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Abstract: This study focuses on soluble reactive phosphorus (SRP), a key driver of eutrophication
worldwide and a potential contributor to the emerging global environmental problem of harmful algal
blooms (HABs). Two studies of tributary SRP concentrations were undertaken in sub-watersheds
of Cayuga Lake, NY, the subject of a total maximum daily load (TMDL) development process, due
to phosphorus impairment of its southern shelf. The long-term study compared SRP concentration
in Fall Creek in the 1970s with that in the first decade of the 2000s, thus spanning a period of
change in phosphorus sources, as well as in regional climate. The spatial study used data collected
between 2009 and 2018 and compared SRP concentrations in Fall Creek to levels in northeastern
tributaries that flow into the lake close to areas where HABs have been problematic. SRP was
measured using standard procedures. Flow-weighted mean SRP concentration ranged between
15.0 µg/L and 30.0 µg/L in all years studied in both the 1970s and 2000s, with the exception of 2010.
Annual discharge in Fall Creek showed no trend between 1970 and 2018, but a higher proportion
of high streamflow samples was captured in the 2000s compared to the 1970s, which resulted in
proportionally increased SRP concentration in the latter time period. There was no significant
difference in the SRP concentration—flow rate relationship between the two time periods. Adjusted
for flow rate, SRP concentrations in Fall Creek have not changed over many decades. Increasing
phosphorus contributions from growing population and urbanization since the 1970s may have
been counterbalanced by improvements in wastewater treatment and agricultural practices. Mean
SRP concentration in northeastern tributaries was significantly (p < 0.001) higher than in Fall Creek,
likely reflecting more intense agricultural use and higher septic system density in the watersheds
of the former. This finding justifies continued monitoring of minor northern tributaries. Future
monitoring must emphasize the capture of high flow conditions. Historical stability and highly
variable hydrology will slow the watershed response to management and confound the ability to
detect changes attributable to decreased phosphorus inputs. Large scale monitoring on decadal
timescales will be necessary to facilitate watershed management.
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1. Introduction

Worldwide focus on the widespread problem of eutrophication has led to examination of the
movement of nutrients from terrestrial to aquatic systems. Various forms of phosphorus play a role
in limiting algal growth in water bodies around the world, including in Asia, Africa, Europe, and
North and South America [1–11]. Recent global concern about the increased frequency of harmful
algal blooms (HABs) has brought more urgency to the study of the relationship between sources of
bioavailable forms of phosphorus and their effects on aquatic systems [3,7,12,13]. Soluble reactive
phosphorus (SRP) is a fully bioavailable form of phosphorus, and study of its potential sources and
pathways through watersheds is receiving global attention [5,7–11]. In efforts to assess its prevalence
SRP monitoring has been conducted in South America [9], Africa [10], Asia [11] North America [4–7],
and Europe [2,3]; these efforts are vital as the basis for sound decision-making about watershed
management strategies. Long-term analyses enhance the study of SRP in inherently complex systems
that can be highly variable over time and space [5,14–17].

A long-term study was undertaken to determine if there has been any change over a four decade
period in SRP concentration in Fall Creek, which drains the largest sub-watershed of the Cayuga Lake
watershed in the Finger Lakes region of New York State. Fall Creek flows into the southern end of
Cayuga Lake and exerts a large influence on it, ranking as one of its most significant contributors of
water inflow [18], and phosphorus load [19]. Cayuga Lake is the subject of a total maximum daily
load (TMDL) development process resulting from phosphorus impairment to its southern shelf [20].
Movement of phosphorus in the watershed is runoff-driven, and approximately 95% percent of the
bioavailable phosphorus load entering Cayuga Lake is nonpoint in origin [21]. High discharge periods
produce most of the bioavailable phosphorus loading in the Fall Creek and Cayuga watersheds [22–24].
Source apportionment indicates that 50%, 10%, and 21% of Fall Creek’s total phosphorus load originates
in agricultural land, urban areas, and groundwater, respectively [19].

Water quality sampling for the long-term study took place in two time periods: The 1970s and
the first decade of the 2000s. Thus the study includes two divergent time periods between which
significant changes have occurred in the Fall Creek and Cayuga Lake watersheds. Dairy farming and
associated crop production for feed has remained the dominant agricultural enterprise throughout the
decades, but both dairy management practices and agricultural regulation have changed significantly
over time [25,26]. Concentrated animal feeding operations in the area were first regulated in the 1970s
pursuant to the Clean Water Act of 1972 [26]. Changes in point sources in the Fall Creek watershed
in the form of additional and upgraded wastewater treatment have also been implemented since the
1970s [22,27]. It is estimated that only 6–9% of Fall Creek’s total phosphorus load originates in point
sources [19,23]. A phosphate detergent ban aimed at curbing eutrophication came into effect in New
York State in 1973 [28]. One of the notable climatic shifts in New York State since the 1970s has been
an increased frequency of heavy rain events [29]. Between 1979 and 2014 the northeast U.S. region
experienced a 19% per decade increase in extreme precipitation events [30], and the frequency of both
extreme precipitation events and extreme streamflow events has increased in the 2000s compared to
the 1970s [31]. Our study aims to determine the extent to which the cumulative impact of these and
any other changes is reflected in stream SRP concentration and to interpret our findings in the context
of changes in the watershed.

Historic monitoring has examined a diversity of Cayuga Lake’s tributaries [32], but has largely
focused on bigger tributaries that drain into the southern portion of the lake [21–25]. The motivation for
major studies has included large scale undertakings, such as the Cornell lake source cooling project [33],
and the ongoing TMDL development process that began in 2013 [20]. In recent years additional studies
have been motivated by the appearance of cyanobacterial HABs, which were first confirmed in Cayuga
Lake in 2014 [34]. The occurrence of HABs may be related to phosphorus inputs [14,35]. In 2018 a
systematic shoreline monitoring program determined that toxic HAB outbreaks were more prevalent
in the northern half of the Cayuga Lake watershed [36]. More informal study in 2017 documented
eastern shorelines as most affected [34]. These observations provide the rationale for the examination
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of SRP in previously unexamined tributaries in the northeastern region of the Cayuga Lake watershed
to determine their potential to act as SRP sources and to compare them with the better-studied southern
tributary of Fall Creek.

Our work is comprised of a long-term study of Fall Creek that compares its SRP concentrations in
the 1970s and in the 2000s, and a spatial study that compares SRP concentration in Fall Creek to that in
northeastern tributaries of the watershed, 2009–2018. We use our findings to develop recommendations
for effective future monitoring and management of the Fall Creek and Cayuga Lake watersheds.

2. Materials and Methods

2.1. Geographic Setting and Watershed Characteristics

The Cayuga Lake watershed is part of the Seneca-Oneida-Oswego River drainage in New York
State, in the northeastern region of the United States (Figure 1a). The center of Cayuga Lake is located
at a latitude of 42.692◦ N and longitude of 76.689◦ W [18]. Elevations in the Cayuga watershed range
between approximately 120 and 600 m above sea level. Bedrock geology is predominantly shale,
siltstone, and sandstone, and surficial geology is comprised of glacial till [18].

The Fall Creek watershed is 33,086 hectares in size and is the largest sub-watershed of the 187,066
hectare Cayuga Lake watershed [19] (Figure 1b). Northeastern tributaries sampled in the spatial study
are comprised of Paines, Dean’s, Lake Ridge, Mill, and Town Line Creeks, some of which have very
small watersheds that are not well-characterized (Figures 1b and 2b). Other authors document the
sizes of the Paines and Dean’s Creek (in combination with Glen Creek) watersheds as 3945 ha and
1902 ha, respectively, and include Lake Ridge, Mill, and Town Line Creeks all under the name Lake
Ridge, documented as 3409 ha in size [19].

Water 2019, 11, 2075 3 of 17 

 

Cayuga Lake watershed to determine their potential to act as SRP sources and to compare them with 
the better-studied southern tributary of Fall Creek.  

Our work is comprised of a long-term study of Fall Creek that compares its SRP concentrations 
in the 1970s and in the 2000s, and a spatial study that compares SRP concentration in Fall Creek to 
that in northeastern tributaries of the watershed, 2009–2018. We use our findings to develop 
recommendations for effective future monitoring and management of the Fall Creek and Cayuga 
Lake watersheds. 

2. Materials and Methods  

2.1. Geographic Setting and Watershed Characteristics 

The Cayuga Lake watershed is part of the Seneca-Oneida-Oswego River drainage in New York 
State, in the northeastern region of the United States (Figure 1a). The center of Cayuga Lake is located 
at a latitude of 42.692° N and longitude of 76.689° W [18]. Elevations in the Cayuga watershed range 
between approximately 120 and 600 m above sea level. Bedrock geology is predominantly shale, 
siltstone, and sandstone, and surficial geology is comprised of glacial till [18].  

The Fall Creek watershed is 33,086 hectares in size and is the largest sub-watershed of the 187,066 
hectare Cayuga Lake watershed [19] (Figure 1b). Northeastern tributaries sampled in the spatial 
study are comprised of Paines, Dean’s, Lake Ridge, Mill, and Town Line Creeks, some of which have 
very small watersheds that are not well-characterized (Figures 1b and 2b). Other authors document 
the sizes of the Paines and Dean’s Creek (in combination with Glen Creek) watersheds as 3945 ha and 
1902 ha, respectively, and include Lake Ridge, Mill, and Town Line Creeks all under the name Lake 
Ridge, documented as 3409 ha in size [19].  

 

Figure 1. (a) The study area is located in the Finger Lakes region of upstate New York in the 
northeastern U.S., map retrieved from www.dec.ny.gov/lands/29065.html; (b) the 33,086 ha Fall Creek 
watershed (pink) is a major sub-watershed of the Cayuga Lake watershed. The area in the yellow box 
is shown in detail in Figure 2a and includes the locations of the single Fall Creek sampling site used 
in the long-term study and the two Fall Creek sampling sites used in the spatial study. The area in the 
red box is shown in detail in Figure 2b and includes the locations of the fifteen sampling sites in the 
northeastern tributaries used in the spatial study. Map provided by the Community Science Institute. 

  

 
 (a) 
(b) 

Figure 1. (a) The study area is located in the Finger Lakes region of upstate New York in the northeastern
U.S., map retrieved from www.dec.ny.gov/lands/29065.html; (b) the 33,086 ha Fall Creek watershed
(pink) is a major sub-watershed of the Cayuga Lake watershed. The area in the yellow box is shown
in detail in Figure 2a and includes the locations of the single Fall Creek sampling site used in the
long-term study and the two Fall Creek sampling sites used in the spatial study. The area in the red box
is shown in detail in Figure 2b and includes the locations of the fifteen sampling sites in the northeastern
tributaries used in the spatial study. Map provided by the Community Science Institute.
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2.1.1. Long-Term Study of Fall Creek

The long-term study compares Fall Creek’s SRP concentrations in the 1970s with those in the first
decade of the 2000s. Various characteristics of the Fall Creek watershed during these two time periods
are summarized in Table 1. Major land uses are included with the caution that land use comparisons
across time periods have inherent uncertainties, due to differences in techniques and categorizations
used. Nevertheless, in the absence of superior records or data, they are included here to give a general
assessment of dominant land uses in each time period. These data point to a decline in agricultural land
use and increases in forest and urban land uses between the 1970s and 2000s. Wastewater treatment has
expanded and improved over the decades. Also included are agricultural statistics on dairy farming in
the town of Dryden, a significant portion of which lies within the Fall Creek watershed. Municipal
boundaries do not align with watershed boundaries and portions of three counties, Tompkins (58%),
Cortland (22%), and Cayuga (20%) are represented in the Fall Creek watershed [25]. Similarly, within
these counties nine towns are represented within the Fall Creek watershed boundary; among them,
the town of Dryden has been described as most representative of dairy farming in the surrounding
area and has been the focus of a longitudinal study on local agricultural trends [37]. In the 2000s
farms in Dryden produced more crops and more milk with fewer animals and on less land than in the
1970s (Table 1). In addition to the changes documented in Table 1, between 1970 and 2010 the total
population in the three counties represented in the Fall Creek watershed combined increased by 15%
from 200,397 to 230,926 [38].

Table 1. Comparison of Fall Creek watershed characteristics in the 1970s and first decade of the 2000s,
with selected data on dairy farming trends in the representative town of Dryden.

Fall Creek Watershed

1970s 2000s

Land Use [19,22]
• 59% agriculture
• 34% forest
• 1% urban

• 48% agriculture
• 40% forest/brush
• 11% urban

Point Sources [22,27] One wastewater treatment plant One upgraded and one additional
wastewater treatment plant

Sewered Population [22,27] 1400 3250

Improved Agricultural
Practices/Regulation [26] Rare More widespread

Town of Dryden (243 km2) 1

1977 2007

Percent of town in dairy farms 17 8
Average size of dairy farms (ha) 121 234

Number of dairy cows 1775 1540
Milk sold (mill kg) 10 16

Corn silage per acre (metric tons) 12 20
1 Data selected or calculated from a longitudinal study of dairy farming in the town of Dryden [37].

2.1.2. Spatial Study

The spatial study compares SRP concentrations in Fall Creek with those in northeastern tributaries
of Cayuga Lake. Various characteristics of the Fall Creek and northeastern tributary watersheds are
summarized in Table 2. Overall the watersheds of the northeastern tributary sites are more agricultural,
and have a higher density of septic systems. Because agricultural and population census data are not
available on the watershed scale, agricultural and population statistics are provided for Tompkins
County, in which both Fall Creek sampling sites are located, and Cayuga County, which includes 13 of
the 15 northeastern sampling sites, the remaining two being just over the county line in Tompkins
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County. Using county level data as a guide, the watersheds of the northeastern tributaries are judged
to be less densely populated and more agricultural than the Fall Creek watershed. In addition, their
farms are bigger and have more density of livestock on average, with greater proportions of farmers
employing reduced and no-tillage practices, as well as using cover crops (Table 2).

Table 2. Comparison of Fall Creek and northeastern tributary watershed characteristics, with selected
county level data for Tompkins and Cayuga counties.

Fall Creek Northeastern Tributaries

Watershed Area (ha) 33,086 Paines and Dean’s 1: 5847
Lake Ridge, Mill, and Townline: 3409

Land Use [19]

• 48% agriculture
• 40% forest/brush
• 11% urban

Paines and Dean’s 1:

• 73% agriculture
• 16–19% forest/brush
• 6–9% urban

Lake Ridge, Mill, and Townline:

• 47% agriculture
• 31% forest/brush
• 15% urban

Point Sources [27] Two wastewater treatment plants
serving 3250 people

One wastewater treatment plant serving
900 people

Septic System Density [34] Lower Higher

Tompkins County 2 Cayuga County 3

Land area (km2) 1270 2240
Population per square km 4 80 36
Land in farms (% of county) 29 41

Average farm size (ha) 71 108
Dairy cows per square km 5 7 16

Agricultural practices (% farms)
No-till

Reduced till
Cover crop

10
11
12

20
22
21

1 Watershed area and land use data for Dean’s Creek includes the additional minor tributary of Glen Creek [19];
2 Data selected or calculated from Tompkins County agricultural census profile [39] unless otherwise specified;
3 Data selected or calculated from Cayuga County agricultural census profile [40] unless otherwise specified;
4 Population in 2010 [38]; 5 County level data retrieved from New York State Dairy Statistics 2017 [41].

2.2. Sampling Sites, Sample Collection, and Sample Analysis

2.2.1. Long-Term Study of Fall Creek

Sample collection and analysis were conducted by the research group of Dr. D. Bouldin, now
Emeritus Professor of Soil and Crop Sciences at Cornell University. Water samples were collected from
Fall Creek at one site near its outlet (Figure 2a). Coordinates for the site are 42.453◦ N and 76.4705◦ W.
All samples were collected as grab samples. Samples were collected from a bridge above the stream,
directly downstream of a point where Fall Creek flows through a notch in an old dam. This ensured
that all samples were well-mixed. An approximately 1 L glass container was used to retrieve samples.
In the 1970s water quality samples were collected during the years 1972–1975 and 1978. In the 2000s,
samples were collected during 2006 and 2009–2010. The number of samples collected and analyzed in
any given time period was determined by the funding available.

In order to mitigate the confounding influence of flow rate at the time of sampling on SRP
concentration, we equalized the boundaries of sampled flow regimes between the two time periods by
removing from the 1970s dataset samples that had higher associated flow rates than the 2000s maximum
of 57.7 m3/s, and those that had lower associated flow rates than the 2000s minimum of 0.767 m3/s.
The resulting sample size of our 1970s dataset was 552; our 2000s dataset had a sample size of 60. Thus
the total number of samples for the long-term study was 612. As indicated in Table 3, on some dates
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only one sample was collected, while on other multiple samples were collected. Aggregate data for
each time period were separated into high and low flow strata demarcated by the 75th percentile of
flow when both time periods were combined, in keeping with the method used in a previous study [21].
The cut-off between high and low flow strata was 20 m3/s.

Particulates were removed by centrifugation at 35,000 g, and SRP analysis was conducted using
standard method 4500-P D [42] in which a phosphomolybdate complex is reduced by stannous chloride.

Additional information including all data used in the long-term study are provided in the
supplementary materials (Table S1 and Note S1).
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Figure 2. (a) Detail of lower Fall Creek. Green dot—location of the single sampling site used in the
long-term study; yellow dots—locations of the two Fall Creek sampling sites used in the spatial study;
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study. Maps provided by Nathaniel Launer, Community Science Institute.

Table 3. Summary of sampling regime used in the long-term study of soluble reactive phosphorus
(SRP) concentration in Fall Creek.

Time Period Year Number of Samples Number of Sampling Days

1970s

1972 40 24
1973 227 99
1974 247 74
1975 13 8
1978 25 12

2000s
2006 46 27
2009 9 9
2010 5 4

2.2.2. Spatial Study

Sample collection and analysis was conducted by the Community Science Institute (CSI) in Ithaca,
NY. CSI operates a New York State and NELAC (National Environmental Laboratory Accreditation
Conference) certified laboratory. The institute recruits, trains, and coordinates volunteer community
groups to collect water samples from local waterbodies for certified analysis. Volunteer groups typically
sample on pre-selected calendar dates, and thus are more likely to capture baseflow rather than storm
event conditions. However, at least one planned event per year is re-scheduled on short notice for
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the purpose of capturing high flows in each monitored stream. CSI’s certified water quality results
are made publicly available on an online database [43]. CSI data have been successfully used in
research and were used to help calibrate the initial tributary model for the Cayuga watershed TMDL
process [23,25,44].

Samples were collected from Fall Creek as grab samples at one site close to the outlet and a second
site about 6 km upstream, both in Tompkins County, NY. Latitudes and longitudes of the downstream
and upstream sites are 42.4547◦ N, 76.5004◦ W and 42.4569◦ N, 76.4387◦ W, respectively (Figure 2a).
Grab samples were collected in 1 L plastic bottles from the center of the stream. Sample bottles were
opened and closed underwater to avoid surface debris. Under flow conditions that posed safety
hazards, grab samples were collected either from the shoreline or from a bridge at the sampling site.
In the case of the latter, a clean bucket was lowered and rinsed by filling and emptying twice before
collecting the sample. The sample was mixed thoroughly in the bucket before transfer to the sample
bottle. A total of 95 samples were collected from Fall Creek between 2009 and 2018. Samples were
categorized as high flow or low flow samples using the flow rate cut-off of 20 m3/s calculated in the
long-term study.

Fifteen sites were sampled in the northeastern tributaries of Dean’s, Lake Ridge, Mill, Paines, and
Town Line Creeks (Figures 1b and 2b). Thirteen of the 15 sites were in Cayuga County, NY, and the
remaining two sites were just over the county line in Tompkins County, NY. Latitudes and longitudes
of the northeastern tributary sites ranged from 42.769◦ to 42.609◦ N and from 76.709◦ to 76.623◦ W,
respectively. Samples were collected from the northeastern tributaries in all but two of the years
between 2009 and 2018. Data from the fifteen northeastern sites were pooled for a total of 237 samples
collected from the northeastern tributaries over the years 2009–2012 and 2015–2018. The northeastern
tributaries are ungaged. Samples were categorized as high flow or low flow using Fall Creek flow rate
at noon on each northeastern tributary sampling day as a proxy; again the threshold of 20 m3/s flow
rate in Fall Creek was used to demarcate high and low flow samples. The sampling regime for the
spatial study is summarized in Table 4.

Particulates were removed by filtration through a 0.45 µm cellulose acetate filter and SRP analysis
was conducted using EPA method 365.3 [45] in which a phosphomolybdate complex is reduced by
ascorbic acid.

Additional information including all data used in the spatial study are provided in the
supplementary materials (Table S2 and Note S2).

Table 4. Summary of sampling regime used in the spatial study of SRP concentration in Fall Creek and
northeastern tributaries.

Waterbody Year Number of Samples Number of Sampling Days

Fall Creek

2009 9 5
2010 11 6
2011 11 7
2012 9 5
2013 11 6
2014 10 5
2015 10 5
2016 8 4
2017 8 4
2018 8 4

Northeastern Tributaries

2009 41 3
2010 27 3
2011 35 3
2012 30 2
2015 15 1
2016 15 1
2017 30 2
2018 44 4
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2.3. Discharge Records and Statistical Methods

United States Geological Survey (USGS) gaging station 04234000 continuously monitors discharge
in Fall Creek and served as the source of flow rate data corresponding to each Fall Creek sample in
both studies, and as the proxy for northeastern tributary flow rates in the spatial study.

The Microsoft Excel Data Analysis Package was used for statistical analysis. Large sample
sizes and the application of the central limit theorem justified the use of t-tests to test for significant
differences between means. Flow-weighted means were calculated using the equation below, where
x represents SRP concentrations in µg/L, and w represents corresponding flow rates at the time of
sampling in m3/s,

x =

∑n
i=1(xi ×wi)∑n

i=1 wi
.

Standard errors of flow-weighted means were calculated using the bootstrap method. Simple
linear regression was used to assess relationships between variables. The 5% level of probability was
used as the threshold for statistical significance.

3. Results

The hydrology of Fall Creek exhibits considerable interannual variability in discharge. Between
1972 and 2018, discharge in high flow years was more than double that in low flow years. Annual
discharge showed no trend over time (Figure 3a). Decadal averages were also variable. The mean
annual discharge in the 1970s was 2.0 ± 0.3 × 108 m3, which was not significantly different from the
value of 1.9 ± 0.4 × 108 m3 in the first decade of the 2000s (Figure 3b).
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3.1. Long-Term Study of Fall Creek.

Flow-weighted mean SRP concentration ranged between 15.0 µg/L and 30.0 µg/L in all years
studied in both the 1970s and 2000s, except for 2010 (Figure 4a,b), a year in which particularly low
flows were captured (Figure 4c,d) and sample size was small (Table 3). SRP concentrations were
influenced by flow rates at the time of sampling. Years in which the sampling regime captured low
flows generally had lower associated SRP concentrations (Figure 4a–d). Across time periods, the two
years with the most comparable flow rates, 1972 and 2006 (Figure 4c,d), yielded near identical SRP
concentrations with flow-weighted means of 29.5 µg/L and 29.9 µg/L, respectively (Figure 4a,b).
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Figure 4. (a) Flow-weighted mean SRP concentrations with error bars representing ± one standard
error of the mean in the 1970s, and (b) the 2000s; (c) box and whisker plots of flow rates at the time of
sampling for samples collected in the 1970s, and (d) the 2000s. Boxes contain first, second, and third
quartiles; whiskers show maxima and minima. Sample sizes for each year are shown in Table 3.

The larger 1970s dataset was trimmed as described in Section 2.2.1 above. Examination of the
resulting data for each of the two time periods indicates that within the common flow boundaries of
0.767 m3/s and 57.7 m3/s a higher proportion of high flow samples was captured in the 2000s compared
to the 1970s (Figure 5).
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Figure 5. The proportion of high flow samples and low flow samples captured in each time period.
High and low flow strata were demarcated by the 75th percentile of flow when both time periods were
combined, which was 20 m3/s.

In both the 1970s and the 2000s SRP concentration increased with increasing flow rate (Figure 6)
and the relationship was significant (p < 0.001) in both time periods. Flow rate at the time of
sampling accounted for 23% and 33% of the variability in SRP concentration in the 1970s and the 2000s,
respectively (Figure 6). There was no significant difference in the slope of the SRP concentration—flow
rate relationship between the two time periods.
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Our sampling of a greater proportion of higher flows in the 2000s compared to the 1970s (Figure 5)
was reflected in significantly (p < 0.01) higher mean captured flow rates in the 2000s compared to the
1970s (Figure 7a). A 41% increase in median captured flow rate at the time of sampling between the
two time periods (Figure 7a) was accompanied by an equivalent increase in median SRP concentration
of 43% (Figure 7b). Flow-weighted mean SRP concentration in the 2000s was 29.3 µg/L, significantly
(p < 0.001) higher than the 1970s flow-weighted mean of 19.4 µg/L (Figure 7b).
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3.2. Spatial Study

SRP concentration was elevated in samples collected at high flow rates in both Fall Creek and
the northeastern tributaries. Mean SRP concentration in the northeastern tributaries was significantly
(p < 0.001) higher than in Fall Creek under both high and low flow regimes (Table 5). Mean SRP
concentrations in the northeastern tributaries were 106.6 µg/L and 183.1 µg/L under low and high flow
conditions, respectively, whereas, mean SRP concentrations in Fall Creek were 13.7 µg/L and 32.8 µg/L
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under low and high flow conditions, respectively. SRP concentration values in the northeastern
tributaries exhibited slightly higher variability than those in Fall Creek (Table 5).

Table 5. Mean SRP concentration plus or minus one standard error (µg/L) in Fall Creek and northeastern
tributaries of Cayuga Lake, NY. The 20 m3/s flow rate threshold generated in the long-term study was
used to distinguish high flows and low flows in Fall Creek, and was also used as a proxy to classify
high and low flows in the northeastern tributaries. The sample size is shown parenthetically.

Mean SRP Concentration (µg/L) ± Standard Error (Sample Size)

Fall Creek Northeastern Tributaries

High Flow Samples 32.8 ± 3.1 (16) 183.1 ± 27.5 (29)

Low Flow Samples 13.7 ± 1.0 (79) 106.6 ± 12.0 (208)

All Samples 16.9 ± 1.2 (95) 116.0 ± 11.2 (237)

4. Discussion

4.1. Long-Term Study of Fall Creek

The annual discharge in Fall Creek is highly variable year to year and shows no trend between
1972 and 2018 (Figure 3a). Mean annual discharge for the decade of the 1970s is not significantly
different from that in the first decade of the 2000s (Figure 3b). This result is consistent with the finding
of a monitoring and modeling study that also concluded that there had been no significant change in
tributary flows to Cayuga Lake between the 1970s and the first decade of the 2000s [19]. The amount of
discharge has a large influence on the predominantly runoff-driven transport of phosphorus in the Fall
Creek watershed [21]. Though heavy rain events appear to be becoming more common in the larger
northeast region [31], this does not seem to have increased annual discharge in Fall Creek. Stability
in annual discharge is one aspect of overall phosphorus transport in the watershed. Any impacts of
various additional components of a changing climate on mobilization along phosphorus pathways in
the watershed have yet to be determined.

The influence of flow rate at the time of sampling on stream SRP concentration constitutes a
challenge when comparing water quality data across two time periods. In this study, we mitigated that
challenge by tailoring a larger 1970s dataset to generate flow boundaries that matched data available
from the 2000s, and by examining SRP concentration in the context of flow rates at the time of sampling.
Our results indicate that SRP concentrations in Fall Creek have not changed since the 1970s (Figure 4).
Higher flow-weighted mean concentrations in the 2000s (Figure 7) appear to be a reflection of a greater
proportion of high flow conditions captured during this time period (Figure 5).

There was no statistically significant change in the SRP concentration-discharge relationship
between the two time periods (Figure 6). A given volume of water flowing down Fall Creek in
the 2000s delivered the same amount of SRP to Cayuga Lake that it did decades before, but higher
flows captured by sampling in the 2000s resulted in proportionally increased SRP concentrations
(Figure 7). Four decades of changes in the watershed might reasonably have been expected to alter
the SRP concentration-discharge relationship in Fall Creek. Increasing population and urbanization
might have been expected to increase SRP per unit flow, while expanded and improved sewage
management, less land in agriculture, more land in forest, and increasingly regulated agricultural
practices would have been expected to have the opposite effect (Table 1). The finding of stability in
the SRP concentration-discharge relationship indicates that these changes have not been significant
enough to alter the relationship, or that their combined effect overall has resulted in no net impact.
Nutrient budgets within the watershed may also serve to insulate stream SRP from watershed changes.
It is estimated that the amount of soluble phosphorus leaving the watershed in the waters of Fall Creek
is less than 3% of the amount added to it annually [46].
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Significant changes in the management of human wastes have taken place in the Fall Creek
watershed over the time period of the long-term study. Phosphorus sources originating in inadequate
on-lot waste treatment practices that were documented in the 1970s [22] would be highly unusual today.
At that time, only one wastewater treatment plant serving about 1400 people in the village of Dryden
discharged into Fall Creek [22]. This plant was upgraded in 1997 and now serves approximately 2500
people. An additional plant that serves about 750 people in the village of Freeville was constructed in
1985 [27]. In addition, the 1973 New York State ban on phosphorus in laundry detergents had the effect
of reducing anthropogenic inputs of phosphorus to Fall Creek [22].

As agriculture is the biggest source of nutrients to Fall Creek [19], its potential impacts across
the decades warrant close examination. Agriculture in the watershed has become more productive,
and farms are bigger on average, but overall this activity is occurring on a smaller footprint and in
a more regulated way (Table 1). On the one hand, as measured by feed crop production and milk
sales, agriculture has intensified over time (Table 1); on the other hand, agricultural land decreased
and agricultural management improved in an era of greater regulation and more widespread concern
regarding agriculture’s environmental impact. Similarly, urbanization and population increased since
the 1970s, but wastewater treatment expanded and improved over the same time period (Table 1).
Detailing the complex interplay of the variety of factors that influences the phosphorus budget in this
watershed is beyond the scope of our study, but the overall finding of stability over time is significant.

Our results are consistent with other studies of the Fall Creek watershed. A previous study
that included modeling, as well as monitoring, determined that loading of dissolved phosphorus
occurred at a similar rate in the 1970s and the 2000s [19]; the authors attributed the lack of change to
improved wastewater treatment and improved agricultural practices [19]. A study of trends in nitrate
concentration in Fall Creek over time also found no change between the 1970s and 2000s, despite the
intensification of farming operations over the same time period. The authors attribute the stability
in Fall Creek’s nitrate concentration to improved dairy management over time, including increased
adoption of best management practices, and to the dividends of increased investment in addressing
the environmental impacts of agriculture [25].

Streamflow at the time of sampling has a significant (p < 0.001) positive relationship with SRP
concentration in Fall Creek (Figure 6), as has been documented in other tributaries of the Cayuga
watershed [23]. The stability of SRP concentration over time (Figure 4) means that any variation in the
input of SRP into the lake in this watershed is primarily a consequence of variation in flow regimes with
large hydrological events driving much of the exports [21,24,44]. Although discharge is, to a large extent,
a natural factor derived from meteorological and hydrological conditions [21], it can also be affected
by land management. Reducing phosphorus inputs is the anticipated focus of a forthcoming TMDL
for phosphorus in the Cayuga Lake watershed [21], but large interannual variations in tributary flow
(Figure 3a) mean that detecting responses to changes in watershed management will be difficult [21].
Even significant reductions in nutrient loading can take many decades to manifest in water quality
improvements against the backdrop of year to year variability [15,16]. Realistic expectations amongst
community stakeholders should be fostered on the basis of an accurate understanding of the water
quality response to the component factors of watershed management and streamflow, and of the
historical stability that appears to buffer water quality in this watershed.

Long-term stability in phosphorus concentration has been observed in other water bodies around
the world. Between 1980 and the late 1990s no significant change was observed in phosphorus
concentration in the Yangtze River in China, despite increases in population and crop production in the
river’s watershed over the time period [1]. Total phosphorus concentration in the Black Sea and coastal
waters of western Europe exhibited stability between 1985 and 2005, but decreased in the coastal areas
of the Mediterranean and North Seas [2]; widespread decreases in phosphorus have also been reported
in watersheds across southwestern Europe [3]. Across the U.S. and Canada, long-term stability in total
phosphorus concentrations in streams is not uncommon [4]. SRP concentration was found to be stable
between 1979 and 2011 in 40 of 56 watersheds studied in Ontario [5]. No significant trend in total
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phosphorus concentration was found in 33 of 112 stream stations studied in southern Ontario, and a
decline was found in the majority of sites [6]. Increasing SRP concentration in water bodies over time
has been observed in some areas, and at least in some cases is attributable to changes in both storm
events and in agricultural management practices [7]. Water quality trends, when observed, are the
result of additive interaction between trends in streamflow and changes in watershed management [17].

4.2. Spatial Study

Northeastern tributaries had significantly (p < 0.001) higher SRP concentrations than Fall Creek,
indicating that large geographic variation in SRP export exists within the Cayuga Lake watershed
(Table 5). Greater agricultural land use in the watersheds of the northeastern tributaries (Table 2)
may be a significant source of SRP [7,14,21]. Due to the unavailability of watershed scale statistics,
general agricultural profiles of the Fall Creek and northeastern tributary watersheds were compared
using county level data and making the assumption that Tompkins and Cayuga County data provide
reasonable representations of the Fall Creek and northeastern tributary watersheds, respectively. While
the southern and northern parts of the Cayuga watershed have similarities in terms of the dominance
of dairy farming, they are somewhat different in their agricultural profiles [39,40]. The higher density
of livestock in Cayuga County and the greater extent of agricultural land use in the northeastern
tributary watersheds (Table 2) would be expected to yield higher SRP in the northeastern tributaries.
Some features in the region of the northeastern sites would, however, be expected to reduce SRP,
such as lower population and urbanization, and, on average, larger farms with nutrient management
practices that are more extensively regulated than on smaller farms. Adoption rates for some best
management practices, including no-till, reduced tillage, and cover crops, are higher in Cayuga County
than in Tompkins County (Table 2). If this is representative of the watersheds of our sampling sites, it
suggests that these practices, though effective at conserving soil and reducing the flow of particulate
phosphorus to water bodies, could serve to increase pathways for SRP. The impact of agricultural soil
conservation practices on increasing dissolved phosphorus loading to nearby waterways has been
documented [7]. Septic systems prevalent in rural areas can also contribute SRP to receiving waters [47],
and the higher density of septic systems in the area of our northeastern tributary sites compared
to the Fall Creek watershed could also be expected to lead to higher SRP in the former (Table 2).
One of the 15 sites in the northeastern tributaries is directly downstream of a wastewater treatment
plant, and both Fall Creek sampling sites are well downstream of wastewater treatment plants in that
watershed. Given the limited contribution of point sources to phosphorus loading in the region [19],
these sources are judged not to have a significant influence on the results of this study. Additional
studies of the watersheds’ soils, drainage, and groundwater contributions would assist in developing
a more thorough understanding of the sources of SRP in the northeastern tributary watersheds.

Previously published water quality studies of the Cayuga Lake watershed have focused primarily
on the lake and on major tributaries in the southern portion of the watershed. Our finding of a
large difference in SRP concentration between Fall Creek and the northeastern tributaries under both
high and low flow regimes (Table 5) indicates that southern tributaries are not representative of the
watershed as a whole. These results justify dedicated monitoring of minor tributaries in the northern
half of the watershed as part of any watershed management scheme.

4.3. Implications for Future Monitoring and Management

The Cayuga Lake watershed and its tributaries have a history of water monitoring studies
conducted by several entities, including academic institutions, CSI, and state and federal agencies.
Current work is ongoing, and the watershed will remain the subject of study during the implementation
of the forthcoming TMDL and in the context of efforts to address HABs. Monitoring will continue
to play a crucial role that complements other approaches, but the data it generates can be inherently
challenging to analyze on a watershed scale [16]. In order to guide ongoing and future monitoring and
help ensure that data collected are of maximum utility, the following recommendations for a long-term
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monitoring strategy are based on lessons learned from the studies described above. While they are
drawn from our studies of SRP concentration in our region, the fundamental concepts apply broadly
to various water quality parameters in many watersheds.

1. Sample High Flows and Record Flow Rates. Hydrology driven SRP export must be accounted for in
monitoring protocols. A range of flow conditions must be sampled, with particular efforts to
capture high flows. Rapid deployment of monitoring personnel in response to storm events is
key. In ungaged streams flow rate at the time of sampling can be estimated using drainage basin
ratios and data from nearby gaged streams [48]. Alternatively, simple current velocity meters and
stream dimensions can be used to roughly estimate flow rates, as long as high water does not
pose safety concerns.

2. Plan for the Long Term and for Extensive Sampling. Our data suggest that SRP in the Fall Creek
watershed has been stable for decades. As we enter an era of TMDL-guided watershed
management and efforts to reduce HABs, expectations of rapid watershed response are not
realistic. Highly variable hydrology will confound our ability to detect changes attributable
to decreased phosphorus inputs. Monitoring protocols should be designed and resourced for
decadal timescales and large sample sizes.

3. Incorporate Spatial Variety When Locating Monitoring Sites. Smaller tributaries in the northern part
of the Cayuga Lake watershed represent a large data gap that we have begun to fill in this study
using data collected by CSI and its volunteer partner groups. During TMDL implementation
and assessment, the historical focus on southern tributaries and large sub-watersheds must be
expanded to include more diversity in sub-watershed location and size.

Adoption of a TMDL or other comprehensive management strategy is a milestone event in any
watershed. Successful implementation requires a commitment to appropriately designed and executed
water monitoring programs that will benefit watershed residents and ecosystems by supporting
informed decision-making.
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