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Abstract: This paper reframes the socio-hydrology analysis as an optimization problem. To achieve 
this, we first develop a valuation scheme to estimate net benefits of development in a flood plain, 
consisting of benefits obtained from land and housing, less the costs of flood management and flood 
damage. Then we look for an optimal safety factor for the levee heightening strategy within the 
‘Technosociety’ scenario for a given time series of future flood events. This is further extended to 
finding an optimal strategy in the case of uncertainty concerning flood timings and intensities. We 
suggest an approach for both stationary and non-stationary evolution of flood dynamics and 
examine how the levee heightening strategy is affected by the magnitude of climate change. We find 
that the preferred management option depends strongly on the value of the land services the area 
provides. 

Keywords: river flooding; extreme events; generalized extreme value distribution; non-stationarity; 
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1. Introduction 

In an important study [1], the authors examined the feedback between physical and social 
processes when modeling the management of flood risk. They argued that two important effects 
determine the social response to floods: the adaptation effect and the levee effect. The former relates 
to actions taken after a flood event so that the consequences of future events are reduced while the 
latter relates to the observation that when floods have not occurred for some time, sites become more 
vulnerable to such events when they do occur, possibly owing to societies taking more risks in their 
land use policies. 

Their novel approach models the links between physical and social processes by comparing two 
regimes for a flood prone area where settlement has taken place. One regime is referred to as a 
‘greensociety’, where only non-structural measures are used to control floods and the other is called 
‘technological society’, where measures such as levees and dykes form the mainstay of the 
management of flood risk. In both cases the experience of a flood is assumed to create a memory of 
the event, to which the community responds, either by reducing population density or heightening 
the levees. Over time, this effect declines as memory fades and increasing density in the floodplain 
resumes.   

The approach is applied to a situation where there is an increase in the impact of flood frequency 
and flood magnitude (possibly caused by climate change). Plausible parameters based on the 
literature are used to track losses, measured in terms of the reduction of population, as well as levee 
heights for a given schedule of flood events of given magnitude over a 200-year period [1]. The model 
application shows that the ‘greensociety’ experiences more frequent flood losses but these are 
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relatively low, while the technological society experiences high flood losses after a long period of 
time with non-occurrence of events. 

The paper [1] offers many interesting possibilities for extension, and therefore, in this paper, we 
modify and develop the earlier analysis in the following ways: 

1. In the original paper the costs of each regime are not fully accounted for. Losses from floods 
include not only population changes, but also loss of physical assets and costs associated with 
levee construction. In our model these costs are included. 

2. In [1] the model for the technosociety case is myopic. Society reacts only after an extreme event 
without considering the probabilities (frequency and intensity) of future extreme events. Our 
model makes use of the calculated probabilities in infrastructure decision-making. 

3. The modeling in [1] is non-stochastic—the sequence of flood events is pre-determined over the 
century, with 35 extreme events occurring over a 200-year period. A natural extension, therefore, 
is to explore how the results are affected when the sequence and intensity of extreme events are 
stochastic in nature requiring optimization under uncertainty to find optimal levee heightening 
strategies. This is done in our model. 

4. In the framework with stochastic extreme events, we build an objective decision function based 
on the net present value. This function allows us to obtain expected present values under 
uncertainty, depending on the adaptation strategy and the model´s stochastic parameters with 
two risk factors: frequency and intensity of extreme flood events.  

5. Furthermore, we include a model to calibrate the stochastic parameters based on historical 
information. Using this net-present-value framework, optimal strategies are explored, e.g., an 
optimal levee heightening strategy, which could not be done in the original model. 

To some extent, these aspects have been analyzed in other recent literature on socio-hydrology. 
The economic factors relating to floods have been studied in this context by the authors of [2], seen 
in their approach models, the choices between investing in flood defenses and in productive capital 
at the national level. Higher investment in flood protection reduces damages, which in turn affects 
the productivity of the economy and thereby the level of welfare. The objective is to determine the 
optimal path for investment in the two types of capital in a non-stochastic setting, where optimality 
is defined as maximizing the discounted present value of consumption over an infinite horizon. The 
authors find that the optimal problem has multiple solutions and the one attained depends on the 
initial conditions in terms of capital stock. Our analysis is different from theirs in two respects. First 
we do not seek an optimal solution in an economy-wide setting. Such a solution is interesting in 
understanding the broad trade-offs but less useful in determining the consequences of decisions at 
the local level, which are usually not taken in an economy-wide optimizing context. Indeed, one of 
the strengths of the socio-hydrology approach is to stress how actual decisions reflect recent memory 
and how they respond to perceived ‘safety’ by over-development in the floodplain. Our economic 
analysis seeks to understand what the actual outcome will be in economic terms if one or the other 
of the social rules are followed in flood management. Second, we seek to understand how to manage 
optimally some of the exogenous parameters that determine the economic outcome in a local setting, 
given that actual decision rules are what they are.  

In [3], the authors introduce stochasticity into the socio-hydrological analysis by considering a 
Poisson distribution for the number of occurrences per unit time and a generalized Pareto 
distribution for the magnitude of high water levels. The study investigates the evolution of settlement 
size and flood damage evolution with respect to parameters associated with trust, collective memory 
and risk-taking attitude. However, the authors do not include considerations of optimization. Here 
we try to find an optimal strategy under uncertainty considering both stationary and non-stationary 
climatic processes.  

In [4], the analysis is based on hydraulic modeling of historical events and the authors show that 
human interventions on both the landscape and the subsoil have altered the flood dynamics, 
increasing hydraulic hazard. 

In an analysis of flood risk change [5] in the floodplain of the Emme River downstream of 
Burgdorf, Switzerland, the authors show that the construction of lateral levees and the river incision 
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following its construction are the main drivers for decreasing flood risks over the last century. The 
authors state that a rebound effect due to settlement growth after levee construction will become 
increasingly relevant in the future with continued socio-economic growth. 

The relationship between long-term changes in human proximity to rivers and the occurrence 
of catastrophic flood events was analyzed by the authors of [6], including how these relationships are 
influenced by different levels of structural flood protection. The authors found that societies with low 
protection levels react to flood events by resettling further away from the river, while societies with 
high protection levels show no significant changes. Indeed, they continue to rely heavily on structural 
measures, reinforcing flood protection and quickly resettling in these flood-prone areas. 

To develop our study, we additionally draw on the following works. A review of flood risk 
literature can be found in [7]. These authors identified 258 articles addressing governance and 
flooding, resilience and adaptation. 

Using the district of Maxvorstadt in Munich for demonstration, the authors of [8] introduce a 
time-varying flood resilience index (FRI) to quantify the resilience level of households.  

The public flood risk perception in four districts of Jingdezhen is analyzed by [9], examining the 
influencing factors. 

The time series of floods across the Niger River basin was analyzed by the authors of [10]. These 
authors found an increasing number of catastrophic floods with the most extreme increase in the 
Middle Niger.  

A study of Pan-European river flow was realized by the authors of [11], using simulations 
coupled with a high-resolution impact assessment framework based on a 2D inundation model, using 
two methods. Their event-based work includes changes in time of hazard, exposure and 
vulnerability. Their integral method reproduces the average flood losses which occurred in Europe 
between 1998 and 2009.  

A sensitivity analysis, which considers changes in all risk components such as changes in 
climate, catchment, river system, land use, assets, and vulnerability was made by the authors of [12] 
for the mesoscale Mulde catchment in Germany, showing that flood risk can vary dramatically as a 
consequence of different scenarios. 

In this paper, we compare a ‘greensociety’ (no levees) with a ‘Technosociety’ that seeks an 
optimal levee heightening strategy with respect to the net present value of economic benefits for both 
deterministic and stochastic patterns of extreme events.  

Section 2 develops the methodology laying out some economic parameters for a floodplain 
under development during two centuries, looking at two cases: one where the initial land and 
property values are relatively high and one where they are relatively low. It also considers flood 
costs, and dyke costs for two scenarios following the flood event: only extension of levees or complete 
reconstruction with extension. Section 3 presents and discusses the results looking for the optimum 
levee heightening strategy that leads to minimum net costs for a given deterministic pattern of 
extreme events. This section also extends the approach for a stochastic climate signal where flood 
events occur as a Poisson process and their intensity is modeled using a generalized Pareto 
distribution. The analysis is conducted for a stationary as well as a non-stationary climate signal; for 
the second case we also analyze how the strategy changes as a function of climate change intensity. 
Section 4 concludes and lays out how the analysis here extends the earlier analysis in socio-hydrology 
and possible further steps in research. 

The research presented in this paper should be of use to authorities responsible for the 
management of land use in flood plains in different countries. The purpose of a socio-hydrology 
approach is to recognize the limited rationality in reactions after flood events, and the way in which 
memory fades and land use reverts to patterns that ignore the lessons from history. The model here 
looks at how overall benefits from the land area can depend on different rules of thumb—one being 
a more technological one and one being a ´greener´ one. The rule that works best depends on some 
basic parameters of the system, which are investigated here. The paper also determines the optimal 
levee height strengthening strategy under the technological model. It turns out that land values and 
their expected increases are critical factors in determining the choice of a rule for management. This 
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will apply equally in developing and developed countries, where flood plains can have very varied 
land values.  

2. Methodology 

The net costs over a period of time under a given management regime are the costs from flood 
damages, plus the costs of flood control less, the services received from the land in the flood plain. 
The sum can be written as ψ in Equation (1): 

ψ = ෍ 𝑉(𝑡)(1 + 𝑟)௧ (1) 

𝑉(𝑡) = 𝜋ଵ(𝑡)𝐹(𝑡) + 𝐶(𝑡) − 𝐿(𝑡) (2) 

where F is the damage caused by the flood and 𝜋ଵ is the value of a unit flood event and 𝐶(𝑡) is the 
cost of the defenses. 𝐿(𝑡) is the value of land and housing services in the floodplain. The aim for a 
management regime is to minimize the value of the function ψ. Each component of (2) is described 
below. 

2.1. Land Services  

The land services can be assumed to be a function of the number of people living in the 
floodplain, measured through the rent on the land they occupy and use. As the number increases, so 
does the value of the services, but the relationship is not straightforward. An increase in population 
with a fixed supply of land increases density and the price of land. Studies indicate that the 
relationship is “U” shaped, with the rate of increase of price declining and reaching a maximum 
before it starts to fall [13]. Using Polish data, they estimate the coefficient of density (measured as 
flood area ratio (FAR)) on the log of price to be around 0.55. But they also cite a Japanese study [14] 
showing that the price peaks with a density of FAR of between 1.1 and 1.7.  

Given the initial values for density in [1], we have constructed two baseline scenarios, one 
reflecting areas with relatively high initial land and property values and the other reflecting low 
initial values (Table 1). The high value combination is considered plausible for a high income country 
while the low value combination is considered plausible for a low income country at the present time. 

Table 1. Baseline initial values for land services for high and low value scenario. 

Variable Unit High Value Low Value Basis 
Initial Population No. 25,000 1000 Assumed 

Area (A) Hectares 100,000 10,000 Assumed 
Residential Use Share 

(μ) % 40 40 
Common for such 

use 
Pop. Density (D) Pop/Ha 0.25 0.10 Calculated 

Dwelling Density (δ) Dwelling/Ha. 0.10 0.04 Calculated 
FAR Ratio 0.0025 0.0010 Plausible values 

Value of Land USD/Ha. 100 100 Assumed 

Value per Dwelling (B) USD 100,000 4683 
Plausible range for 

low and high 
income countries 

Value of all Land with 
Dwellings USD Mn. 1004.0 2.3 Calculated 

In order to show how land values change over time, a quadratic Equation (3) is used: 𝐿𝑛(𝑃) = 𝑎 + 𝑏𝐹𝐴𝑅 + 𝑐𝐹𝐴𝑅ଶ (3) 

where P is the price of land, FAR the floor area to the plot area and a, b and c, parameters. From [13], 
the value of parameter ‘b’ is taken as 0.55. If the function peaks at a value of d of 1.4 (see above) then 
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one can estimate ‘c’ as –0.196. Given initial values as specified in the table, the values of ‘a’ comes out 
at 4.6 in both cases, (the values are slightly different in the two cases, but the differences are very 
small). 

From the numbers in Table 1 the relationship between FAR and dwelling density D is given in 
both cases by Equation (4): 𝐹𝐴𝑅 = 0.025𝐷 (4) 

This means Equation (3) can be written in terms of D as in Equation (5): 𝐿𝑛(𝑃) = 4.6 + 0.01375𝐷 + 0.0001225𝐷ଶ (5) 

In addition, we allow for an increase in the value of land and housing services due to overall 
growth in the economy and to population growth. Typical rates of per capita economic growth over 
periods of 100 years are around 2% [15], which is what is taken. Population growth is taken as in [1] 
as 3%.  

The resulting function of land and housing services that emerges from the analysis is given by 
Equation (6): 

𝐿(𝑡) = 𝑒௚௧ ∙ 𝑟 ∙ 𝜇 ∙ 𝐴 ∙ 𝑃(𝑡) ൜1 + ൬𝐵 ∙ 𝛿𝑃(0)൰ൠ (6) 

The unit value in parenthesis multiplied by the term outside the parenthesis gives the value of 
land services and the second term the value of housing services. The 3% increase in density in [1] 
translates into a 3% increase in population, as the land area is fixed. Hence the proposed value of g is 
0.05 (2% for per capita growth and 3% for population) and the value of r (the discount rate) is 0.03 
(i.e., 3%). The values of μ, A and B are as given in Table 1. 𝑃(𝑡) is the price of land at time t, and 𝑃(0) 
is the price at time 0. 

2.2. Losses in the Floodplain from Floods 

The flood losses for any one event are set in the unit interval in the original paper and we keep 
the same range. A value of 1, which is the maximum, would mean total loss of all property (i.e., 
housing assets but not, of course, the land). The value of that loss will depend on the year in which it 
happens and the number of dwellings. If we assume no loss of life the value of the maximum loss in 
year (t) is given by Equation (7): 𝜋ଵ(௧) =  𝑒௚௧ ∙ 𝜇 ∙ 𝐴 ∙ ௉(௧)௉(଴) 𝐵 ∙ 𝛿. (7) 

2.3. Costs of Raising and Replacing Flood Defenses 

After a flood event the dam height is increased from H1 to H2. We include the possibility that a 
fraction υ of dams need to be rebuilt and consider the extreme cases of υ = 0 (only dam heightening 
required) and υ = 1 (complete rebuilding including heightening). We consider a simplified schematic 
of flood plain geometry and dam geometry (Figure 1).  
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Figure 1. Schematic for river in flood plain and dam: i) The river runs along the side of a square 
representing the flood plain with area A. ii) Dam geometry with crest b, height H and slope 1:s. 

The cost of dam heightening and replacement following a flood event is then given by Equation 
(8): 𝐶(𝑡) = 𝑘𝐿 ቊ(1 − 𝜐) ቈቆ𝑏𝐻ଶ + 𝑠𝐻ଶଶ2 ቇ − ቆ𝑏𝐻ଵ + 𝑠𝐻ଵଶ2 ቇ቉ + 𝜐 ቈ𝑏𝐻ଶ + 𝑠𝐻ଶଶ2 ቉ቋ (8) 

where  
k (unit cost of dam construction, assumed constant at k = 50 USD/m3) 
L (length of dam, L = A0.5) 
υ (faction of dams that need to be rebuilt, υ = {0,1}) 
b (weir crest, b = 3 m) 
s (inverse of slope 1:s, s = 3)  

The authors are aware that these assumptions reflect a highly simplified system. However, they 
serve the illustrative purpose of the paper and can be easily adapted to more complex floodplain or 
dam geometries. For example, in the case of a two sided dam the cost function would need to be 
multiplied by two. The function could also be extended to unit costs that vary with construction size. 

2.4. Optimization Methods 

2.4.1. Optimization Methods for a Deterministic Characterization of Flood Events 

In order to apply the model, a number of parameters determining the relative flood damage and 
the amount by which the levee height is raised need to be fixed. These are set at the same values as 
in the original paper. The figures are given in Table 2. The optimization application tracks the 
dynamic path for the evolution of density (D), levee height (H) and memory (M) as given in [1]. For 
the reader’s benefit they are reproduced in the Appendix A. 

Table 2. Parameters of the model as set in [1]. 

Parameters Description Domain Value 𝛼ு Parameter related to relationship between flood 
water levels to relative damage 

Hydrology 10 m 𝜉ு  Proportion of flood level enhancement due to flood 
levees Hydrology 0.2 𝛼஽ Ratio of preparedness/awareness Demography 5 𝜀் Safety factor for levee heightening Technology 1.1 𝜅் Protection level decay rate 

Technology 
2 × 10−5 
year−1 𝜇ௌ  Memory loss rate Society 0.06 year−1 

Source: [1]. 

b

H
Slope 1:s

Area A

Le
ng

th
 L

i) ii)



Water 2019, 11, 2073 7 of 17 

 

2.4.2. Optimization Model for a Stochastic Characterization of Flood Events  

Given the base case data of 35 extreme events in 200 years with intervals of dt years, the 
parameter lambda (frequency) is defined as in Equation (9): 

𝜆 = ଷହଶ଴଴ 𝑑𝑡   (9) 

When dt = 1, we have λ = 0.175. The model allows, however, the use of time intervals dt < 1, for 
example dt = 0.10 as is used here. 

With the Poisson distribution, the probability of observing k events in an interval is given by 
Equation (10):  𝑒ିఒ ఒೖ௞!    (10) 

The probability of a given number of extreme events occurring in a year can then be calculated (Table 

3). 

Table 3. Number of events in one year under a Poisson process. 

Events (k) Probability (%) 

0 83.946 

1 14.690 

2 1.285 

3 0.075 

>3 0.003 

Total 100.00 

For the intensity, we considered two possible distributions for modeling of extreme events: the 
truncated generalized extreme value (GEV) and the generalized Pareto distributions. The GEV 
includes, as particular cases, the Gumbel, Fréchet and Weibull distributions and has been developed 
within the extreme value theory literature (see [16] and [17]). As such, it seems an appropriate choice 
for extreme event modeling of floods. For example, the authors of [18] use the generalized extreme 
distribution for sea level rise events. However, it has the disadvantage of taking on negative values, 
which means that using it in this context would require truncating the distribution to zero. 

The generalized Pareto distribution, on the other hand, cannot produce negative values. The 
cumulative distribution function for a generalized Pareto distribution is in Equation (11): 

1 − (1 + 𝑘 𝑥 − 𝜃𝜎 )ିଵ௞, 𝑘 ≠ 0 (11) 

where 𝜃 ∈ 𝑅 is the location parameter , 𝜎 > 0 is the scale and 𝑘 ∈ 𝑅 is the shape. 
Fitting this distribution to the 35 extreme events in the original dataset, gives the values in Table 

4. The histogram of the original events and the density function of the estimated generalized Pareto 
distribution are shown in Figure 2. 

Table 4. Parameter values for the generalized Pareto distribution corresponding to the dataset. 

 Parameter Value 95% Confidence Interval 

Shape (𝑘) −0.466 −0.761 to −0.172 

Scale (𝜐) 9.812 6.476 to 14.868 
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Figure 2. Flood level with generalized Pareto distribution. 

We obtained goodness of fit measures for both the truncated generalized extreme value 
distribution (χ2 = 0.845) and for the generalized Pareto distribution (χ2 = 0.580). Since the goodness of 
fit test statistics indicate the distance between the data and the fitted distributions, the generalized 
Pareto distribution with the lower χ2 statistic value is the better fitting model and therefore the one 
used in the following sections 

2.4.3. Optimization Model for Non-Stationarity Arising from Climate Change 

The Intergovernmental Panel on Climate Change (IPCC) reports project a likely increase in both 
frequency and intensity of extreme climate change events with particularly strong effects on countries 
already vulnerable to extremes of normal climatic variability. Recent work [19,20] provides estimates 
of the likely magnitude of these effects. There is, however, considerable uncertainty on both the 
rapidity and magnitude of climate change and its implications for extreme events. We therefore 
perform a sensitivity analysis with respect to climate change magnitude for the high land value case. 
In this subsection we examine the impact of an increase in the expected frequency of extreme events 
caused by climate change, assuming an exponential increase with time similar to that used to model 
other climate events such as sea level rise. 

We assume that the frequency of extreme events grows exponentially according to Equation 
(12):  𝜆(𝑡) = 𝜆(0)𝑒ఈഊ௧ (12) 

The expected frequency of extreme events depends on the year and grows exponentially at the 
rate 𝛼ఒ. 

The generalized Pareto distribution mean, when θ = 0, is expressed in Equation (13): 𝜎1 − 𝑘 (13) 

Further, we also assume an exponential growth of intensity as expressed in Equation (14): σ(𝑡)1 − 𝑘 = 𝜎(0)𝑒ఈ഑௧1 − 𝑘  (14) 
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3. Results and Discussion 

3.1. Optimization Results for a Deterministic Characterization of Flood Events 

The results of applying the model to the two sets of land values and populations described in 
the Methodology section are given in Table 5. They are in present value US dollars (billions) covering 
the 200-year period 1900–2100. Two variants are shown: In the case of (υ = 0) only extension is 
required whereas for υ = 1 rebuilding with extension is required. The results also depend on the step 
interval in the calculation. We use a temporal resolution of 0.1 years. 

Table 5. Cost estimates from the model: deterministic case (USD million). 

 
Technosociety 

Greensociety 
Case of υ = 0 Case of υ = 1 

High Value 1719 1927 5158 
Low Value 61 127 31 

For the high value case the costs are lower in the ‘technosociety’ whereas for the low value case 
they are lower for the ‘greensociety’. Thus it appears that under quite a wide range of cost 
assumptions (υ = 0 to 1) a high value area will benefit from a ‘technosociety’ management regime but 
a low value area will benefit from a ‘greensociety’ regime. 

To investigate how the regimes might be affected by the choice of parameters, we examine the 
sensitivity of the results to a key parameter—the safety factor for levee heightening (𝜀்). The safety 
factor 𝜀் is the proportional raising of defenses when a flooding events occurs, as presented in the 
Appendix Equation (A2). This safety factor in [1] is 1.1 for ‘technosociety’ and 0 for ‘greensociety’ (as 
no levees are present). Here we examine how the outcome for ‘technosociety’ is affected as a function 
of the safety factor for the high value and low value cases respectively (Figures 3 and 4). It is 
interesting to observe the presence of multiple local minima and the non-smooth behavior which are 
both a reflection of the deterministic model. In the high value case (Figure 3) the optimal value for 
the safety factor of levee heightening is 3.76, much higher than the value of 1.1, which was established 
for the ‘technosociety’ in the original paper. In the low value case, the optimal value is zero, i.e., no 
levees are built (Figure 4). 
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Figure 3. Objective function variation with the safety factor (high value case). 

 

Figure 4. Objective function variation with the safety factor (low value case). 

3.2. Optimization Results for a Stochastic Characterization of Flood Events 

For the simulations we take dt to be 0.10 with the generalized Pareto shown in Figure 2. A total 
of 50,000 paths were simulated using random numbers from the Poisson distribution for the 
parameter lambda. Each path has 2000 (200 years divided by dt) values (zero or one). We then extract 
a matrix of 2000 by 50,000 cells for the generalized Pareto distribution. The simulated values in the 
generalized Pareto case have a mean intensity of 6.76.  

Each of the 50,000 paths is processed to obtain 50,000 values of the objective function at 𝜀் = 
1.1. The mean of these values is the expected present value under uncertainty, as all paths have the 
same probability. Figures 5 and 6 present the high land value scenario for the ‘technosociety’ and 
‘greensociety’ whereas Figures 7 and 8 do the same for the low value scenario. 
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Figure 5. Histogram of the objective function at ε୘ = 1.1 for the technosociety/high value case with υ 
= 0. 

 

Figure 6. Histogram of the objective function for the greensociety/high value model. 
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Figure 7. Histogram of the objective function at ε୘ = 1.1 for the technosociety/low value case with υ 
= 0. 

 

Figure 8. Histogram of the objective function for the greensociety/low value case. 

Table 6 summarizes the results in terms of the expected net present value (NPV) for the two 
values of υ and with the values of safety factor (𝜀்) of 1.1 for ‘technosociety’ and 0 for ‘greensociety’ 
(as in the original paper). The results have the same ordering in terms of cost as the deterministic 
case: the ‘technosociety’ option has a lower cost in the high value case and the ‘greensociety’ has the 
lower cost in the low value case. 

Table 6. Expected net present value (NPV) (million) for the different management regimes in the 
stochastic case. 

Generalized Pareto 
High Land Value Scenario Low Land Value Scenario 

Technosociety Greensociety Technosociety Greensociety 
υ = 0 993  181  
υ = 1 1290 3947 294 25 

Corresponding to the optimization with respect to the safety factor in the deterministic case, we 
now seek to minimize the objective function with respect to the safety factor in the stochastic case. 
This is done by repeating the analysis above and extracting the expected values from the distributions 
obtained at different values for the safety factor. Figure 9 shows the high land value scenario values 
under uncertainty as a function of 𝜀் and Figure 10 does the same for the low land value scenario. 
In both cases υ = 0. Two observations can be made. The functions are smooth in comparison to the 
case discussed above when optimizing in the presence of a deterministic signal. Also, the minimum 
in Figure 9 is quite flat, implying that under uncertainty safety factors, between 1 and 2 lead to similar 
economic outcomes. 
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Figure 9. Objective function for the high value case depending on 𝜺𝑻 when υ = 0. 

 
Figure 10. Objective function for the low value case depending on 𝜺𝑻 when υ = 0. 

Table 7. Optimal safety factor for levee heightening for Technosociety. 

Generalized Pareto High Land Value Low Land Value 
υ=0 1.53 0.00 
υ=1 1.64 0.00 
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Table 7 shows that the optimal value of 𝜺𝑻 in the high land value scenario is 1.53 when υ = 0 
and 1.64 when υ = 1 when assuming the generalized Pareto distribution. For the truncated GEV case 
the respective values are 1.17 and 1.24. Hence, the desired safety factor is not very sensitive to the 
value of υ. In the low land value scenario the desired safety factor is zero for both types of 
distribution. 

3.3. Optimization Results for Non-Stationarity Arising from Climate Change 

We perform Montecarlo simulations with Equations (14) and (16). Using 𝜶𝝀 = 𝜶𝝈  values of 
0.001, 0.002, 0.003, 0.004 and 0.005, we obtain the optimal decision values for levee heightening of 
Table 8. 

Table 8. Impact of climate change for the high value case. Upper section: multipliers for frequency 
and intensity changes for the 100 and 200-year time horizon respectively. Lower section: optimal levee 
heightening strategy (for two cases: υ = 0: only extension required after event, υ = 1: rebuilding and 
extension required after event). 𝛼ఒ = 𝛼ఙ 0.000 0.001 0.002 0.003 0.004 0.005 𝑒ఈഊ௧             

100 years 1.00 1.11 1.22 1.35 1.49 1.65 
200 years 1.00 1.22 1.49 1.82 2.23 2.72 
Safety Factor for levee heightening 𝜺𝑻 
υ = 0 1.53 1.50 1.45 1.35 1.27 1.17 
υ = 1 1.64 1.67 1.70 1.71 1.65 1.64 

High-end climate change scenarios imply higher levees, but, surprisingly, not necessarily higher 
safety factors (Table 8 and Figure 11).  

In the future, as knowledge improves about the actual climate pathway, the calculations can be 
redone to obtain revised safety factors for future investments. 

 
Figure 11. Optimal 𝜺𝑻 values as a function of growth rate of extreme events. 
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4. Conclusions 

This paper shows how the outcomes of the socio-hydrology problem described in [1] can be 
reframed as an optimization problem, by including an economic valuation of costs and benefits. It 
contributes the following to what this earlier paper had shown: 

1. The better management option (‘technosociety’ or ‘greensociety’) depends on the initial value of 
the land services the area provides and the evolution of those services over time. We have 
plausible cases of high initial land values where the ‘technosociety’ option is better and of low 
initial land values where the ‘greensociety’ is better. 

2. The paper shows that a critical parameter for the values under the ‘technosociety’ in determining 
the values of the flood plain is the safety factor (𝜺𝑻) (i.e., the proportional raising of defenses 
when a flooding events occurs). For the deterministic case considered in the original paper, we 
obtain an optimal safety factor that is significantly higher than in the original paper. 

3. Whereas [1] consider only myopic behavior toward flood events, our model calculates the value 
of land services and other costs under uncertainty of extreme event occurrence and intensity. 
The paper shows the important differences in results when optimizing either under certainty or 
uncertainty. Our approach allows the economically optimal levee heightening strategy to be 
calculated under uncertainty. 

4. We show how climate change affects the optimal response to floods in a socio-hydrology 
framework. It turns out that the greater the expected impacts from such change the higher the 
levees but, surprisingly, the optimal safety factors do not always increase. 

A further possible extension is to explore how the two regimes can be modified to yield higher 
benefits. This may be done, for example, by incentives in the form of taxes or subsidies on levee 
construction. A non-trivial exercise would be required to explore how the behavior-giving equations 
would need to be adapted to adequately mimic the response of society towards such incentives. 
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Appendix  

In this appendix, we show the differential equations for Di Baldassarre et al. (2015) [1] used in 
the calculations.  

The damage caused by flood is as in Equation (A1): 

 𝐹(𝑡) = 1 − 𝑒ିೈ(೟)శ഍ಹಹష(೟)ഀಹ 𝑖𝑓  𝑊(𝑡) + 𝜉ு𝐻ି(𝑡) > 𝐻ି(𝑡) (A1) 

where W(t) is the flood level without defenses, H is the defenses height. The sub-indices refers to 
previous moments.  

The amount R by which the defenses are raised in meters is presented in Equation (A2): 

 𝑅 = 𝜀்[𝑊(𝑡) + 𝜉ு𝐻ି(𝑡) − 𝐻ି(𝑡)] (A2) 
With the values of Table A1. 

  



Water 2019, 11, 2073 16 of 17 

 

Table A1. Society and safety factor for levee heightening. 𝜺𝑻 Society 

1.1 Technosociety 

0.0 Greensociety 

The Equation (A3) is the memory equation: ௗௌ௧ = Δ(𝜓(𝑡)) × 𝐹 × 𝐷ି − 𝜇ௌ𝑀                        (A3) 

The height levees evolution differential equation is modeled with the Equation (A4) 

 ௗுௗ௧ = Δ(𝜓(𝑡))𝑅 − 𝜅்𝐻  (A4) 

And the densinty differential equation is the Equation (A5)  

 ௗ஽ௗ௧ = 𝜌஽ − 𝜌஽𝐷 − 𝜌஽𝛼஽𝐷 × 𝑀 − Δ(𝜓(𝑡)) × 𝐹 × 𝐷ି  (A5) 

if memory 𝑀 = 0 and no flooding events Δ(𝜓(𝑡)) then we have: 

 ఋ஽ఋ௧ = 𝜌஽ − 𝜌஽𝐷 (A6) 

We can demostrate than the solution of this equation is:  

 𝐷(𝑡) = 1 + (𝐷(0) − 1)𝑒ିఘವ௧ (A7) 
This value is between zero an one. 
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