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Abstract: River health is one of the important issues today because of various threats by multiple
anthropogenic stressors that have long-term impacts on the physical habitats, biodiversity, ecological
functions, and their services. The main objectives of this study is to diagnose the chemical and
biological river health in the watershed of Geum River with regard to the chemical regimes (N, P) and
fish community using multi-metric chemical pollution index (CPI), and the index of biotic integrity
model (IBI), respectively. The empirical models of sestonic chlorophyll, nutrients (N, P), and nutrient
ratios of N:P indicated that the watershed, including all sampling sites, was a phosphorus-limited
system. Analysis of fish trophic and tolerance guilds showed that the omnivore fish species and
tolerant fish species were dominant in the watershed, while the sensitive fish species decreased
downstream because of nutrient enrichments (such as TN, TP) and organic matter pollutions (such
as BOD, COD). The chemical model of CPI showed that 11 sampling sites were in the fair—good
condition, and 8 sites were in poor—very poor condition. Species composition analysis indicated that
Zacco platypus was most widely distributed in the watersheds and dominated the fish community.
The biological health of the watershed, based on the multimetric IBI model, was in poor condition and
was getting worse downstream. The degradation of the river health was matched with the chemical
health and showed a decreased abundance of insectivores and sensitive fish species. The outcomes of
the river health were supported by principal component analysis (PCA) and cluster analysis (CA) of
fish model metrics and the physicochemical parameters. Overall, our study suggests that river health
was directly influenced by the chemical pollutions of nutrients and organic matter inputs.

Keywords: river health; nutrients; organic matters; chemical pollution index (CPI) model; index of
biotic integrity (IBI) model; trophic and tolerance guilds

1. Introduction

River and streams provide multiple eco-services including clean water in sufficient quantity
and quality for agricultural, industrial, and residential uses, act as a hotspot of aquatic, riparian,
and migratory biota, and support fisheries and recreation for a human beings in a sustainable
manner [1,2]. With the rapid urbanization, industrialization, and intensive agricultural farming the
structure and function of the river and stream ecosystem are severely affected, which lead to the
significant degradation of water quality and ecosystem integrity [3]. As a result, the river and streams
ecosystem health assessment is getting more attention from scholars globally and has become a
fundamental and increasingly important environmental management issue worldwide, especially in
Australia [4], USA [5], Europe [6], Korea [7], and China [8].

The assessment of ecological health in river and streams cannot be diagnosed directly because it is
affected by their surrounding environments such as hydrology, water quality, physical form, riparian
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zone, and biological communities [9]. Earlier studies on the diagnosis of stream and river health
assessment have focused on the water quality factors [10]. However, recent research pointed out that
this method is not sufficient to determine the ecological health of the freshwater ecosystem [11].

To address this problem, two important approaches have been used to evaluate the ecological
health of the river and streams. One is chemical pollution index (CPI) based on water quality factors
and another is an index of biotic integrity (IBI) based on fish assemblages. The CPI model was primarily
suggested by Beach (1980) and after that, it was developed by many researchers in different regions of
the world to evaluate the chemical health status of the ecosystem [12–16].

A variety of biological indicators and methods are being used to evaluate the ecological health of
river ecosystems around the world. The US Environmental Protection Agency (EPA) used the Rapid
Bio-assessment Protocols (RBP) to diagnose the health of the aquatic ecosystem [5]. In 1981, the index
of biotic integrity based on fish assemblages was proposed by Karr to evaluate the biological health
status of the freshwater system [17], since then, this index has been adopted throughout the world
for assessing the effects of natural and human disturbance on the freshwater system [18–20]. The
previous research indicated that fish assemblages respond significantly and predictably to almost
all kinds of anthropogenic disturbances, including eutrophication, acidification, chemical pollution,
flow regulation, physical habitat alteration and fragmentation, human exploitation, and introduced
species [21–24]. That is why fish has been regarded as the best indicator to evaluate the ecological
health of the system.

In Korea, a model for health assessment of stream ecosystem using the fish community was
developed by An et al. in 2006 [25]. It is used for the health assessment of the aquatic ecosystem of the
four major rivers. Korea established the biological water quality assessment guidelines in 2006 [26].
Since 2007, it has been surveyed and evaluated including the representative points of the nationwide
watershed and the water quality measuring network [27]. Some previous research had been done to
evaluate the ecological health of the Geum River mainstream using integrative approaches including
water quality factors and biological communities [16,28]. The purpose of this study is (a) to diagnose the
chemical health of Geum River using CPI multi-metric model; (b) to analyze the species composition,
trophic and tolerance guilds and determine how are they correlated with water quality factors; (c) to
evaluate the biological health using index of biotic integrity model based on fish community; (d) to
predict the ecological health (chemical and biological) using artificial neural network model (ANN)
along with estimating the validity of ANN; (e) to determine the most important water quality factors
affecting the river health by principal component analysis (PCA).

2. Materials and Methods

2.1. Study Period and Sampling Sites

Geum River watershed is composed of urban, mountain, and agricultural land-use pattern. The
water quality parameters and fish composition are closely related to the land-use pattern. This study
was conducted using 19 sampling sites in the mainstream of the Geum-River watershed (Figure 1).
Geum River originates from Jangsu-eup, North Jeolla Province. It lies between the coordinates
of latitude 35◦34′47”–37◦03′03” and longitude 126◦40′25”–128◦03′53” and the watershed area is
17,537 km2 (Atique et al., 2019). The total reach length is 414 km and the average elevation is 85.31 m.
Fish composition and water quality parameters were investigated from May 2010 to June 2010 (The
original dataset can be shared upon written request but is subject to approval from the funding agency).
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measure the TN, BOD, and COD which was adopted by the Ministry of the Environment, Korea 
(MOE, 2006). The ascorbic acid method was used to analyze the total phosphorus (TP) which was 
also standardized by the Ministry of the Environment, Korea (MOE, 2006). Total suspended solids 
(TSS) were determined by pre-weighted Whatman GF/C filters method. Chlorophyll-a (CHL-a) 
concentration was measured by using a spectrophotometer (Bechman Model DU-65) after extraction 
in hot ethanol [29]. Nutrient analyses were performed thrice to ensure validity and CHL-a was 
measured twice. 

2.3. Fish Sampling Methods 

Fish sampling was performed based on the Ohio EPA (1989) method [30], which was modified 
by An et al. 2001 for the regional purpose [31]. Fish assemblages were sampled overnight from the 
Geum River using sets of fyke nets (FN; 20 m long and 2.4 m high, mesh size: 5 × 5 mm), gill nets 
(GN; 50 m long and 2 m high, mesh size 45 × 45 mm), trammel nets (TN; 50 m long and 1.0 m high, 
mesh size 12 × 12 mm). The cast net (mesh size: 7 × 7 mm) and kick net (mesh size: 4 × 4 mm) were 
used to catch the fish in run, riffle, and pool. The fyke net, gill net, and trammel net were installed 
along the shoreline using a small boat while the cast net and kick net were used in nearshore waters 
of the Geum River. The sampling distance was 200 m and the time was 60 min. After collecting the 
samples, the fish was identified and any abnormalities in those fish were also noted. Analysis of 
trophic and tolerance guilds was done by previous regional studies [32]. 
  

Figure 1. Sampling sites for Geum River watershed.

2.2. Water Quality Parameters

During our study period, we measured eight parameters namely, total nitrogen (TN), total
phosphorus (TP), and chlorophyll-a (CHL-a), electrical conductivity (EC), total suspended solids
(TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), and dissolved oxygen
(DO). A portable multi-parameter analyzer (YSI Sonde Model 6600) was used to measure the electrical
conductivity and dissolved oxygen. The chemical testing standard method was used to measure the
TN, BOD, and COD which was adopted by the Ministry of the Environment, Korea (MOE, 2006). The
ascorbic acid method was used to analyze the total phosphorus (TP) which was also standardized by
the Ministry of the Environment, Korea (MOE, 2006). Total suspended solids (TSS) were determined
by pre-weighted Whatman GF/C filters method. Chlorophyll-a (CHL-a) concentration was measured
by using a spectrophotometer (Bechman Model DU-65) after extraction in hot ethanol [29]. Nutrient
analyses were performed thrice to ensure validity and CHL-a was measured twice.

2.3. Fish Sampling Methods

Fish sampling was performed based on the Ohio EPA (1989) method [30], which was modified
by An et al. 2001 for the regional purpose [31]. Fish assemblages were sampled overnight from the
Geum River using sets of fyke nets (FN; 20 m long and 2.4 m high, mesh size: 5 × 5 mm), gill nets (GN;
50 m long and 2 m high, mesh size 45 × 45 mm), trammel nets (TN; 50 m long and 1.0 m high, mesh
size 12 × 12 mm). The cast net (mesh size: 7 × 7 mm) and kick net (mesh size: 4 × 4 mm) were used
to catch the fish in run, riffle, and pool. The fyke net, gill net, and trammel net were installed along
the shoreline using a small boat while the cast net and kick net were used in nearshore waters of the
Geum River. The sampling distance was 200 m and the time was 60 min. After collecting the samples,
the fish was identified and any abnormalities in those fish were also noted. Analysis of trophic and
tolerance guilds was done by previous regional studies [32].
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2.4. Chemical Pollution Index (CPI) Model

To diagnose the chemical health of the stream, the modified CPI model was performed [15]. The CPI
composed of eight metrics such as M1—total nitrogen (TN, mgL−1), M2—total phosphorus (TP, µgL−1),
M3—TN:TP ratio, M4—biological oxygen demand (BOD, mgL−1), M5—total suspended solids (TSS,
mgL−1), M6—electrical conductivity (µScm−1), M7—chlorophyll (CHL, µgL−1), and M8—dissolved
oxygen (DO, mgL-1). The CPI was calculated using the following formula: CPI = 1/8 (CTN/CTN0

+ CTP/CTP0 + CTN:TP/CTN:TP0 + CBOD/CBOD0 + CTSS/CTSS0 + CEC/CEC0 + CCHL/CCHL0 − CDO/CDO0).
Where, CTN,TP,TN:TP,BOD,TSS,EC,CHL,DO is the measured value and CTN0,TP0,TN:TP0,BOD0,TSS0,EC0,CHL0,DO0

is the critical or standard value which was defined by the Korean Ministry of Environment. It is
widely accepted that TP, TN, and TN:TP ratio are the indicators of nutrient pollution in the river
system whereas BOD, TSS, and EC are the pointers of organic pollution, non-algal turbidity, and ionic
pollution, respectively [7,8]. Trophic status of the waterbody can be determined by the concentration
of CHL-a. DO can influence the organism’s life within the waterbody and it is an important indicator
of pollution and eutrophication in rivers [8]. The chemical health has been categorized as excellent
(<0), good (0.0–1.0), fair (1.1–2.0), poor (2.1–3.0), and very poor (>3.1).

2.5. Index of Biotic Integrity (IBI) Model

The biological health assessment of the Geum River was diagnosed by the multi-metric IBI model
based on fish communities [32]. In the IBI model, we used eight metrics which were modified by An
et al. (2006), such as, M1—total number of native fish species, M2—number of riffle benthic species,
M3—number of sensitive species, M4—proportion of individuals as tolerant species, M5—proportion of
individuals as omnivore species, M6—proportion of individuals as native insectivore species, M7—total
number of native individuals, and M8—percent of individuals with anomalies [25]. Each metric had
been assigned as scored 5, 3, and 1. The Geum River health condition was evaluated based on the
obtained scores and the categories are excellent (36–40), good (28–34), fair (20–26), poor (14–18), and
very poor (8–13).

2.6. Artificial Neural Network, Principal Component Analysis, and Cluster Analysis

The nonlinear nature of water quality and fish data makes it difficult to interpret the spatio-temporal
variations and ecological health of the river. For this reason, statistical learning approaches (ANN)
and multivariate statistical approaches (PCA and CA) are used for providing the representative and
reliable analysis and drawing out meaningful conclusions. An artificial neural network is a good tool
for the simplification of complex non-linear physical, chemical, and biological data. This statistical
tool has been regarded as one of the most effective tools for the prediction of ecological dynamics and
variations [33]. We used various chemical and biological variables as the input layer to predict the
ecological health of the Geum River watershed and to estimate the validity of ANN for forecasting
of river health. To determine the accuracy of ANN, we used some accuracy metrics such as mean
absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The lower
MAE and RMSE values indicate a better model, while the higher R2 value indicates a better model.

The principal component analysis (PCA) was used to determine the most important water quality
factors affecting the ecological health of the Geum River watershed. The cluster analysis (CA) was
carried out to make a strong spatial association based on water quality parameters and fish composition.

2.7. Statistical Analysis

Log-transformed regression analysis of water quality parameters was performed in Sigma Plot
version 10 [34]. Principal component and cluster analysis were done using PAST software [35]. The
artificial neural network analysis was performed by R 3.5.2 version.
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3. Results and Discussion

3.1. Dynamics of Water Quality Parameters

The physicochemical parameters of the Geum River watershed varied from upstream to
downstream region and showed a distinct heterogeneity feature (Figure 2). The concentration
of TP and TN was lower in G01–G10 sites, while it was higher in G11–G19 sites. In site G10, the
TN:TP ratio was higher compared to the other sites, suggesting that the site is highly P-limited. The
value of BOD increased from site G01 to G18. The other parameters (COD, TSS, EC, CHL) also
followed the same pattern. Results of the present study revealed that the nutrient (TN, TP, TN:TP
ratios) regime, organic content (BOD, COD), suspended solids (TSS), ionic contents (EC), and primary
productivity (CHL) was highly affected by the land-use pattern of the Geum River watershed. As a
result, the upstream of Geum River watershed was minimally influenced by the water quality factors
in comparison to the downstream region, which is in line with the findings of Atique and An (2018)
in the Korean watersheds [16]. Kim et al. (2010) suggested that because of the higher flushing rate
from the upstream to downstream, the concentrations of physicochemical parameters were higher
downstream [36].
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3.2. Spatial Distribution of Fish Assemblages

The distribution of fish assemblages highly fluctuated from upstream to the downstream of the
Geum River watershed and did not show a distinctive pattern (Figure 3). The highest number (18)
of native fish species was found in G12 site whereas it was lower (3) in sites G16–G18. It was a
remarkable finding that the total number of native individuals were much lower in the downstream site
G19. The relative abundance of tolerant species fluctuated from site G01 to G19. Another significant
finding was that no sensitive species were found in sites G09 and G10, especially in the downstream
region. It means that the downstream region is highly polluted by natural and anthropogenic activities,
making it an unsuitable habitat for the sensitive species. Our results concurred with some previous
findings [16,37]. The omnivore fish species was higher in site G17 and lower in G13. Insectivores were
not observed in sites G16 and G17 during the study period.
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3.3. Empirical Model of Chlorophyll and Nutrients

An empirical model was used to define whether the aquatic ecosystem was phosphorus
limited, nitrogen-limited, or phosphorus–nitrogen co-limited. The empirical model analysis among
log-transformed CHL-TP, CHL-TN, and CHL-EC showed a strong positive linear relationship in the
watershed (Figure 4). In CHL-TP (R2 = 0.45, p < 0.01, n = 19) model, the variation of CHL was explained
45% for the concentration of TP wherein CHL-TN (R2 = 0.56, p < 0.01, n = 19) model, it was 56 percent
for TN. The change of CHL concentration in the watershed accounted for 18% with TN:TP (R2 = 0.18,
p < 0.01, n = 19) and 59% with EC (R2 = 0.59, p < 0.01, n = 19). The TN:TP ratio was more than 20, means
that the mainstream of Geum River watershed was P-limited which is similar with some previous
studies in the Korean watershed [16,37]. The present study indicates that the electrical conductivity
was highly altered in the watershed, which means that degradation of water quality happens because
of urban and agricultural run-off [16].
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3.4. Fish Trophic and Tolerance Guilds in Relation to Water Quality Parameters

The abundance of trophic guild is closely related to water quality factors in the watershed
(Figure 5). The highest abundance of omnivores was found in the concentration between 20 to 80 µgL−1

of TP; on the other hand, the lowest abundance of omnivores was observed in 140 µgL−1 of TP. The
abundance of insectivores with TP did not display any specific functional relationship. It is notable
that the carnivores showed a positive functional relationship with TP, suggesting carnivore richness
increased with the concentration of TP; hence carnivores were abundant in the watershed. A similar
pattern was observed for carnivores in relation to TN, BOD, COD, and CHL. The omnivores suggested
a negative functional relationship with the concentration of TN, BOD, COD, and CHL. The abundance
of insectivores points out a positive linear relationship with nutrients (TP, TN), organic matters (BOD
and COD), and primary productivity (CHL).
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Figure 5. Trophic guild analysis with water quality factors (TN—total nitrogen, TP—total phosphorus,
N:P ratios, BOD—biological oxygen demand, COD—chemical oxygen demand, CHL—chlorophyll).

Tolerance guilds of the watershed are highly influenced by the nutrients (TN and TP), organic
contents (BOD and COD), and chlorophyll (Figure 6). The relative abundance of tolerant and
intermediate species presented a matchless relationship with the concentration of TP. The abundance
of sensitive species was lower in the Geum River watershed and they can live with a minimum
concentration of TP, TN, BOD, COD, and CHL. The sensitive species showed quick response to
increasing levels of nutrients, organic matters, and eutrophication in the watershed. The abundance of
tolerant and intermediate species disclosed a positive linear functional relationship with TP, TN, COD,
BOD, and chlorophyll. In contrast, sensitive species exhibited a negative functional relationship with
TP, TN, COD, and chlorophyll.
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Figure 6. Tolerance guild analysis with water quality factors (TN—total nitrogen, TP—total phosphorus,
N:P ratios, BOD—biological oxygen demand, COD—chemical oxygen demand, CHL—chlorophyll).

It is widely accepted that nutrients, organic matters, and chlorophyll can alter the trophic and
tolerance guilds in the watershed. Earlier research on trophic and tolerance guilds revealed that the
tolerant species had a positive linear relationship and sensitive species had a negative functional
relationship with water quality parameters, which supports our present research [16,30]. The higher
abundance of omnivores and carnivores indicates that the watershed is polluted because of excessive
nutrient and organic matter loadings from upstream to downstream [37].
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3.5. Chemical Health Assessment Using Chemical Pollution Index (CPI) Model

The chemical health assessment of the watershed was carried out by a modified chemical pollution
index. In the CPI model, we used eight water quality factors (Table 1). The concentration of TN
and TP exceeded the standard value according to the Ministry of Environment of Korea. The value
of TN:TP ratio indicates that the Geum River watershed is a P-limited system and trophic status is
mesotrophic to oligotrophic. The BOD concentration was >1 mgL−1 in all sites except site G03 and G10,
suggesting that the watershed has been degraded. Suspended solids and ionic contents were higher in
the downstream region because of high flushing rate, agricultural and urban run-off. The CHL values
from the sites G09 to G18 were higher, suggesting that these sites are in eutrophic condition and are
highly deteriorated. The CPI model suggested that the upstream of the watershed was in good–fair
condition whereas it was in a poor–very poor condition in the downstream region except for G19. Some
previous studies advocated that TP, TN, and TN:TP are the key regulating factors for the algal growth
in the waterbody [16,38]. The present research signposts that watershed health is in an anomalous
state because of excessive nutrient and organic matter and ionic content enrichment. Organic pollution,
non-algal turbidity, and ionic pollution can be determined by the concentration of BOD, TSS, and EC,
correspondingly, in the watershed. Our results harmonized with some aforementioned findings that
downstream is largely affected by water pollutants [16,39].

3.6. Fish Community Analysis

Analysis of species composition in the watershed based on relative abundance (RA), the total
number of individuals (TNI), and the total number of species (TNS) along with tolerance, trophic, and
habitat guilds showed a substantial disproportion (Table 2). A total of 44 species were observed in
the mainstream of the Geum River watershed. The dominated species in the watershed were Zacco
platypus (32.99%), Zacco koreanus (12.43%), and Squalidus chankaensis tsuchigae (11.19%), etc., which was
similar with some previous studies on watershed [28]. One endangered species (Pseudopungtungia
nigra) was found in the upstream of the watershed. Three exotic fish (Micropterus salmoides, Lepomis
macrochirus, and Cyprinus carpio) were observed in the watershed.

Analysis of tolerance guilds showed that 6 sensitive species, 25 intermediate species, and 13
tolerant species were detected in the watershed. Sensitive species with relatively high abundance was
Zacco koreanus (12.43%), while tolerant species was Zacco platypus (32.99%), and intermediate species
was Squalidus chankaensis tsuchigae (11.19%). In the Geum River watershed, the abundance of tolerant
species was higher. According to the spatial tolerance guild, tolerant species accounted for 71.4% of the
total species in G19 of downstream. The ratio of tolerant species increased as it moved from upstream
to downstream. According to the category of trophic guilds, insectivore was 19 species, carnivore
was 7 species, and the omnivore was 18 species. It has been reported that an increase in the inflow of
organic and toxic substances decreases the relative abundance of sensitive species while increases the
abundance of insectivore species [17].
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Table 1. Chemical health assessment using the chemical pollution index (CPI) model.

Model Metric G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19

M1-TN
(mgL−1) 2.52 1.68 1.82 1.41 2.06 1.98 2.07 2.02 2.09 1.62 6.17 4.6 2.86 2.60 5.562 2.6425 2.406 5.53 2.92

M2-TP
(µgL−1) 57.5 14 17 52 57 50.5 56 50 26 7.5 148 170 137.5 95.5 156.5 108 83 142 117

M3-TN:TP 43.95 120.3 107.32 27.1 36.25 39.31 37.00 40.4 80.61 150 41.69 27.05 20.84 27.30 35.53 24.46 28.98 39 24.97

M4-BOD
(mgL−1) 1.2 1.05 0.95 1.8 0.7 1.5 1.3 1.2 1.15 0.85 2.45 3.6 3.5 3.15 4.85 3.85 3.05 4.35 2.15

M5-TSS
(mgL−1) 12.6 3.55 2.4 4.8 11.55 10.45 4.65 4.6 4.3 2.8 22.3 28.6 21.45 22.1 28.55 16.35 13.05 22 8.3

M6-EC
(µScm−1) 162.5 111.5 105.5 113 120.5 156 152 50 156 142 213 264.5 244 245 254.5 245 233.5 259.5 217

M7-CHL
(µgL−1) 7.2 1 1.85 2.8 1.4 3.2 2 3 24.95 4.35 30.55 60.45 44.05 43.45 87.2 53.1 20.2 68.8 4

M8-DO
(mgL−1) 10.95 9.15 10 8.4 11 10.25 9.5 9.3 10.5 11.1 10.65 10.15 9.9 6.25 10.8 8.9 8.1 8.85 8.2

CPI Value 1.32 0.69 0.65 0.82 0.89 1.046 0.82 0.76 1.72 0.98 3.46 5.02 3.79 3.63 6.32 3.94 2.26 5.27 1.49

Chemical
Criteria Fair Good Good Good Good Good Good Good Fair Good Very

Poor
Very
Poor

Very
Poor

Very
Poor

Very
Poor

Very
Poor Poor Very

Poor Fair
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Table 2. Species composition analysis (To—tolerance guild, Tr—trophic guilds, Ha—habitat guilds, TS—tolerant species, SS—sensitive species, IS—intermediate
species, O—omnivores, I—insectivores, C—carnivores, RB—riffle benthic, TNI—total number of individuals, TNS—total number of species, RA—relative abundance,
¥—exotic fish).

Species To Tr Ha G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 TNI RA

Zacco platypus TS O 201 86 113 38 90 34 171 35 30 46 7 4 3 19 7 884 32.99

Zacco koreanus SS I 32 161 46 32 37 22 3 333 12.43

Squalidus chankaensis
tsuchigae IS O 1 1 61 237 300 11.19

Microphysogobio jeoni IS I 1 159 17 177 6.60

Opsarichthys uncirostris
amurensis TS C 1 1 1 4 25 9 31 4 30 1 107 3.99

Hamibarbus labeo TS I 2 1 1 4 9 23 31 12 1 84 3.13

Squalidus japonicus
coreanus TS O 14 11 1 10 26 12 1 75 2.80

Squalidus gracilis majimae IS I 5 11 49 4 69 2.57

Pungtungia herzi IS I 3 11 11 5 1 25 3 8 1 68 2.54

Acheilognathus koreensis IS O 3 60 4 1 68 2.54

Acheilognathus lanceolatus IS O 8 6 37 4 5 2 1 63 2.35

Pseudogobio esocinus IS I 6 2 3 11 12 4 4 1 3 12 3 2 63 2.35

Microphysogobio yaluensis IS O RB 22 14 5 12 1 54 2.01

Rhinogobius brunneus IS I RB 23 6 1 6 2 2 3 1 44 1.64

Tridentiger brevispinis IS I RB 1 12 6 1 16 36 1.34

Sarcocheilichthys variegatus
wakiyae IS I 9 18 1 28 1.04

Acheilognathus yamatsuatea IS O 4 9 2 6 6 27 1.01

Odontobutis platycephala SS C 4 8 7 1 5 25 0.93

Squaliobarbus curriculus IS O 3 3 2 4 6 2 1 21 0.78

Coreoleuciscus splendidus SS I RB 3 17 1 21 0.78
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Table 2. Cont.

Species To Tr Ha G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 TNI RA

Pseudopungtungia nigra SS I 3 2 11 2 2 20 0.75

Hamibarbus longirostris IS I 2 4 1 1 1 3 2 1 2 17 0.63

Hemiculter eigenmanni TS O 2 7 5 14 0.52

Pseudobagrus koreanus IS I RB 1 5 1 4 11 0.41

Iksookimia koreensis IS I RB 6 2 1 9 0.34

Micropterus salmoides¥ TS C 4 4 1 9 0.34

Acanthorhodeus gracilis IS O 2 4 1 7 0.26

Odontobutis interrupta IS C 3 4 7 0.26

Coreoperca herzi SS C 2 1 3 1 7 0.26

Rhodeus uyekii IS O 5 5 0.19

Erythroculter erythropterus TS C 1 1 2 4 0.15

Acanthorhodeus
macropterus IS O 1 2 3 0.11

Carassius auratus TS O 1 1 1 3 0.11

Cyprinus carpio¥ TS O 1 2 3 0.11

Pseudorasbora parva TS O 1 2 3 0.11

Acheilognathus rhombeus IS O 2 2 0.07

Rhynchocypris oxycephalus SS I 2 2 0.07

Siniperca scherzeri IS C 1 1 0.04

Cobitis lutheri IS I 1 1 0.04

Sarcocheilichthys
nigripinnis morii IS I 1 1 0.04

Pseudobagrus fulvidraco TS I 1 1 0.04

Misgurnus mizolepis TS O 1 1 0.04

Misgurnus anguillicaudatus TS O 1 1 0.04

Lepomis macrochirus¥ TS I 1 1 0.04

TNS 16 9 15 14 14 14 6 15 12 4 5 18 13 9 9 4 3 3 7

TNI 314 285 257 136 181 126 196 185 339 57 28 134 241 34 71 38 20 30 8 2680
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3.7. Biological Health Assessment Using the Index of Biotic Integrity (IBI) Model

The index of biotic integrity (IBI) model based on fish assemblages had been used to assess the
ecological health of the mainstream in Geum River watershed (Table 3). The average IBI value in
the mainstream of the watershed was 17.68, which indicates that the watershed is in poor condition.
Among the 19 sites, 8 sites were in fair condition, 6 sites were in poor condition, and 5 sites were in
very poor condition. The upstream of the watershed was in fair condition but degraded from upstream
to downstream because of the higher abundance of tolerant and omnivore fish species as well as a
lower amount of sensitive species and insectivores. In addition, anomalies were collected at G09. The
water quality of Lake Daecheong deteriorated because of the inflow of nutrients from tributaries and
dominant tolerant species.

Sites G11, G12, and G13 are downstream of Lake Daecheong and categorized to be in fair and
poor state. Sites G15, G16, and G17, down of Baekje Bridge and Baekma River Bridge, revealed that the
ecological health was in very poor condition. The abundance of native, riffle benthic, and sensitive fish
species declined with an increase in the excessive nutrients and organic matter content and non-algal
turbidity, which strongly supports our present study [16]. In 1999 and 2000, the USEPA put forward
that the higher abundance of omnivores, tolerant, carnivores was found in the degraded system [5,40].

Table 3. Biological health assessment using index of biotic integrity model (TNS: total number of
native species, RBS: total number of riffle benthic species, SS: total number of sensitive species, % TS:
% individuals as tolerant species, % OS: % individual as omnivores, % IS: % individuals as native
insectivores, TNI: total number of individual, % AI: % individuals with anomalies.

Sampling
Sites

Model Metrics

TNS RBS SS % TS % OS % IS TNI % AI IBI Health
Status

G01 16(3) 4(3) 3(3) 64.97(1) 72.29(1) 26.11(3) 314(5) 0(5) 24 Fair

G02 9(1) 4(3) 4(3) 30.18(1) 30.18(3) 67.02(5) 285(5) 0(5) 26 Fair

G03 15(3) 4(3) 4(3) 44.75(1) 71.21(1) 25.29(3) 257(5) 0(5) 24 Fair

G04 14(1) 1(1) 4(3) 29.41(1) 38.97(3) 59.56(5) 136(1) 0(5) 20 Fair

G05 14(1) 0(1) 3(3) 52.49(1) 55.80(1) 37.57(3) 177(3) 0(5) 18 Poor

G06 14(1) 4(3) 5(5) 26.98(1) 47.62(1) 44.44(3) 126(1) 0(5) 20 Fair

G07 6(1) 2(3) 0(1) 87.76(1) 90.31(1) 9.18(1) 196(1) 0(5) 14 Poor

G08 15(3) 3(3) 2(1) 22.70(1) 83.24(1) 14.59(1) 185(1) 0(5) 16 Poor

G09 11(1) 0(1) 0(1) 24.19(1) 86.14(1) 5.31(1) 335(3) 2.7(1) 10 Very Poor

G10 4(1) 1(1) 0(1) 87.72(1) 80.70(1) 19.30(1) 57(1) 0(5) 12 Very Poor

G11 5(1) 0(1) 0(1) 57.14(1) 25.00(3) 75.00(5) 28(1) 0(5) 18 Poor

G12 18(3) 3(3) 0(1) 39.55(1) 23.13(3) 69.40(5) 134(1) 0(5) 22 Fair

G13 12(1) 0(1) 0(1) 26.97(1) 5.81(5) 80.91(5) 240(3) 0(5) 22 Fair

G14 9(1) 0(1) 0(1) 23.53(1) 23.53(3) 64.71(5) 34(1) 0(5) 18 Poor

G15 8(1) 1(1) 0(1) 87.32(1) 47.89(1) 9.86(1) 69(1) 0(5) 12 Very Poor

G16 3(1) 0(1) 0(1) 89.47(1) 97.37(1) 0.0(1) 37(1) 0(5) 12 Very Poor

G17 3(1) 0(1) 0(1) 70.00(1) 100.00(1) 0.0(1) 20(1) 0(5) 12 Very Poor

G18 3(1) 1(1) 0(1) 40.00(1) 6.67(5) 93.3(5) 30(1) 0(5) 20 Fair

G19 6(1) 1(1) 0(1) 75.00(1) 25.00(3) 25.00(3) 7(1) 0(5) 16 Poor

3.8. Ecological Health in Relation to Chemical Parameters and Fish Model Metrics

The ecological health of the watershed is closely related to water quality parameters (Figure 7). The
ecological health of the watershed showed a linearly decreasing trend with increasing the concentration
of TP, TN, BOD, COD, TSS, and CHL. The ecological health are related with TP (r = −0.37, p < 0.01),
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CHL (r = −0.37, p < 0.01), BOD (r = −0.42, p < 0.01), and COD (r = −0.47, p < 0.01) in the watershed.
It indicates that water quality parameters affect the ecological health of rivers. The ecological health
declined with the increased relative abundance of omnivores (R2 = 0.31, r = −0.55, n = 19, p < 0.01), and
tolerant species ((R2 = 0.25, r = −0.50, n = 19, p < 0.01), Figure 8). In the IBI model, regression analysis
of IBI-omnivores and IBI-tolerant species was explained as 31% and 25%, respectively. The ecological
health of the watershed showed an upward trend with the increasing richness of insectivores, sensitive
species, native fish and individuals. The empirical relationship between IBI-insectivores (R2 = 0.45,
r = 0.67, n =19, p < 0.01) and IBI-total number of native fish species (R2 = 0.30, r = 0.55, n = 19, p < 0.01)
showed a strong positive relationship in comparison to IBI-sensitive species (R2 = 0.19, r = 0.44, n = 19,
p < 0.01) and IBI-total number of native individuals (R2 = 0.15, r = 0.39, n = 19, p < 0.01). The present
result concurred with the previous finding of Lee et al. (2018) and USEPA (1999 and 2000) [5,28,40].Water 2019, 11, x FOR PEER REVIEW 15 of 22 
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Figure 7. Index of biotic integrity (IBI) in relation to water quality parameters in the Geum
River watershed (TN—total nitrogen, TP—total phosphorus, BOD—biological oxygen demand,
COD—chemical oxygen demand, TSS—total suspended solids, CHL—chlorophyll).
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Figure 8. IBI with trophic and tolerance guilds and TNS and TNI in the watershed.

3.9. Prediction of Chemical Pollution Index and Index of Biotic Integrity Using Artificial Neural Network
(ANN) Model

The performance and validity of ANN is shown in Figures 9–11. The chemical pollution index
(CPI) model was predicted by using the ANN model using nine water quality factors (Figure 9). The
observed CPI are highly correlated with predicted CPI (R2 = 0.99, RMSE = 0.08, MAE = 0.06, p < 0.01).
In CPI prediction model, the CHL was the most important variable. We used a different biological and
chemical variable to predict the IBI value in the watershed (Figures 10 and 11). To see the performance
of the ANN model, we used a different input variable. The 17 inputs ANN (R2 = 0.98, RMSE = 0.64,
MAE = 0.47, p < 0.01) and 8 inputs ANN (R2 = 0.97, RMSE = 0.68, MAE = 0.49, p < 0.01) model showed
greater predictability performance in comparison to 9 (R2 = 0.73, RMSE = 2.39, MAE = 1.71, p < 0.01)
and 5 (R2 = 0.91, RMSE = 1.37, MAE = 1.10, p < 0.01) inputs ANN model. CHL, TSS, TNI, AI, N:P
were the most important factors for the prediction of IBI value in the watershed. Our present study
suggested that the statistical learning approach ANN is one of the good tools to predict the ecological
health of the river system, which is concurred with the previous studies of Lee et al. 2018 [28].
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Figure 11. Variable importance in ANN to predict IBI model (TN—total nitrogen, TP—total phosphorus,
N:P ratios, BOD—biological oxygen demand, COD—chemical oxygen demand, TSS—total suspended
solids, EC—electrical conductivity, CHL—chlorophyll, DO—dissolved oxygen, TNS—total native
fish species, RBS—riffle benthic species, SS—sensitive species, TS—tolerant species, IS—intermediate
species, TNI—total number of individuals, AI—anomalies).



Water 2019, 11, 1729 19 of 22

3.10. Principal Component Analysis (PCA) in Relation to Chemicals and Fish Metrics

The principal component analysis was carried out to extract the most important factors and
physicochemical parameters affecting the ecological health of the watershed (Figure 12). Because of
the complex relationships among water quality factors, trophic and tolerance guilds, it was difficult to
draw clear conclusions. However, not only can principal component analysis extract the information
to some extent and explain the structure of the data in detail on spatial characteristics by clustering the
water quality parameters and fish guilds, but it can also describe their different characteristics and
help to elucidate the relationship between water quality parameters and fish guilds [41]. The first and
second axis of PCA accounts for approximately 60.97% and 15.77% of the total variance, respectively.
The abundance of tolerant species, carnivores, omnivores were dominant in downstream, indicating
that the downstream health condition was deteriorated because of organic and nutrient pollutants and
excessive chlorophyll growth. The present results are similar to that of Atique and An (2018) and Lee
et al. (2018) [16,28].
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Figure 12. Principal component analysis based on water quality factors and fish guilds. TN—total
nitrogen, TP—total phosphorus, N:P ratios, BOD—biological oxygen demand, COD—chemical oxygen
demand, TSS—total suspended solids, EC—electrical conductivity, CHL—chlorophyll, SS—sensitive
species, TS—tolerant species, IS—intermediate species, % O—omnivores, % C—carnivores, %
I—insectivores).

3.11. Site Grouping by Cluster Analysis (CA)

The cluster analysis (CA) is a strong tool for solving classification problems (Figure 13). The
objective of CA is to place factors or variables into groups such that the degree of association is strong
between members of the same cluster and weak between members of different clusters [41,42]. In this
study, CA showed a strong spatial association on the basis of variations of water quality factors and
fish assemblages. The dendrogram indicates pollution status as well as the effect of anthropogenic
activities at the sampling sites. It provides a visual summary of the clustering processes, presenting a
picture of the groups and their proximity. Cluster analysis (CA) was used to detect similarity among
19 sampling sites. The Bay–Curtis similarity analysis confirmed that there is a similarity of 87% among
sites G11, G12, G18, G13, and G14. The generated dendrogram grouped into three clusters based on
70% of their similarity of physicochemical parameters and fish trophic and tolerance guilds. Using the
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Bay–Curtis analysis (up to 65% similarity) we categorized the watershed into two regions including
upstream (G01, G02, G03, G04, G05, G06, G07, G08, G09, G10) and downstream (G11, G12, G13, G14,
G15, G16, G17, G18, and G19).
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4. Conclusions

In the present study, the chemical parameter model of CPI and the biological model of the index
of biotic integrity (IBI) were used to assess the river health in the watershed. Generally, the chemical
health of the upstream was in good-fair condition because of fewer human disturbances, while it
was poor to very poor condition in the downstream region because of nutrient, organic, and ionic
enrichments. The biological health based on IBI model also suggested that the watershed health was in
fair to very poor condition. The ANN model also indicated that the chemical and biological health
of the Geum River was in fair to very poor condition. The PCA and cluster analysis revealed that
the abundance of tolerant and omnivore species was dominant because of excessive nutrients and
organic matter in the watershed. The overall ecological health of the Geum River was in an abnormal
condition and needs immediate actions for proper management.
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