtime of
these models is usually quite long [1]. Another drawback of conventional hydrological models is that
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these models do not predict the increase of the downstream flow if the upstream flow has sudden
fluctuations caused by the discharge from large dams and reservoirs, especially for large river basins
located in many countries.

The second approach for predicting river flow consists of data-driven methods, based on the
statistical relationship between input and output data. One of the common data-driven models is
the Artificial Neural Network (ANN) model. The amount of data required for the models, as well
as the ability of the model to both linear and nonlinear systems without the need to make any
assumptions, are implicit in most traditional statistical approaches. The data-driven approach, ANNs,
may offer a promising alternative to the existing methods for the hydrological forecast of streamflow [2].
With the development of computer science in the last two decades, the ANN models have been widely
used in various aspects of science and engineering because of the simplicity of its model structure.
Researchers have applied various neural network model techniques such as using them alone or in
combination with process-based models to reduce errors and improve the models’ prediction accuracy.
Yaseen et al. [3] reviewed papers on the application of Artificial Intelligence (AI) based on models for
streamflow forecasting from 2000 to 2015 and indicated that the AI had exhibited significant progress
in forecasting and modeling non-linear hydrological problems. This paper also recommends the
potential application of ANNs in modeling and forecasting streamflow. In addition, several studies in
which the ANN model-based approaches were used for river stage forecasting are reviewed in the
following paragraphs.

An ANN model was developed by Hidayat et al. [4] to forecast discharge in a tidal river for the
Mahakam River, Indonesia. Input data includes information on upstream water levels, tide levels,
and flow rates. The performance of the model is evaluated through three criteria: The coefficient
of determination (R2), the Nash–Sutcliffe efficiency (NSE), and the root mean square error (RMSE).
The study revealed that it could predict discharge for two days with reliable performance and the
ANN model could be used to fill data gaps in a disrupted discharge on a time series scale. Elsafi [5]
suggested an ANN model for one-day flowrate forecasting at the Dongola station in the Nile River
basin (Sudan) based on upstream flow data. The author concluded that the ANN model provided a
reliable means of detecting the flood hazard on the river with an accuracy (R2 value) of about 97%.
This acts as a precursor to the establishment of a flood warning system for certain sections of the Nile
River. Khan et al. [6] established an ANN model that exploited daily information data of discharge
and water level at the stations along the river as the inputs to forecast one-day streamflow ahead
for the Ramgama River in India. The results of this research demonstrated that the selected model
could be useful for predicting discharge and water level for the Ramganga River with an accuracy of
about 93.4% for monsoon flow pattern. Sung et al. [7] constructed an ANN model for hourly water
level forecasting at Anyangcheon Stream, Korea with a lead-time of one to three hours. The model’s
accuracy was validated by three statistical methods: RMSE, R2, and NSE. They concluded that the
model provided good results when forecasting a one-hour to two-hour water levels.

In addition, several other techniques have also been combined with data-driven models to improve
flow forecasting performance, for example, support vector regression [8], fuzzy inference systems [9],
back-propagation neural network algorithms [10], genetic algorithms [11,12], and wavelet neural
networks [11,13]. The review of the aforementioned studies illustrates the potential of ANN models
for related hydrology fields. However, according to Govindaraju [14], the understanding of watershed
processes is a limit of the ANNs model. Additionally, there is no specific reference for selecting
architectures and parameters within the ANN network [5,15], as well as no really effective solution for
sequential data problems such as hydrological problems [16]. Another major issue with ANNs is the
lack of memory when calculating problems with sequential or time series data [17,18].

Recently, owing to the breakthrough in the field of computational science, deep learning or deep
neural network (DNN) methods based on ANNs have received a growing interest both academically
and practicality from scientists [18]. Moreover, the Long Short-Term Memory (LSTM) neural network,
one of the state-of-the-art applications of DNN, has been successfully applied in various fields (especially
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for time sequence problems) such as: Speech recognition [19], machine translation [20,21], language
modeling [22], tourism field [23,24], stock prediction [25], and rainfall-runoff simulation [16,26,27].
Several LSTM studies listed above suggest that LSTM-based models have been successfully used in
various fields, and can be applicable to river flow forecasting.

In this research, we constructed several models of LSTM and have applied these models to
forecast discharge at the Hoa Binh Station on the Da River, one of the largest river basins in Vietnam.
Da River has an abundant flow, flowing through high mountain areas stretching from China to Vietnam,
and yields significant hydroelectric power. The existence of large hydropower dams and reservoirs in
China (upstream of Da River) causes significant difficulties in forecasting downstream flows, which
flows through Vietnam. LSTM models have been developed for one-day, two-day, and three-day
flowrate forecasting in advance at Hoa Binh Station. Rainfall and flowrate at meteorological and
hydrological stations in the study area are input data of the model. In addition to evaluating the
model’s ability in predicting flood flows as well as predicting flood peaks, the influence of the dataset
characteristics on model performance is also of interest. Two scenarios of the LSTM model with
different combinations of input data sets were proposed in turn for three forecasting cases.

2. Methodology

2.1. Study Area and Data

The Da River, located in the northwest area of Vietnam, is the largest tributary of the Red River
system, one of the largest river systems in Vietnam. Originating from Yunnan Province in China,
the Da River basin stretches out in a northwest-southeast direction. In Vietnam, the river flows through
the Lai Chau, Dien Bien, Son La, and Hoa Binh provinces, before joining the Red River in Phu Tho
province. The Da River basin covers an area of 52,900 km2, in which approximately 50% (26,800 km2)
of the basin area is in Vietnam. It flows through the high mountain area in Vietnam and has an
abundant flow, which yields substantial hydroelectric power. In addition, due to the topographical
characteristics of the area, the distribution of rainfall on the basin is uneven in spatial and temporal.
Rainfall concentrates mainly from May to September, accounting for 85–88% of the total annual rainfall.
Information on the maximum daily precipitation and peak flood discharge in this area are summarized
in Table 1. Currently, there are three large hydroelectric plants on the Da River, namely: The Hoa Binh
Dam (1994), the Son La Dam (2012), and the Lai Chau Dam (2016) with the total combined power
capacity of about 5520 MW.

Table 1. Information on maximum daily precipitation and peak flood discharge on the Da River.

No. Stations Items Value Unit Period
(24 years) Time

1 Muong Te Maximum Daily Precipitation 197.4 mm 1961–1984 14 July1970
2 Lai Chau Maximum Daily Precipitation 197.5 mm 1961–1984 13 June 1961
3 Quynh Nhai Maximum Daily Precipitation 169.9 mm 1961–1984 13 June 1980
4 Son La Maximum Daily Precipitation 198 mm 1961–1984 29 June 1980
5 Yen Chau Maximum Daily Precipitation 172 mm 1961–1984 16 July 1965
6 Moc Chau Maximum Daily Precipitation 166.7 mm 1961–1984 13 June 1965
7 Hoa Binh Maximum Daily Precipitation 176.2 mm 1961–1984 9 July 1973
8 Ta Gia Peak Flood Discharge 3320 m3/s 1961–1984 15 July 1970
9 Nam Muc Peak Flood Discharge 1680 m3/s 1961–1984 8 July 1964

10 Lai Chau Peak Flood Discharge 10,200 m3/s 1961–1984 18 August 1971
11 Ta Bu Peak Flood Discharge 15,300 m3/s 1961–1984 8 July 1964
12 Hoa Binh 1 Peak Flood Discharge 16,900 m3/s 1961–1984 9 July 1964

1 denotes the target station.
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This study focuses on assessing the model’s ability in flood forecasting and the effects of input data
characteristics on model performance (sequential data). Therefore, the type of input data, the amount of
input data, and the correlation of the data series are considered. The daily measured data was retrieved
from hydrographic data at the Vietnam National Center for Hydro-meteorological Forecasting from the
period between 1961 to 1984 before the Hoa Binh Dam was built. The LSTM model was constructed to
forecast the flood flowrate at the Hoa Binh Station with one day, two days, and three days of lead time.
Location of gauge stations in the study area is shown in Figure 1.
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The data collected in the study area included data on daily flowrate and precipitation. The length
of the collected data series, information on hydro-meteorological stations, as well as the correlation
between the flow data series at Hoa Binh station with other data series, are provided in Table 2.
The rainfall was measured in millimeters (mm) and the flowrate was measured in cubic meters per
second (m3/s).
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Table 2. Information about hydrological stations.

No Stations Items Latitude Longitude Period
(24 Years)

Correlation
Coefficient of Data

Location
(Province)

1 Muong Te R 22◦22′ 102◦50′ 1961–1984 0.30 Lai Chau
2 Lai Chau R 22◦04′ 103◦09′ 1961–1984 0.24 Dien Bien
3 Quynh Nhai R 21◦51′ 103◦34′ 1961–1984 0.18 Son La
4 Son La R 21◦20′ 103◦54′ 1961–1984 0.23 Son La
5 Yen Chau R 21◦03′ 104◦18′ 1961–1984 0.24 Son La
6 Moc Chau R 20◦50′ 104◦41′ 1961–1984 0.25 Son La
7 Hoa Binh R 20◦49′ 105◦20′ 1961–1984 0.21 Hoa Binh
8 Ta Gia Q 21◦47′ 103◦48′ 1961–1984 0.77 Lai Chau
9 Nam Muc Q 21◦52′ 103◦17′ 1961–1984 0.83 Dien Bien

10 Lai Chau Q 22◦04′ 103◦09′ 1961–1984 0.95 Dien Bien
11 Ta Bu Q 21◦26′ 104◦03′ 1961–1984 0.97 Son La
12 Hoa Binh 1 Q 20◦49′ 105◦19′ 1961–1984 1.00 Hoa Binh

1 denotes the target station. R = Rain; Q = Discharge.

2.2. Artificial Neural Network (ANN)

An ANN is a computing system inspired by the human nervous system. It is based on theories of the
massive interconnection and parallel processing architecture of the biological system. An ANN model
is a data-driven mathematical model that has the ability to solve problems through machine-learning
neurons. One of the advantages of ANNs is they are capable of identifying complex nonlinear
relationships between inputs and outputs without inputting direct knowledge or physical processes [28].
The relationship between inputs and output has the following form [17]:

Y = f (Xn). (1)

Here, Xn is the n-dimensional input vector consisting of variables X1, . . . , Xi, . . . , Xn; Y is the output
vector. The functional form of f (.) in Equation (1) is not revealed explicitly by the model; rather,
the network parameters will represent it.

The most common type of ANNs consists of three layers, namely: An input layer, a hidden layer,
and an output layer. In an ANN, the input and output data layers are independent of each other.
Between the input and output layers, one or more hidden layers are often connected by weight matrices,
bias, and several activation functions. Figure 2 schematically illustrates a typical ANN architecture.
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The main differences between the various types of ANNs involve network architecture.
The architectural complexity of an ANN is closely related to the number of hidden layers as well as the
number of neurons in each hidden layer. The number of hidden layers depends on the characteristics
of the input data set such as data type or data size. In general, there is no specific rule for selecting
these parameters. They can be determined based on the training and evaluation process through
optimization of errors.

Typically, a neural network model is trained using the stochastic gradient descent optimization
algorithm and weights are updated through the backpropagation algorithm based on the errors
calculated from the loss function. In most neural networks, the loss function is a function that calculates
the difference between the actual output and the predicted output. For different problems, such as
regression or classification, different loss functions will be applied because of their direct relevance to
the activation function used in the output layer of the neural networks. The backpropagation training
algorithm is a supervised learning algorithm that allows the network to update the weights of neural
networks to optimize the loss function. The current error is propagated backward to a previous layer
by calculating gradients of the loss function. This means that the gradients have a tendency to become
smaller as the calculation continues to move backwards in the network. As a result, neurons in the
earlier layers learn very slowly and the training process takes a long time while the model accuracy
will decrease. This is one of the main causes of the vanishing gradient problem, which is a difficulty in
the training of ANN with the backpropagation algorithm [29].

Additionally, the traditional ANN model has a substantial limitation when solving sequential
data problems, such as time series problems or sentence completion forms. An example of a
sentence completion problem is predicting whether or not the next word is closely related to its
position in the sentence as well as the words in the previous position. Additionally, understanding of
watershed processes is a limitation of the ANNs model when dealing with hydrological problems [14,18].
The recurrent neural network (RNN) is a class of ANN, introduced to solve the aforementioned problems.

2.3. Recurrent Neural Network (RNN)

The recurrent neural network was first developed in the 1980s [30–32]. Its structure consists of
an input layer, one or more hidden layers, and an output layer. RNNs have chain-like structures
of repeating modules with the idea behind using these modules as a memory to store important
information from previous processing steps. Unlike feedforward neural networks, RNNs include a
feedback loop that allows the neural network to accept a sequence of inputs. This means the output
from step t − 1 is fed back into the network to influence the outcome of step t, and for each subsequent
step. Therefore, RNNs have been successful in learning sequences. Figure 3 shows the sequential
processing in RNN.

Water 2019, 11, 1387 6 of 19 

 

Figure 2. Schematic of a typical Artificial Neural Network (ANN) architecture. 

The main differences between the various types of ANNs involve network architecture. The 
architectural complexity of an ANN is closely related to the number of hidden layers as well as the 
number of neurons in each hidden layer. The number of hidden layers depends on the characteristics 
of the input data set such as data type or data size. In general, there is no specific rule for selecting 
these parameters. They can be determined based on the training and evaluation process through 
optimization of errors. 

Typically, a neural network model is trained using the stochastic gradient descent optimization 
algorithm and weights are updated through the backpropagation algorithm based on the errors 
calculated from the loss function. In most neural networks, the loss function is a function that 
calculates the difference between the actual output and the predicted output. For different problems, 
such as regression or classification, different loss functions will be applied because of their direct 
relevance to the activation function used in the output layer of the neural networks. The 
backpropagation training algorithm is a supervised learning algorithm that allows the network to 
update the weights of neural networks to optimize the loss function. The current error is propagated 
backward to a previous layer by calculating gradients of the loss function. This means that the 
gradients have a tendency to become smaller as the calculation continues to move backwards in the 
network. As a result, neurons in the earlier layers learn very slowly and the training process takes a 
long time while the model accuracy will decrease. This is one of the main causes of the vanishing 
gradient problem, which is a difficulty in the training of ANN with the backpropagation algorithm 
[29]. 

Additionally, the traditional ANN model has a substantial limitation when solving sequential 
data problems, such as time series problems or sentence completion forms. An example of a sentence 
completion problem is predicting whether or not the next word is closely related to its position in the 
sentence as well as the words in the previous position. Additionally, understanding of watershed 
processes is a limitation of the ANNs model when dealing with hydrological problems [14,18]. The 
recurrent neural network (RNN) is a class of ANN, introduced to solve the aforementioned problems. 

2.3. Recurrent Neural Network (RNN) 

The recurrent neural network was first developed in the 1980s [30–32]. Its structure consists of 
an input layer, one or more hidden layers, and an output layer. RNNs have chain-like structures of 
repeating modules with the idea behind using these modules as a memory to store important 
information from previous processing steps. Unlike feedforward neural networks, RNNs include a 
feedback loop that allows the neural network to accept a sequence of inputs. This means the output 
from step t-1 is fed back into the network to influence the outcome of step t, and for each subsequent 
step. Therefore, RNNs have been successful in learning sequences. Figure 3 shows the sequential 
processing in RNN. 

 

Figure 3. Sequential processing in a Recurrent Neural Network (RNN) [33]. Figure 3. Sequential processing in a Recurrent Neural Network (RNN) [33].

Figure 3 illustrates a simple RNN with one input unit, one output unit, and one recurrent hidden
unit expanded into a full network, where Xt is the input at time step t and ht is the output at time
step t. During the training process, RNN uses a backpropagation algorithm, a prevalent algorithm
applied in calculating gradients and adjusting weight matrices in ANN. However, it will adjust and
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update the weights following the modification of the feedback process. Therefore, it is commonly
referred to as the backpropagation through time (BPTT). The BPTT process uses a working-backward
approach, layer by layer, from the network’s final output, tweaking the weights of each unit according
to the unit’s calculated portion of the total output error. The information loops repeat resulting in huge
updates to neural network model weights and lead to an unstable network due to the accumulation of
error gradients during the updating process. Therefore, BPTT is not sufficiently efficient to learn a
pattern from long-term dependency because of the gradient vanishing and the exploding gradient
problems [29]. This would be one of the crucial reasons leading to difficulties in the training of recurrent
neural networks [34–36].

2.4. Long Short-Term Memory (LSTM) Neural Network

Long Short-Term Memory, an evolution of RNN, was introduced by Hochreiter and
Schmidhuber [37] to address problems of the aforementioned drawbacks of the RNN by adding
additional interactions per module (or cell). LSTMs are a special kind of RNN, capable of learning
long-term dependencies and remembering information for prolonged periods of time as a default.
According to Olah [33], the LSTM model is organized in the form of a chain structure. However,
the repeating module has a different structure. Instead of a single neural network like a standard RNN,
it has four interacting layers with a unique method of communication. The structure of the LSTM
neural network is shown in Figure 4.
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A typical LSTM network is comprised of memory blocks called cells. Two states are being
transferred to the next cell, the cell state and the hidden state. The cell state is the main chain of
data flow, which allows the data to flow forward essentially unchanged. However, some linear
transformations may occur. The data can be added to or removed from the cell state via sigmoid gates.
A gate is similar to a layer or a series of matrix operations, which contain different individual weights.
LSTMs are designed to avoid the long-term dependency problem because it uses gates to control the
memorizing process.

The first step in constructing an LSTM network is to identify information that is not required and
will be omitted from the cell in that step. This process of identifying and excluding data is decided by
the sigmoid function, which takes the output of the last LSTM unit (ht−1) at time t − 1 and the current
input (Xt) at time t. Additionally, the sigmoid function determines which part from the old output
should be eliminated. This gate is called the forget gate (or ft); where ft is a vector with values ranging
from 0 to 1, corresponding to each number in the cell state, Ct−1.

ft = σ(W f [ht−1, Xt] + b f ). (2)

Herein, σ is the sigmoid function, and Wf and bf are the weight matrices and bias, respectively, of the
forget gate.

The following step is deciding and storing information from the new input (Xt) in the cell state as
well as to update the cell state. This step contains two parts, the sigmoid layer and second the tanh
layer. First, the sigmoid layer decides whether the new information should be updated or ignored
(0 or 1), and second, the tanh function gives weight to the values which passed by, deciding their level
of importance (−1 to 1). The two values are multiplied to update the new cell state. This new memory
is then added to old memory Ct−1 resulting in Ct.

it = σ(Wi [ht−1, Xt] + bi), (3)

Nt = tanh(Wn [ht−1, Xt] + bn), (4)

Ct = Ct−1 ft + Nt it. (5)

Here, Ct−1 and Ct are the cell states at time t − 1 and t, while W and b are the weight matrices and bias,
respectively, of the cell state.

In the final step, the output values (ht) is based on the output cell state (Ot) but is a filtered version.
First, a sigmoid layer decides which parts of the cell state make it to the output. Next, the output of the
sigmoid gate (Ot) is multiplied by the new values created by the tanh layer from the cell state (Ct),
with a value ranging between −1 and 1.

Ot = σ(Wo [ht−1, Xt] + bo), (6)

ht = Ot tanh(Ct). (7)

Here, Wo and bo are the weight matrices and bias, respectively, of the output gate.

2.5. Model Evaluation Criteria

To evaluate the performance of forecasting models in fields related to hydrology, NSE and RMSE
are statistical methods often used to compare predicted values with observed values. The NSE
measures the ability to predict variables different from the mean and gives the proportion of the initial
variance accounted for by the model [39]. The RMSE is frequently used to evaluate how closely the
predicted values match the observed values, based on the relative range of the data.
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NSE =

1−

n∑
i=1

(Oi − Pi)
2

n∑
i=1

(
Oi −Oi

)2

× 100, (8)

RMSE =

√√
1
n

n∑
i=1

(Oi − Pi)
2 . (9)

In the above equations, Oi and Pi are observed discharges and simulated discharges at time t,
respectively; Oi is the mean of observed discharges; and n is the total number of observations.

The NSE values range from −∞ to 1, and an RMSE equal to zero implies a perfect fit.
The LSTM model produces reliable results when the RMSE values are small, and the NSE values are
approximately 1.

3. Model Structure

Our research is closely related to open source software libraries. Python [40] is the programming
language of choice through the research. In addition, NumPy [41], Pandas [42], Matplotlib [43] libraries
are imported for processing, management and visualization data. We developed an LSTM model
depicted in Figure 4 based on TensorFlow [44], an open source software library provided by Google.
TensorFlow was originally constructed to conduct research on machine learning, deep learning,
and numerical computation using data flow graphs. However, this framework is sufficiently
comprehensive to be applicable to a wide variety of domains.

3.1. Scenarios

In this study we propose a simple and effective model for flood forecasting, and the characteristics
of the input data are also concerned because of its effects on model performance. These characteristics
include the type of input data, the quantity of input data, and the correlation of the measured data
series. Input data types include the daily rainfall and flow rate, collected from seven meteorological
stations and five hydrological stations in the study area. The length of the measured time series is
24 years, from 1961 to 1984. As a result, two various combinations of inputs (two scenarios) were
proposed for forecasting day one, day two, and day three flow rates at the Hoa Binh Station.

In the first scenario, we considered rainfall and discharge data observed as the input data for the
model. Thus, the time series of the rainfall and discharge measured at the eleven upstream gauge
stations, and the flow rate data at the target station were used for predicting the flow rate at the Hoa
Binh Station. In the second scenario, the input data of the model consists of the observed discharge
data at the five hydrological stations, the four upstream stations and the target station (Hoa Binh).

The total available data was subdivided into three non-overlapping sets for the purposes of
training, validation, and testing. Depending on the scenario, the size of the training data sets varies.
The first data set was used to train the LSTM model with data measured over 18 years (1961–1978).
The second data set, consisting of five years of data (1979–1983), was employed for validation purpose
on all scenarios to choose the best performance as well as the parameters for the proposed model.
The final data set was used for testing purposes to objectively verify the performance and accuracy
of the model in the flood peak forecast. We chose the flood peak in the year 1984 to test the model.
The daily series of test datasets were observed in 1984 from 1 January to 19 July. The maximum
discharge (10,000 m3/s) at the Hoa Binh Station occurred on 15 July 1984.

3.2. Model Design

The predicted results of the LSTM model in this paper depend only on the actual collected data at
the participating gauge stations, as stated above. In comparison with the hydraulic models of the river
system, the data are the boundary conditions of a hydraulic model. The LSTM models use the input
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data to update numerous values in the internal cell states. Contrastingly, the LSTM models do not
include the principles of mass conservation or momentum conservation. Therefore, the input data
does not include topography data. However, the LSTM models learn these physical principles during
the training and calibration processes from the input data and observed data, and are optimized to
forecast the discharges as accurately as possible.

The setup details are summarized in Table 3. Several training options and parameters of the
model were changed to select the best results. The adaptable parameters of the neuron network were
also updated depending on a given loss function of an iteration step.

Table 3. Details of the LSTM model setup.

Items Detail

Prediction Target

Discharge forecasting at Hoa Binh Station for:
- Day one
- Day two

- Day three

Input Variable
Observed daily rainfall and flow data include:
- Rainfall data at seven meteorological stations

- Flow rate data at five hydrological stations

Training Parameters
- Learning rate: 0.0001

- Number of units: 20; 30; 50
- Number of epochs: 100,000

The raw data of the proposed model consists of daily measured data series of flow and rainfall from
the hydro-meteorological stations within the Da River basin. This input data layer must be reformatted
into three-dimensional (3D) vectors to match the architecture of the LSTM model. The input vector
(3D) comprises of samples, time steps, and features with the shape num_samples, num_timesteps,
and num_features, respectively. The num_samples are the data rows or the total of time steps collected.
The num_timesteps are the past observation for the feature, i.e., a lag variable. The num_features are
the data columns or the number of gauge stations, which are twelve and five corresponding to the 1st
and 2nd scenarios, respectively.

In order for the LSTM model to learn the dependencies more effectively, there have been several
modifications related to the arrangement and format of data for the input layer. Instead of using
the input data vector as only the data at a specified time step, this vector has been formatted into a
sequential data with a selected sequence length of ten time-steps. This may explain that the changing
trend of the forecasted values can be seen from the observed values of the ten most recent time steps.

In fact, depending on the data structure, data type, and data characteristics, there will be different
choices for this sequence length value. For the time series problem, the influence of sequential lengths
on the predicted values depends closely on the observed frequency. For example, in the field of
hydrology, the water level values observed by the hour and observed by day will have different
tendencies and characteristics. Theoretically, when the value of sequential length increases, the model
can capture a better trend of change. However, the selection of this high value may make the LSTM
model coping with many difficulties such as consuming a large amount of time and resources of the
computer during the training process because the model must train for a complex neural network.
This may lead to the same limitations as the traditional RNN model mentioned above. Moreover,
when the value of the sequence length varies from five to 15 or more, the model demonstrates equally
excellent performance. Therefore, the sequence length value of 10 has been recommended for this study.

Another important problem in constructing the structure of a DNN model is the selection of
training parameters (hyper-parameters) such as optimizer, learning rate, number of units or number of
epochs. The recommended optimization algorithm for this study is Adam [45]. This is an extension
of stochastic gradient descent procedure to update network weights iterative based in training data,
which has been widely applied for deep learning application in computer vision and natural language
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processing recently. Furthermore, the chosen learning rate is 0.0001 instead of using the Adam
algorithm’s default value of 0.001. The selection of small values is aimed at making the training process
of the model slower and the curve showing the change of the loss function during training smoother.

In the LSTM model, the number of units is understood as the number of LSTM units per time step
of the LSTM network (or the number of units in each cell). In addition, there is no specific reference
structure for selecting the number of units in each cell. Therefore, different values of the number
of units are suggested in Table 2 to evaluate the effect of selection on the forecast results. Another
parameter of interest in establishing a model structure is the number of epochs. In deep learning,
one epoch is defined as when an entire dataset is passed forward and backward through the neural
network only once. In order to record the necessary information during training and validation,
the maximum number of epochs recommended is 100,000.

Several other minor changes have been applied to improve the effectiveness of the model. They can
be referred to as dropout and early stopping techniques to prevent overfitting problems [46]. Overfitting
occurs when a model learns the detail and noise in the training data to the extent that it negatively
impacts the performance of the model on new data (validation dataset). Early stopping is a widely
applied technique in DNN so that the model can stop training at the point when performance on a
validation dataset starts to degrade. The developed LSTM model is able to stop the training process if
the performance on the validation dataset does not improve after 2000 epochs.

4. Results and Discussion

The developed forecasting models were validated and tested on independent data. The NSE and
RMSE values were used to evaluate the qualitative and quantitative performance of the scenarios when
comparing the observational data and forecast values made during validation and testing process.
Depending on the scenario, the size of the training data sets varies. A five-year dataset (1979–1983)
was used for validation purposes, and the one-year dataset (1984) was utilized for testing purposes.

4.1. Validation Results

For the validation process, the flow forecast results corresponding to the scenarios for the Hoa
Binh Station are demonstrated in Table 4. The comparison results of the predicted and observed flow
data for a one-day forecasting model is shown in Figures 5 and 6.

Water 2019, 11, 1387 12 of 19 

 

S1_3d_3 12 50 2296 584.8 87.0 

2nd 
scenario 

S2_3d_1 5 20 3655 589.7 86.8 
S2_3d_2 5 30 4620 589.0 86.8 
S2_3d_3 5 50 4864 590.3 86.8 

Note: Case S1_1d_1 means that “the first scenario” _ “forecast for one-day” _ “order”; Other cases are similar. 

 
Figure 5. Comparison between the observed and predicted one-day flow values for the first scenario 
(case S1_1d_2) in the validation phase. 

 
(a)—case S1_1d_2          (b)—case S2_1d_2 

Figure 6. Scatter plot for one-day flow forecasting in the validation phase corresponding to the first 
scenario (a) and the second scenario (b). 

In Table 3, the input variable column is the number of data series collected from the measuring 
stations. Depending on the scenario, these values are not the same. The first scenario is a combination 
of rainfall and flow rate data, so the number of input variables is twelve. The corresponding value 
for the second scenario is five because the input data only consists of the flowrate data. The results in 
Table 3 indicates that the forecasted results of the first scenario have a slightly higher trend than the 
other. However, there is no significant difference in the prediction cases of flow for both scenarios 
(the largest difference is only about 1%). It can be said that both of these scenarios produce equally 
good results. In the case of forecasting the discharge one day in advance, the accuracy of the model 

Figure 5. Comparison between the observed and predicted one-day flow values for the first scenario
(case S1_1d_2) in the validation phase.



Water 2019, 11, 1387 12 of 19

Table 4. Summary of the results and parameters of the one-day model forecast (validation phase).

Forecast for Case Input
Variable

Number
of Units

Number
of Epochs

RMSE
(m3/s) NSE (%)

One day

1st
scenario

S1_1d_1 12 20 6500 149.6 99.1
S1_1d_2 12 30 8628 149.0 99.2
S1_1d_3 12 50 6971 151.3 99.1

2nd
scenario

S2_1d_1 5 20 7887 165.0 99.0
S2_1d_2 5 30 8474 163.4 99.0
S2_1d_3 5 50 10,132 164.0 99.0

Two days

1st
scenario

S1_2d_1 12 20 3636 366.1 94.9
S1_2d_2 12 30 5494 367.7 94.9
S1_2d_3 12 50 4772 367.4 94.9

2nd
scenario

S2_2d_1 5 20 7683 374.2 94.7
S2_2d_2 5 30 7361 370.9 94.8
S2_2d_3 5 50 7438 373.7 94.7

Three days

1st
scenario

S1_3d_1 12 20 2654 567.3 87.8
S1_3d_2 12 30 3075 573.1 87.5
S1_3d_3 12 50 2296 584.8 87.0

2nd
scenario

S2_3d_1 5 20 3655 589.7 86.8
S2_3d_2 5 30 4620 589.0 86.8
S2_3d_3 5 50 4864 590.3 86.8

Note: Case S1_1d_1 means that “the first scenario” _ “forecast for one-day” _ “order”; Other cases are similar.
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In Table 3, the input variable column is the number of data series collected from the measuring
stations. Depending on the scenario, these values are not the same. The first scenario is a combination
of rainfall and flow rate data, so the number of input variables is twelve. The corresponding value
for the second scenario is five because the input data only consists of the flowrate data. The results
in Table 3 indicates that the forecasted results of the first scenario have a slightly higher trend than
the other. However, there is no significant difference in the prediction cases of flow for both scenarios
(the largest difference is only about 1%). It can be said that both of these scenarios produce equally
good results. In the case of forecasting the discharge one day in advance, the accuracy of the model
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(NSE value) reaches well above 99% and the average error of 150 m3/s (RMSE value). For the two-day
and three-day flow forecast, the NSE values are approximately 95% and 87% respectively.

Figures 5 and 6 demonstrate a close correlation between the observed and predicted values for
forecasting one day of lead time for each scenario. There are essentially no significant differences
between the predicted cases. Figure 5 illustrates how the rainfall influences the forecasted flowrate
result due to the rain causing the flood flow. Rain peak usually occurs first followed by the flood
peak; the lag time depends on the basin’s characteristics. Figure 6 provides information regarding the
graphical performance indicator when the data pairs are close to the 45◦ line. Data pairs closest to the
45◦ line represent better prediction cases. The NSE value is almost unchanged in both scenarios (about
99%). A similar trend was witnessed in the case of a two-day and three-day forecast.

The results of the validation process also indicate that the constructed model can achieve equally
impressive performance even if some parameters such as the number of units or the number of input
variables have been changed. In addition to the selected values as shown in Table 2, several other cases
have been considered to assess the influence of the selection of parameter values to the forecasted
results. For example, the sequence length varies from five to 15 or the number of units varies from 10
to 100. However, all of these changes produce performance comparable to those represented in Table 3
and do not significantly improve the forecast results. Additionally, the results illustrate the rainfall
does not significantly influence the forecasted result of the flowrate.

4.2. Test Results

Two scenarios of forecasting models were tested on data not used for training and validation with
the purpose to objectively verify the performance of the model and the accuracy of the model when
forecasting the flood peak. We chose the flood peak in the year 1984 to test the model with the series of
the test dataset, which was observed daily in 1984 from 1 January to 31 December. During this period,
the highest peak flood at the Hoa Binh Station was recorded on 15 July with a measured flowrate of
10,000 m3/s. The performance of the models was determined using the NSE and RMSE metrics when
comparisons between the measured data and forecasted values were made.

4.2.1. Results for Testing Phase

The results of the testing process and prediction of flood peak for the two scenarios are summarized
in the Table 5. Additionally, Figures 7–10 illustrate the correlation between the observed and predicted
values in the two scenarios for three forecast cases.

Table 5. The results of the prediction model in the testing phase.

Predict for Case RMSE Test
(m3/s)

NSE Test
(%)

Forecasted
Peak (m3/s)

Observed
Peak (m3/s)

Relative
Error (%)

One day S1_1d_2 152.4 99.1 9340 10,000 6.6
S2_1d_2 151.5 99.1 9510 10,000 4.9

Two days S1_2d_1 360.7 94.9 8477 10,000 15.2
S2_2d_2 373.3 94.5 8632 10,000 13.7

Three days S1_3d_1 571.4 87.2 7181 10,000 28.2
S2_3d_2 594.0 86.2 7527 10,000 24.7
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The results in Table 4 demonstrate no significant difference in NSE and RMSE values during the
test phase in comparison to the validation phase. In all three predictions, the LSTM model produced an
equally high performance for both scenarios (NSE values are almost unchanged). Figures 8–10 present
the performance information as pairs of data represented. Data pairs closer to the 45◦ line indicate
better prediction results. The scatter plot for one-day flow forecasting in the testing phase (Figure 7)
illustrates a similarity in both scenarios with the average error in flow rate forecast of approximately
152 m3/s.

Water 2019, 11, 1387 14 of 19 

Figure 7. Comparison between the observed and predicted one-day flow values for the second 
scenario (case S2_1d_2) in the testing phase. 

(a)—case S1_1d_2  (b)—case S2_1d_2 
Figure 8. Scatter plot for one-day flow forecasting in testing phase corresponding to the first scenario 
(a) and the second scenario (b).
Figure 8. Scatter plot for one-day flow forecasting in testing phase corresponding to the first scenario
(a) and the second scenario (b).



Water 2019, 11, 1387 15 of 19
Water 2019, 11, 1387 15 of 19 

 

 
(a)—case S1_2d_1          (b)—case S2_2d_2 

Figure 9. Scatter plot for two-day flow forecasting in the testing phase corresponding to the first 
scenario (a) and the second scenario (b). 

 
(a)—case S1_3d_1          (b)—case S2_3d_2 

Figure 10. Scatter plot for three-day flow forecasting in the testing phase corresponding to the first 
scenario (a) and the second scenario (b). 

A similar trend was recorded in the two-day and three-day flow forecasting case. The 
comparison between the predicted and observed flow values in the testing phase demonstrates 
similarities between about 94.5% and 86.2% of the NSE values for two scenarios, respectively. The 
above-mentioned research results indicate that the LSTM model produces highly accurate and stable 
results in both the validation and test phases. Furthermore, the combination of input data 
characteristics demonstrate that flowrate data plays an important role in forecasting flood flow while 
the role of rainfall data is not clearly represented. It also can be seen from Table 2 that the correlation 
coefficients of rainfall data are less than 30% while these coefficients of flowrate range from 77% to 
97%. 

4.2.2. Results for Flood Peak Forecasts 

Figure 9. Scatter plot for two-day flow forecasting in the testing phase corresponding to the first
scenario (a) and the second scenario (b).

Water 2019, 11, 1387 15 of 19 

 

 
(a)—case S1_2d_1          (b)—case S2_2d_2 

Figure 9. Scatter plot for two-day flow forecasting in the testing phase corresponding to the first 
scenario (a) and the second scenario (b). 

 
(a)—case S1_3d_1          (b)—case S2_3d_2 

Figure 10. Scatter plot for three-day flow forecasting in the testing phase corresponding to the first 
scenario (a) and the second scenario (b). 

A similar trend was recorded in the two-day and three-day flow forecasting case. The 
comparison between the predicted and observed flow values in the testing phase demonstrates 
similarities between about 94.5% and 86.2% of the NSE values for two scenarios, respectively. The 
above-mentioned research results indicate that the LSTM model produces highly accurate and stable 
results in both the validation and test phases. Furthermore, the combination of input data 
characteristics demonstrate that flowrate data plays an important role in forecasting flood flow while 
the role of rainfall data is not clearly represented. It also can be seen from Table 2 that the correlation 
coefficients of rainfall data are less than 30% while these coefficients of flowrate range from 77% to 
97%. 

4.2.2. Results for Flood Peak Forecasts 

Figure 10. Scatter plot for three-day flow forecasting in the testing phase corresponding to the first
scenario (a) and the second scenario (b).

A similar trend was recorded in the two-day and three-day flow forecasting case. The comparison
between the predicted and observed flow values in the testing phase demonstrates similarities between
about 94.5% and 86.2% of the NSE values for two scenarios, respectively. The above-mentioned
research results indicate that the LSTM model produces highly accurate and stable results in both the
validation and test phases. Furthermore, the combination of input data characteristics demonstrate
that flowrate data plays an important role in forecasting flood flow while the role of rainfall data is not
clearly represented. It also can be seen from Table 2 that the correlation coefficients of rainfall data are
less than 30% while these coefficients of flowrate range from 77% to 97%.
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4.2.2. Results for Flood Peak Forecasts

The next step in evaluating the effectiveness of the LSTM model is to compare the maximum
flowrate between the forecasted value and the measured value in the test dataset. Accurate flood
forecasting will act as the precursor for planning, managing, and flood risk mitigation. In the 1984
test dataset, the maximum discharge value recorded at the Hoa Binh Station was 10,000 m3/s on July
15th. Base on the optimal parameters selected for the scenarios, the prediction results of the one-day,
two-day, and three-day flood peaks are depicted in Table 5.

The predicted flood peaks in both scenarios appear at the same time as the observed peaks.
An error value of approximately 5% and 14%, respectively, is the acceptable tolerance value in
the hydrological forecast for the case of forecasting the maximum flowrate one day and two days
ahead. This is because the accurate prediction of the maximum discharge value during the flood
season is difficult, especially for areas with complex topography and steep slopes like the study area.
Moreover, the figures in Table 5 indicate that in all forecast cases, the second scenario has a tendency to
provide a slightly better predictive performance than the first scenario in flood peak value prediction.
The difference between the relative error values in the forecast of the flood peaks of the two scenarios
ranges from 1.5% to 3.5%, with the highly accurate predicted results belonging to the second scenario.

The LSTM model is a data-driven model based on statistical relationships between input data and
output data. Therefore, the correlation between the data series at the target-forecast station and other
stations is one of the vital factors determining the accuracy of the model. Meanwhile, the correlation
between the series of precipitation data and the flowrate at Hoa Binh station is often significantly lower
than the correlation between flowrate stations (see Table 1). This explains why the second scenario
tends to forecast the largest flow value better than the first one, because occasionally the occurrence of
precipitation data may result in the flow forecast becoming less accurate.

The analysis described above proves the outstanding advantage of the LSTM model in its ability
to learn short dependencies effectively, and this model can completely be applied to forecast the flow
two days or even three days ahead with accuracy of over 86%. Data-based methods are an effective
approach with high accuracy to modeling the hydrological process owing to their simplicity, especially
for developing countries such as Vietnam, where the application of remote sensing technology in
constructing a real-time flood warning system is limited.

5. Conclusions

This paper has proposed an effective approach to flood forecasting based on the data-driven
method. The LSTM neural network model was constructed and carefully assessed to forecast one-day,
two-day, and three-day flood flow at the Hoa Binh Station on the Da River. Contrary to requiring a
variety of input data such as land-use and topography for rainfall-runoff simulation, the developed
model uses only the measured data information available at the target station and the upstream
meteorological and hydrological stations to forecast the flowrate at the target station for multi-step
output. The LSTM model has learned long-term dependencies between sequential data series and
demonstrated reliable performance in flood forecasting.

Two scenarios have been considered to assess the model’s performance in flowrate forecasting
and the influence of input data characteristics on the model’s flood forecasting capability. The model
was validated and tested by applying criteria such as NSE value, RMSE value, as well as relative error
values in forecasting the maximum flow rate using the independent data sets. For validation and testing
phases, both scenarios illustrated equally good performance. Additionally, there is no substantial
difference in the simulation results for all three discharge forecast cases. However, when considering
the flood peak forecasting factor, the second scenario indicated slightly better-forecasted results.

The aforementioned analysis revealed that the input data type has more influence than the quantity
of input data. For the data-driven model, when the correlation coefficient between the input data series
and the data at the target-forecast station is higher, the model will operate more efficiently, specifically
during the longer forecast period. In the case of flood forecasting, discharge data represented a more
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important role than rainfall data. Precipitation data does not clearly improve the accuracy of the
forecast results. Occasionally, the existence of this data causes noise in accurately predicting the
maximum flowrate value.

LSTM neural network (with Gated Recurrent Unit (GRU)) is one of the state-of-the-art architectures
designed to address problems of sequential data or time series effectively. Streamflow prediction
belongs to the class of sequential data problems because the observed data fluctuate continuously over
time. The LSTM-based model provides the most viable option for actual flood forecasting, instead
of traditional methods when input data is missing (not available at all sites) or difficult to obtain.
The LSTM model has been successfully applied to produce for one-day, two-day, and three-day flow
forecasting. In addition, the model can also be developed to provide streamflow forecasts with different
periods depending on forecasting requirements and data processing. For example, producing forecasts
for time steps of one-hour (one-hour, two-hour ahead) if data is observed with hourly frequencies or
producing forecasts for six-hour time steps (six-hour, twelve-hour ahead) if the data is observed every
six-hour. Another advantage of the data-driven model or LSTM model compared to physical-based
simulation models is the ability to produce high-performance streamflow predictions in areas affected
by the tide regime. These are areas where conventional hydrological models have not yet indicated
their effectiveness.

Despite the fact that the LSTM model resolves sequential data problems effectively, there are
several limitations that need to be considered. LSTM models, in general, are data-driven models that
result in the inadequate simulation of hydrological processes like physical-based models. Specifically,
LSTM (or ANN)-based models only provide highly accurate forecasts at specific locations in the
study area. Therefore, these models should be combined with meteorological models such as rainfall
forecasting model to obtain better performance with long-term forecasts.

The findings of this study suggest the potential of applying the LSTM model in the field of
hydrology in constructing and managing real-time flood warning system. This model is a viable
option for developing countries or large river basins such as the Da River basin, where the river basin
stretches from China to Vietnam. The streamflow at downstream (Vietnam) may fluctuate due to
flooding discharge from a large number of upstream dams and reservoirs.
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