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Abstract: Trend detection in observations helps one to identify anthropogenic forces on natural
hydrological and climatic systems. Hydrometeorological data are often persistent over time that
deviates from the assumption of independence used by many statistical methods. A recently proposed
Sen’s trend test claimed to be free of this problem and thereby received widespread attention. However,
both theoretical derivation and stochastic simulation of the current study implies that persistence
inflates the trend significance, leading to false trends. To tackle this problem, we incorporate the feature
of persistence into the variance of the trend test statistic, whereby an innovative variance-corrected
Sen’s trend test is developed. Two theoretical variances of the trend test statistic are newly derived to
account for short-term and long-term persistent behavior. The original variance for independent data
is also corrected because of its negative bias. A stepwise procedure, including steps to specify the
underlying persistent behavior and to test trend with new statistic, is outlined for performing the
new test on factual data. Variance-corrected Sen’s trend test can effectively restore the inflated trend
significance back to its nominal state. This study may call for the reassessment of published results of
the original Sen’s trend test on data with persistence.

Keywords: trend analysis; Sen’s trend test; persistent behavior; Hurst phenomenon; random
variability; variance correction

1. Introduction

Concerns are growing that hydrological systems have undergone substantial and unprecedented
changes during the Anthropocene era. The IPCC’s reports highlighted the potential impacts and
associated risks of global warming on natural and human systems, among which freshwater-related
responses and risks were elaborated [1]. In general, renewable water resources are projected to decline
in many dry subtropical regions. Approximately 7% of the global population would suffer from
a severe reduction in renewable water resources with a 1 ◦C rise in global mean temperature [2]. Global
warming research has motivated the widespread application of statistical change analysis in observed
time series of hydrometeorological variables [3–7]. Trend detection is one branch of change detection
methods, focusing on gradual changes that have far-reaching effects on the effectiveness of current
water management policies. The presence of significant trends would entail a movement toward
attributing causative effects and quantitative assessment of future evolution. Both the knowledge of
past and potential changes could be incorporated into designing adaptation strategies to minimize
impact and manage risk.
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A comprehensive trend detection study commonly involves graphical and statistical analysis
on trends throughout the observed hydrometeorological series. Graphical trend analysis allows an
exploratory inspection of the available data and suggests qualitative information about the trend
characteristics. For example, the rescaled adjusted partial sums (RAPS) tools can visualize small but
systematic trends over time that are often hidden by internal variability of the data [8,9]. Statistical
trend analysis quantifies the significance of trends in order to confirm the existence (or nonexistence)
of trends detected by visual inspection. Most commonly used statistical techniques are Mann–Kendall
test, Spearman Rho test, and linear regression test.

Recently, an innovative trend detection method, introduced by Sen [10–12], has got graphical and
statistical analyses together. The graphical part of the method, Sen’s trend plot, was given the best
technical note award by the American Society of Civil Engineers in 2014. Sen’s trend plot offers two
major merits. First, it allows one to visually identify sub-trends in low, medium, and high clusters.
The information is of practical importance for engineers to avoid missing significant hidden trends in
extreme events such as high floods or severe droughts. Second, Sen’s trend plot can highlight trends
even in short, skew distributed and persistent data. For these benefits, Sen’s trend plot has been widely
embraced by the hydrological community and it was broadly applied to investigate trends in several
hydrometeorological observations, such as in studies on precipitation [13,14], streamflow [15,16],
air temperature [17], pan evaporation [18], solar radiation [19], water quality [20], and drought
indexes [21,22].

The statistical part of the method, Sen’s trend test, was also claimed to be free of any assumptions,
especially that of serial independence [11]. However, Sen’s trend test was built based on original
data directly, and hence it cannot naturally remove interference by data persistence. The effect of
persistence on Sen’s trend test still requires firm investigations via theoretical analysis and extensive
simulation studies. This persistence, also called “serial dependence,” has been recognized as an
inherent component of many natural, economic, and even medical data [23]. A persistent stochastic
process exhibits enhanced variability at large time scales, as evidenced by the tendency in time series
for high or low values to cluster together in many groups. This behavior came to be known as Hurst
phenomenon. It is a manifestation of frequent and irregular fluctuations of climatic and hydrological
processes on several scales. The emergence of persistence may produce some intense local slopes,
which might be falsely identified as deterministic trends but actually are only segments of large scale
random fluctuations. This is the fundamental impetus for developing appropriate statistical tests to
accurately discriminate between real deterministic trends and natural persistent processes.

Among several efforts to account for persistence in trend significance tests, two techniques, namely
data whitening and variance correction of the test statistic, play the dominant roles. The former renders
the persistent data into a serially independent counterpart, by either removing autocorrelation or
adding white noise [24,25]. The latter adapts the original trend test to persistent data via explicitly
incorporating the persistence into the variance of the test statistic [26,27]. The intriguing property of
the variance correction approach is that the influence of persistence on the trend test is transparent to
users with grounded theoretical expressions. Additionally, it avoids artificially dismantling original
data that are subject to the mutual effect of trends and persistence. For these reasons, the variance
correction approach has become an active option to acclimatize trend tests to real world observations
exhibiting persistent behavior. However, no literature has attached the variance of Sen’s trend test
statistic to persistent data.

The main purpose of this study is to develop an innovative variance-corrected Sen’s trend test in
which exact expressions for the variance of the trend test statistic under the persistence assumption
are given. Our study begins by analyzing the original expression of variance proposed by Sen [11].
Interestingly, the original variance is substantially biased even in the absence of persistence, because of
an error in its derivation. The theoretical variances for both serially independent and dependent data
are newly derived. Based on this finding, we suggest a stepwise procedure for the implementation of
a new test using actual data.
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Simulation experiments and factual data applications are then carried out to evaluate and discuss
the effectiveness of variance correction on mitigating the side effects of persistence on trend detection.

2. Sen’s Trend Detection Method

2.1. Sen’s Trend Plot

Sen’s method of trend detection proposes an innovative trend plot for the visual inspection of
possible trends, including a quantitative assessment of trend slope and its statistical significance. In the
preparation of the trend plot (Figure 1), the first step is to divide the given hydrometeorological time
series into two equal halves and separately sort them in ascending order. The former half series is then
placed on the horizontal axis and the latter half on the vertical axis of the Cartesian coordinate system.
Finally, the scatter graph is rendered with the same scale on both axes and a 1:1 (45◦) straight line is
drawn. A monotonic upward (downward) trend clearly shows up when the scatter points wholly
fall above (below) the 1:1 straight line. Nonmonotonic sub-trends are identified if the scatter points
partially appear in the upper and lower triangular areas of the 1:1 straight line. If all the scatter points
collect around the 1:1 straight line, the time series is nearly free of trend.Water 2019, 11, x 4 of 23 
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Figure 1. Illustration of linear trend identification with Sen’s method: (a) Time series and trend;
(b) Sen’s trend plot.

A linear trend, as a special pattern of monotonic trend, is widely employed to approximate
a gradual change of a hydrometeorological time series having a constant change rate. It appears
along a straight line parallel to the 1:1 line in the trend plot. The vertical distance between this “linear
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trend line” and the 1:1 line indicates the magnitude of the trend slope. There are alternative ways to
determine the slope of the linear trend. The simplest way is to find the arithmetic average of the two
half sub-series, which is the centroid of the linear trend line. The slope estimate of the linear trend S is
then formulated as:

S =
2
(
y2 − y1

)
n

(1)

where y1 and y2 are the means of the first and second half, respectively, and n is the total series length.
Figure 1 illustrates the application of the trend plot for a synthetic time series, which was generated

according to a Normally distributed white noise process with mean µ = 10, standard deviation σ = 5,
and length n = 1000. A linear trend component with slope S = 0.015 was superimposed onto the
simulated series. In the corresponding trend plot (Figure 1b), most data points fall on the linear trend
line. Equation (1) yields S = 0.0152, which is very close to the embedded slope.

2.2. Sen’s Trend Test

A trend significance test is constructed by considering the statistical confidence interval of the
slope estimator S. If the trend slope estimator S is sufficiently far from zero, then we can deduce an
existence of trends. Trend significance can be assessed by performing hypothesis tests on the slope
estimator. The null hypothesis H0 of the trend test is that the process underlying the observed series is
trendless if S remains below a confidence limit at a pre-assigned significance level. Alternatively, H0 is
rejected and the detected trend is statistically significant. Under the null hypothesis, with the basic
assumption that the data are independent and identically distributed, Sen [11] provided the mean and
variance of the slope estimator as:

E(S) =
2
n

[
E
(
y2

)
− E

(
y1

)]
= 0 (2)

V0(S) =
8
n2 σy1

σy2

(
1− ρy1 y2

)
=

8
n2
σ2

n

(
1− ρy1 y2

)
(3)

where E
(
y1

)
and E

(
y2

)
are the expectations of the mean estimator of the first and second half-time

series, respectively, σy1
and σy2

are the standard deviations, and ρy1 y2
is the cross correlation, σ is the

standard deviation of the entire time series.
Since all the odd-order moments of the slope estimator are equal to zero, the slope estimator

approximately obeys the Normal distribution with a zero mean. For assessing the significance of
the trend slope, the standardized S statistic ZS = S/

√
V0(S) is compared with the standard Normal

variates Zα/2 and Z1−α/2 at a desired significance level α, where Zα/2 and Z1−α/2 are the α/2 and
1− α/2 quantiles of the standard Normal distribution N(0, 1). Significant upward (downward) trends
are identified if ZS > Z1−α/2 (ZS < Zα/2).

Herein, we discuss the problems about the form of trend slope variance V0(S) derived by
Sen [11]. In the case of the null hypothesis of no trend, the two half sub-series represent one identical
population, which implies E

(
y1

)
= E

(
y2

)
and hence E(S) = 0. Likewise, σy1

= σy2
=
√

2σ/
√

n
which is the standard deviation of the mean estimator of a sub-series with length n/2. However,
Sen [11] took the form of σy1

and σy2
as σ/

√
n by mistake. Additionally, this classical relationship

σy1
= σy2

=
√

2σ/
√

n is only valid for independent and identically distributed data. Sen [11] did not
mention the use of assumption of independence explicitly but introduced it in the derivation of the
trend test statistic unconsciously.

Another mistake is related to the fact that independent data are characterized by zero cross
correlation among any two different time points, and therefore ρy1 y2

= 0. The computation of
cross correlation between the two sorted half-time series, as suggested by Sen [11], is theoretically
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unnecessary. After correcting the two mistakes that have been explained, the variance of the slope
estimator has the following expression:

V0(S) =
16σ2

n3 (4)

Figure 2 depicts the distribution histograms of the test statistic ZS, using the original variance
(Equation (3)) and the bias-corrected variance (Equation (4)), respectively, from 10,000 synthetic
trendless independent data of length 100, with a Normal probability density function. The Normal
distribution gives a satisfactory approximation to the distribution of ZS. However, when using the
original variance (Equation (3)), the distribution of ZS is too wide to preserve an expectable rejection
ratio that should be equal to the significance level, as illuminated by Figure 2a. Such a high rejection
ratio will result in many false indications of significant trends and lead to a spurious statement that
the Sen’s trend test is much more powerful than other tests. After bias correction, the upper and
lower tails of ZS still align with the Normal curve and further provide a proper rejection ratio (see
Figure 2b). In the following analysis, the usefulness of the original Sen’s trend test was evaluated using
the bias-corrected variance in Equation (4).Water 2019, 11, x 6 of 23 
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Figure 2. Comparison between the simulated distribution of the test statistic ZS for stationary
independent data of length n = 100 and the corresponding Normal approximation: (a) original test
statistic (Sen, 2017a); (b) bias-corrected test statistic.
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3. The Influence of Persistence on the Original Sen’s Trend Test

3.1. Persistence in Hydrometeorological Data

The original Sen’s trend test is tailored to independent data as mentioned above.
Hydrometeorological data, on the other hand, are often time dependent and characterized by nonzero
autocorrelation beyond the first lag. Two stochastic models that have been widely applied to describe
natural processes were considered here to illustrate the effect of persistence on the original Sen’s trend
test. The first model is the lag-one autoregressive model, namely AR(1), which is characterized by an
exponentially decaying autocorrelation function. The autocorrelation of an aggregated AR(1) process
drops down to zero for large time scales; hence, AR(1) is commonly used to simulate short-term
persistent processes. The autocorrelation function of an aggregated AR(1) process is given by (e.g., [28]):

ρ
(k)
j =


ρ(1−ρk)

2

k(1−ρ2)−2ρ(1−ρk)
;

∣∣∣ j∣∣∣ = 1

ρ
(k)
1 ρk| j−1|;

∣∣∣ j∣∣∣ > 1
(5)

where, ρ is the lag-one autocorrelation coefficient at the basic time scale (e.g., one year), k is the time
scale of interest (e.g., 5 or 10 years), and j denotes the time lag. Taking an annual series (k = 1) as an
example, the autocorrelation becomes a quite simple and familiar expression:

ρ j =

{
ρ;

∣∣∣ j∣∣∣ = 1
ρ| j|,

∣∣∣ j∣∣∣ > 1
(6)

Likewise, the variances of an aggregated AR(1) process are also related to the time scale of
aggregation (i.e., k). The variance of the process at scale k is given by:

(
σ2

)(k)
= σ2

k
(
1− ρ2

)
− 2ρ

(
1− ρk

)
(1− ρ)2 (7)

where σ2 is used to abbreviate the variance of the process at the basic time scale k = 1, i.e., (σ2
≡

(
σ2

)(1)
).

Also ρ denotes the lag-one correlation coefficient at k = 1.
For a large value of k, Koutsoyiannis [28] simplified the expression of Equation (7) as:

(
σ2

)(k)
= k

(1 + ρ)

(1− ρ)
σ2 (8)

The second model is Fractional Gaussian Noise (FGN), also known as the simple scaling stochastic
process [28–32], which has a slowly-decaying autocorrelation function and is classified as a long-term
persistent model. The FGN model is often more consistent with hydrometeorological reality than the
classical AR(1) model, primarily because of its capability to reproduce natural random fluctuations on
multiple time scales [33]. The autocorrelation and variance functions of an aggregated FGN process
are given by:

ρ
(k)
j =

1
2

[∣∣∣ j + 1
∣∣∣2H
− 2

∣∣∣ j∣∣∣2H
+

∣∣∣ j− 1
∣∣∣2H

]
(9)(

σ2
)(k)

= k2Hσ2 (10)

where H is the so-called “Hurst coefficient,” ranging from 0 to 1.0. A stochastic process with H
greater than, smaller than, or equal to 0.5, corresponds to the case of persistent, anti-persistent,
or independent data.

A closer look at the two autocorrelation functions, Equations (5) and (9), reveals that the FGN
autocorrelation holds a distinct property of scale invariance. For a specific time lag, the autocorrelation
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only depends on the Hurst coefficient and is constant for all time scales. This property implies a graphical
means to differentiate between the AR(1) and FGN processes by plotting the lag-one autocorrelation
coefficients of the aggregated processes versus time scales. This method of discrimination will be
adopted as the first step in the practical application of the new Sen’s trend test.

For ease of interpretation of the simulation results between these two persistent models in the rest
of the paper, all simulated data have the same lag-one autocorrelation coefficient ρ at the basic time
scale. The parameter H of the FGN model was computed in terms of ρ by setting k = 1 and j = 1 into
Equation (9) and solving for H to obtain the following:

H =
1
2

[
1 +

ln(1 + ρ)

ln(2)

]
(11)

3.2. Inflation of Trend Slope Variance and Type I Error

The immediate reaction of the original trend test against persistence is to increase the variance of
the slope estimator. The ratio of V(S)/V0(S) between the slope variance for persistent and independent
data, referred to as the variance inflation factor [34], is widely used to indicate how much the variance
has been inflated. The empirical values of V(S) are estimated from synthetic persistent data here and
the theoretical formula for calculating V(S), denoted by VC(S), is derived in the next section. A total
of 500 sets, each with 500 representations of the AR(1) and FGN time series, were generated, and
subsequently V(S) was estimated using these simulated time series. The theoretical values of V0(S)
were computed using Equation (4). In this study, the synthetic FGN data were simulated using the
function “simFGN0” in the R package “longmemo.” The generated time series have Gaussian marginal
distribution, which often approximates annual and over-annual hydrometeorological processes. Based
on the present study, more comprehensive analyses using novel methods for the simulation of processes
characterized by non-Gaussian marginal distributions, can assist in understanding the influence of
marginal distribution on Sen’s trend test [35,36].

Table 1 gives the variance inflation factor for AR(1) and FGN data with different series lengths
n and lag-one autocorrelations ρ. The inflation factors are all larger than unity and generally grow
in pace with the increases of n and ρ for both types of persistent data, as expected. However, the
behaviors of the two persistent data types display some differences. For example, the inflation factor
of the FGN data increases with ρ, but reaches a plateau and then decreases above a given value of n.
For a given value of ρ, the FGN data are more likely to provide larger inflation factors than the AR(1)
data, except at very high values of autocorrelation or in short series, where the situation is reversed.

Table 1. Variance inflation factor of Sen’s slope V(S)/V0(S) calculated for different persistent data sets,
given lag-one autocorrelation coefficient ρ and series length n.

n
ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AR(1) data

30 1.00 1.21 1.44 1.74 2.11 2.61 3.24 4.15 5.19 5.69
50 1.00 1.21 1.46 1.79 2.20 2.77 3.54 4.73 6.63 9.21

100 1.00 1.21 1.48 1.82 2.26 2.89 3.77 5.18 7.80 13.61
150 1.00 1.22 1.49 1.83 2.29 2.92 3.83 5.36 8.16 15.45
200 1.00 1.22 1.49 1.84 2.31 2.94 3.89 5.44 8.38 16.31

FGN data

30 1.00 1.31 1.64 1.95 2.24 2.43 2.52 2.39 1.99 1.23
50 1.00 1.41 1.87 2.36 2.85 3.28 3.55 3.53 3.07 1.97

100 1.00 1.54 2.24 3.06 4.02 4.91 5.69 6.03 5.55 3.74
150 1.00 1.63 2.51 3.57 4.90 6.25 7.47 8.21 7.77 5.45
200 1.00 1.70 2.71 3.98 5.62 7.37 9.09 10.20 9.93 7.09
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As a result of slope variance inflation, the use of the original Sen’s trend test on persistent data
yields a much larger test statistic than for independent data, and thus indicates a significant trend
when in fact no trend exists. This type of misidentification is the so-called Type I error of trend tests.
The inflationary effect of data persistence on Type I error is clearly shown in Figure 3, based on 10,000
simulations. In the case of independent data when ρ = 0, Type I errors are equal to the chosen 5%
significance level. Otherwise, Type I errors increase with ρ for AR(1) data, and increase with both n
and ρ for FGN data.
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(b) Fractional Gaussian Noise (FGN) data.

It is true that in hydrometeorological observations without considering the paleohydrological
and paleoclimatic reconstructions, the level of persistence is not as high as in synthetic simulations,
and the series lengths of annual observations are commonly less than 100. However, Type I errors are
still inflated in many real observations. For example, the analysis of the global instrumental dataset
(of length around 100 years) suggests that there are notable indications of long-term persistence in
annual rainfall and runoff [37,38]. The global mean values of H are estimated close to 0.58 and 0.65
for annual rainfall and runoff, respectively. By setting and H = 0.65 in Equation (9), the equivalent
values of ρ are 0.12 and 0.23. The use of the original Sen’s trend test on FGN data of length n = 100,
with ρ = 0.12 and ρ = 0.23, yields Type I errors of around 13% and 21% at the 5% significance level
(2.6 and 4.2 times the nominal rate) from Figure 3b, which is unacceptable. As such, the adaptation
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of the original Sen’s trend test to persistent data is necessary from both the theoretical and practical
points of view.

4. Variance Corrected Sen’s Trend Test

4.1. Theoretical Basis for Correcting Slope Variance

The original Sen’s trend test is built on the basic assumption of serial independence. Under the
alternative assumption of serial dependence, the original Sen’s trend test misrepresents the significance
of trends because of the inflated variance of the slope estimator. In this section, the slope variance
expression is re-derived, accounting for short-term and long-term persistence by the use of variance
functions of the aggregated AR(1) and FGN processes.

Revisiting the original expression of slope variance, Equation (3), the standard deviations σy1

and σy2
are no longer equal to

√
2σ/
√

n, and the cross correlation ρy1 y2
is no longer equal to zero in

persistent data. The cross correlation between the two mean estimators in the stochastic processes is
given as follows:

ρy1 y2
=

E
(
y1y2

)
− E

(
y1

)
E
(
y2

)
σy1
σy2

(12)

Substituting this expression into Equation (3) and considering stochastically that E
(
y1

)
= E

(
y2

)
and σy1

= σy2
, Equation (3) takes the following form:

VC(S) =
8
n2

[
σ2

y1
+ E2

(
y1

)
− E

(
y1y2

)]
(13)

After unfolding the expectation value E
(
y1y2

)
using basic statistical and algebraic manipulations,

one obtains:
VC(S) =

8
n2

[
σ2

y1
−

4
n2 σ

2
·R

]
(14)

where R is a symbol denoting the summation of autocorrelation coefficients, given by R =
n/2∑
i=1

n∑
j=n/2+1

ρ( j−i). The symbol ρ( j−i) is the ( j− i)th lag autocorrelation coefficient at the basic time scale.

Its value is computed according to the autocorrelation function of the specified persistent model, i.e.,
Equation (6) for the AR(1) model or Equation (9) for the FGN model.

Notice that σ2
y1

in Equation (14) is the variance of the mean estimator of a dependent time series

with length n/2. It has the form of σ2
y1

= k−2
(
σ2

)(k)
, where the time scale k is equal to n/2. The specific

form of the variances of the aggregated processes
(
σ2

)(k)
depends on the choice of persistent model, i.e.,

Equation (8) if the data align with the AR(1) model or Equation (10) if aligned with the FGN model.
For the short-term persistent model of AR(1), the slope variance goes to its final form as:

VC(S) =
16
n3 σ

2
[

1 + ρ

1− ρ
−

2
n
·R

]
(15)

For the long-term persistent model of FGN, the final form of the slope variance goes to:

VC(S) =
16
n3 σ

2
[(n

2

)2H−1
−

2
n
·R

]
(16)

The expressions in the square brackets in Equations (15) and (16) are the theoretical formulas for
correcting the original slope variance of the AR(1) and FGN processes, respectively. The values reduce
to one when data are absolutely uncorrelated, in which case H = 0.5, ρ = 0, and R = 0. Equation (14)
is a general expression for any legitimate theoretical persistent structure. If one has another type of
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persistent model with known autocorrelation and variance functions, it is straightforward to employ
Equation (14) to estimate VC(S).

The distribution of the resulting standardized test statistic ZSC = S/
√

VC(S), using the corrected
slope variance, was empirically investigated. Figure 4 shows the upper tail of the simulated cumulative
distribution of ZSC, using 10,000 synthetic AR(1) and FGN data with length n = 100. Both of the
parameters ρ and H were set to 0.9 to represent strong persistent cases. It is clear from Figure 4 that
the tail of the standard Normal curve is in good agreement with the tails of ZSC for persistent data.
This agreement can be found in cases with lower levels of persistence. Thus, the use of the Normal
distribution is still a reasonable approximation to assess the significance of trends in the presence
of persistence.
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4.2. Practical Procedure of the Method

Using the corrected slope variance described above, an innovative variance-corrected Sen’s trend
test can be performed on persistent data. The practical procedure of the method is outlined as follows:

Step 1: Persistent model specification. The empirical lag-one autocorrelation coefficients of the
aggregated time series are plotted versus the time scales. If the lag-one autocorrelations
are almost constant or decay slowly for large time scales, the time series is regarded as
a representation of an FGN process. Otherwise, the lag-one autocorrelations will drop down
to zero after a few time scales; in this case, the time series is classified as an AR(1) process.

Step 2: Persistent parameter estimation. For the AR(1) data, the empirical lag-one autocorrelation
coefficient is estimated from the detrended series, and subsequently bias-corrected as
recommended by Hamed [39]: ρ = (nρ̂+ 2)/(n− 4). For the FGN data, the Hurst coefficient
H is estimated via the maximum likelihood method, which has been proven to be robust and
to present low bias, as compared to several other methods [40].

Step 3: Slope variance correction. The corrected slope variance VC(S) is calculated using Equation
(15) for AR(1) data or Equation (16) for FGN data, according to the results of the persistent
model specification.

Step 4: Trend significance assessment. The variance-corrected test statistic ZSC is compared with the
quantiles of the standard Normal distribution at a desired significance level, and the trend
significance is quantified.
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5. Monte-Carlo Simulation

5.1. Simulation Design

To evaluate the applicability of the proposed method to persistent data, a set of Monte-Carlo
simulation experiments were performed. The simulations applied a commonly assumed structure
to describe hydrometeorological data, which is a combination of a stationary time series and a linear
trend, written by:

xt = At + St (17)

where At is stationary data exhibiting short-term or long-term persistence, generated by the AR(1) or
FGN model, and S is the slope of the linear trend with respect to time t.

Type I errors and the power of the test were estimated using the two-sided rejection ratio, given by:

Rejection Ratio = Nrej/N =
{
Type I error, S = 0; Power, S , 0

}
(18)

where N is the total number of simulated series (10,000), and Nrej is the number of series that the null
hypothesis of no trends is rejected by the test. The significance level is assigned at 5% in this study.

The simulations first generated a trendless series with various combinations of series length
n ∈ [30, 40, . . . , 200] and lag-one autocorrelations ρ ∈ [0, 0.1, . . . , 0.9] to investigate how effectively the
procedure of slope variance correction can alleviate Type I error inflation. After correction, the updated
slope variance VC(S) replaced the original V0(S) as the denominator of the variance inflation factor,
written as V(S)/VC(S). An effective slope variance correction needs to produce an inflation factor
within ±20% from unity, i.e., 0.8–1.2, as suggested by Hamed [39]. According to simulations derived
from the standard Normal distribution, which is the approximation of a trend test statistic distribution,
the ±20% inflation in variance will result in actual Type I errors of 3.3–6.7% at the 5% level. This
margin was determined because perfect correction cannot be achieved unless we can acquire the
full knowledge of persistent data, including both the persistent model type and parameter, which is
unrealistic in practice.

To highlight the effectiveness of slope variance correction in response to model misspecifications
and parameter estimation errors, we discuss simulation results under three special cases. The first
case assumes that the real persistent model and its parameter are known before correcting the slope
variance. In the second case, the slope variance was corrected using the estimated value of a persistent
parameter, where the real persistent model was well-specified. For the last case, attention focuses on
the slope variance correction with the wrong choice of persistent model, even though its parameter is
correctly identified.

The simulations also generated nonstationary series characterized by an upward linear trend to
investigate the power of trend detection under varying levels of data persistence. The dimensionless
slope of the linear trend S/σ ranges from 0 to 0.05. Power comparisons between Sen’s trend test before
and after slope variance correction, as well as the conventional Mann–Kendall test for uncorrelated
data, were performed.

5.2. Slope Variance Correction and its Effectiveness on Mitigating Type I Error Inflation

The term “variance correction” means the conversion of the variance of the test statistic under
the serial independence assumption into a variance that is appropriate to persistent data. Perfect
correction can yield a variance inflation factor of unity, whereby Type I errors will be exactly equal to
the significance level. Otherwise, large inflation factors (>1.2) result in unacceptably high Type I errors,
namely “under-correction,” while small inflation factors (<0.8) result in too few Type I errors, which is
known as “over-correction.”

Tables 2 and 3 provide the inflation factors after variance correction for AR(1) and FGN data,
respectively. The inflation factors are greatly reduced for almost all combinations of n and ρ compared
to the original values, as shown in Table 1. The reduction of inflation factors depends on the accuracy
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of the persistent model specification and parameter estimation. To be specific, nearly perfect correction
can be achieved in an ideal case (Case I), where the persistent model and its parameter are exactly
known beforehand. In a more practical case (Case II), where the persistent parameters ρ or H are
estimated from data, the slope variance is under-corrected for high values of autocorrelation, and the
situation occurs with larger autocorrelation as the series length n increases. Case III only produces
a narrow band of effective variance correction because of persistent model misspecification. Correcting
the slope variance of AR(1) data with an FGN model results in under-correction for high values of
autocorrelation and over-correction for a long series. The situation reverses for FGN data, particularly
when the slope variance is corrected using an AR(1) model.

Table 2. Variance inflation factor of Sen’s slope V(S)/VC(S) after variance correction for AR(1) data.
The underlined values denote that the slope variances are “over-corrected” (<0.8) or “under-corrected”
(>1.2).

n
ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Case I: AR(1)-based correction with a known real value of ρ

30 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
150 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case II: AR(1)-based correction with an estimated value of ρ

30 0.91 0.91 0.89 0.88 0.89 0.90 0.97 1.22 1.76 2.89
50 0.95 0.94 0.92 0.92 0.90 0.90 0.91 0.95 1.15 2.17

100 0.97 0.96 0.96 0.96 0.95 0.95 0.93 0.91 0.89 1.19
150 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.94 0.91 0.97
200 0.99 0.99 0.99 0.98 0.98 0.96 0.97 0.96 0.93 0.91

Case III: FGN-based correction with a known real value of Hurst coefficient H

30 1.00 0.92 0.88 0.89 0.95 1.07 1.29 1.74 2.61 4.63
50 1.00 0.86 0.78 0.76 0.77 0.84 1.00 1.34 2.16 4.67

100 1.00 0.79 0.66 0.59 0.56 0.59 0.66 0.86 1.41 3.64
150 1.00 0.75 0.60 0.51 0.47 0.47 0.51 0.66 1.05 2.84
200 1.00 0.72 0.55 0.46 0.41 0.40 0.43 0.53 0.84 2.29

Table 3. Variance inflation factor of Sen’s slope V(S)/VC(S) after variance correction for FGN data.

n
ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Case I: FGN-based correction with a known real value of Hurst coefficient H

30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00
150 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case II: FGN-based correction with an estimated value of H

30 0.91 1.08 1.24 1.32 1.41 1.49 1.55 1.67 1.75 1.89
50 0.90 1.08 1.16 1.24 1.26 1.32 1.37 1.47 1.56 1.67

100 0.89 1.06 1.11 1.13 1.15 1.15 1.21 1.29 1.37 1.47
150 0.89 1.05 1.09 1.10 1.11 1.13 1.16 1.20 1.26 1.38
200 0.89 1.05 1.07 1.08 1.08 1.10 1.12 1.16 1.21 1.30

Case III: AR(1)-based correction with a known real value of ρ

30 1.00 1.09 1.14 1.12 1.06 0.94 0.77 0.58 0.38 0.22
50 1.00 1.17 1.28 1.33 1.29 1.19 1.00 0.74 0.46 0.21

100 1.00 1.27 1.51 1.68 1.77 1.71 1.51 1.16 0.71 0.27
150 1.00 1.34 1.68 1.95 2.14 2.15 1.94 1.53 0.95 0.35
200 1.00 1.39 1.81 2.17 2.44 2.51 2.34 1.87 1.18 0.44
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Figures 5 and 6 depict the results of Tables 2 and 3 using area plots, in which the range of effective
slope variance correction is painted in light grey, and the over- and under- correction regions are
painted in white and dark grey. In Case II (Figures 4a and 5a), there is a clear trend of increasing
acceptable area as the series length increases. In Case III (Figures 4b and 5b), however, longer series do
not produce wider acceptable areas. A long series tends to accentuate the discrepancy between the
different models, as the data disobeys the hypothetical persistent model. As a result, the corrected test
will inflate or deflate Type I errors beyond the acceptable margin of the significance level. To alleviate
this weakness, the investigation of the persistent model must be performed initially, as suggested in
the practical procedure. Some previous trend studies regarding data pre-whitening have also drawn
attention to this serious issue [39,41]. Here, simulation results reinforce the standpoint that model
specification is important for trend detection in real persistent hydrometeorological data, especially for
long time series.
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Figure 7 gives Type I errors associated with Sen’s trend test using the correct persistent model.
The inflated Type I errors are mostly restored to the acceptance range of the significance level, as
opposed to those of the original test given by Figure 3. Considering a series with length n = 100 for
instance, the new test apparently reduces Type I errors of the original test from the range (5–66%) to
(5.2–6.7%) for AR(1) data, and from (5–61%) to (3.3–9.3%) for FGN data. Given that persistence in
hydrometeorological records such as annual rainfall and runoff are usually moderate, H ≤ 0.80 or
equivalently ρ ≤ 0.52, refer to global estimation results of H [37,38]. Thus, the new test requires at
least around 50 observations of AR(1) data or 100 observations of FGN data to guarantee acceptable
Type I errors. Numerous observations yield better results only if the underlying persistent structure is
well specified.
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5.3. Power of Trend Detection

A test is powerful if it can detect weak trends and also maintain an acceptable Type I error.
Herein, power curves are presented only in cases where the underlying persistent models are correctly
specified, so that the inflated Type I errors can be restored to their normal states. The relationship
among power, lag-one autocorrelation (reflecting strength of persistence), and the dimensionless slope
of the linear trend for synthetic series with length 100 is depicted in Figure 8. A series length of 100
was chosen simply for illustrative purposes. An analogous pattern of power curves emerges for other
series lengths.

The power of the new test is an increasing function of the dimensionless slope of the linear trend,
irrespective of data persistence. In general, strong trends in data with weak variation are more likely to
be detected than weak trends in highly variable data. In terms of the relationship with data persistence,
the power is a monotonic decreasing function of the lag-one autocorrelation for AR(1) data. For FGN
data, the power decreases to a minimum at around ρ = 0.6 and then rises again. Generally, the test
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is less powerful in detecting a trend in persistent data than in uncorrelated data. This weakness is
the so-called power loss. In fact, power loss occurs because of the effect of persistence rather than the
procedure of variance correction. Persistence inflates the variance of the trend slope and reduces the
value of the test statistic numerically when the null hypothesis is false, thus weakening the ability of
the test to detect a real trend from persistent data compared to the case when the same trend exists
in uncorrelated data. The power losses depend on the extent of variance inflation. For FGN data,
power restoration occurred when ρ > 0.6, since at that time the inflated variance gradually recovered
spontaneously (see Table 1).
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Without slope variance correction, the test may prevent power loss at the expense of producing
a high Type I error rate, which is far beyond the reported significance level. However, this undermines
the fundamental basis for the statistical trend test, which operates by controlling Type I errors within
a known significance level, signifying users’ confidence toward detected trends.

Sen’s trend test with the help of slope variance correction is built for persistent data. When
the data are independent of time, will this manipulation reduce the power? The answer is given
in Figure 9. The power of the test based on AR(1) correction is comparable to that of the original.
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However, the test based on FGN correction becomes less powerful, because of the sampling errors
introduced by the Hurst coefficient estimation. This finding reasserts the importance of careful choice
of a persistent model before performing variance correction. Revisiting the first step of the practical
procedure, independent data can be classified as a special case of an AR(1) process. Thus, the adoption
of AR(1)-based correction would not cause an apparent loss of power.
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Figure 9. Power of the innovative variance-corrected Sen’s trend test compared to that of the original
test and the Mann–Kendall test, for the case of uncorrelated data (series length: n = 100).

Figure 9 also reveals that Sen’s trend test is less powerful than the Mann–Kendall test for
uncorrelated data with weak trends. However, the power of Sen’s trend test achieves that of the
Mann–Kendall test as the slope of the trend increases. This argues against the statement made by
earlier comparison studies that Sen’s trend test can identify many significant trends ignored by the
Mann–Kendall test [19,42]. The discrepancy mainly arises from the incorrect slope variance, Equation
(3), given by Sen [11]. In Section 2.2, it was demonstrated that this slope variance is substantially
biased even for independent data. The expression should be replaced by a bias-corrected expression,
Equation (4), so that the Type I error rate can return to its normal state. However, the power will be
slightly lower than the Mann–Kendall test.

6. Application to Real-World Data

Hydrometeorological variables carries different persistence characteristics, for example
independence, short-term, and long-term persistence. To demonstrate the applicability of the new
method on series with different degree of persistence, three real-world records were selected for
illustration, including rainy days, frost days, and streamflow. The annual series of rainy days, and
frost days of China were obtained from the CRU CY 4.01 dataset (1901–2016), produced by the Climate
Research Unit at the University of East Anglia [43]. The annual total flow (1824–2016) from Main
River at Wuerzburg in Germany were kindly provided by the Global Runoff Data Centre in Koblenz,
Germany (http://grdc.bafg.de).

The time series plot and its corresponding 1:1 trend plot are presented in Figure 10a,b. In the time
series plots, increasing trends are recognizable in rainy days and annual total flow, and decreasing
trends in frost days for the entire record. The 1:1 trend plots provide detailed information about
sub-trends. Regarding the rainy days, the trend slopes at higher values are generally stronger than that
for the lower value cases. The annual total flow series shares a similar behavior. The increasing trend
is dominated by high values. In addition, the low cluster is almost trend-free, whereas an apparent
reduction occurs at the extremely low values. In the series of frost days, downward trends are prevalent
throughout high, medium, and low clusters and the trends are dominant in the low cluster.

http://grdc.bafg.de
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Figure 10. Time series of annual rainy days and frost days of China (a1,a3), and annual total flow
from Main River at Wuerzburg in Germany (a2). Trend test results given in (a1–a3) are obtained
from variance-corrected Sen’s trend test. Sen’s trend plots for the data sets in a1–3 (b1–b3). Lag-one
autocorrelations of the aggregated series versus time scales as for a1–3 (c1–c3).

The persistence features of the three series were further examined by plotting the empirical lag-one
autocorrelation of the aggregated series versus time scale, as depicted in Figure 10c. The trajectories
of the theoretical autocorrelations of AR(1) and FGN models are also depicted in the same figure.
The maximum scale of aggregation was set to ten, assuring that each aggregated series contains at
least ten values. The rainy days exhibit low autocorrelations, which fluctuate around zero initially
and become negative for large scales. The series is generally independent of time, and therefore we
can regard the series as a representation of AR(1) data. The autocorrelations of annual total flow
fluctuate around the value modelled by AR(1). Annual total flow is thus very likely to be AR(1) data.
The long-term persistence of the frost days is clear in this example. Autocorrelation appears to be
constant. Thus, the FGN model is a better approximation of the underlying process.

Table 4 gives the trend detection results when applying the original and variance-corrected
Sen’s trend test. The second and third columns show the basic statistical features of the series.
The specified persistent model and its parameter are provided in the next two columns. In the frost
days, the high value of the Hurst coefficient is in doubt because the existence of a real trend may
result in overestimation. As such, the Hurst coefficient was also estimated from the detrended series
(in parentheses) for comparison. The last four columns indicate the original and corrected slope
variances and their corresponding trend test statistics. The new method only slightly alters the trend
test statistic of rainy days, which is nearly independent of time. As for the persistent series, the new
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method effectively reduces the inflated statistic values. The confidence level (one minus significance
level) of increasing annual total flow and decreasing frost days drops from 99% to 95%, when the effect
of persistence is taken into account. The new method even rejects significant trend of frost days, when
we corrected the slope variance using the higher estimate of the Hurst coefficient.

Table 4. Results of Sen’s trend test before and after slope variance correction.

Variables
Statistical Features Data Persistence Slope Variance Test Statistic 1

Mean µ Slope S/σ Model Parameter Original V0(S) Corrected VC(S) Original ZS Corrected ZSC

Rainy days 103 days 0.008 AR(1) ρ = −0.046 7.9 × 10−5 7.2 × 10−5 2.62 ++ 2.74 ++

Annual
total flow 3.44 Gm3 0.005 AR(1) ρ = 0.380 2.1 × 10−6 4.5 × 10−6 3.22 ++ 2.17 +

Frost days 166 days −0.017 FGN H = 0.956
(0.879)b 0.2 × 10−3 0.2 × 10−2

(0.9 × 10−3)
−5.18 ++

−1.85 (−2.55 +)

1 Significant trends at the 5% (|Z| > 1.96) level are indicated by “+”, at the 1% (|Z| > 2.576) level by “++”; 2 Values in
parentheses are the Hurst coefficients estimated from the detrended series and the corresponding slope variance
and trend test statistic.

This result indicates a possibility that the statistical evidences of trends within many
hydrometeorological processes are overestimated because of the ignorance of the intrinsic characteristic
of persistence. Admitting persistence in the new Sen’s trend test helps to avoid exaggerating trend
significance and overuse of deterministic trends. In practical applications, properly accounting for
deterministic t rends and persistent behavior are inherently linked with understanding and modelling
hydrometeorological processes. On the one hand, the persistent process implies that there is nontrivial
dependence between the present state and the previous states, and the handling of dependence
in prediction model can be made through reasoning future state conditional on the known past
information. Dependence improves one-step-ahead predictability in comparison to purely random
process. On the other hand, the persistent process exhibits much wide range of natural variability
at large time scales. Many statistical characteristics become time-related. For example, local means
may vary in time and fluctuate irregularly around the global mean. This enhanced fluctuation
reduce predictability of the process over long time horizon. The detected trend would initiate an
investigation on the causative effects through deductive reasoning and data validation. The trend if at
all valid can enrich our knowledge of the changes in external forces and in internal conditions of the
hydrometeorological systems.

In the current application, increasing trend of annual rainy days was detected in China, which
is a manifestation of precipitation regime changes. Decreasing frost days is an evidence of global
warming over mainland China. But the statistical significance of trend markedly reduced when
the long-term persistence is considered. Similar reductions in the significance of rising temperature
are also evidenced by other studies [44,45]. We argue that the future evolution of temperature-like
processes would be much more uncertain than we perceive. Annual total flow from Main River in
Germany exhibits both the short-term persistence and the increasing trend. This feature reveals that
the Main River was generally enriched, yet had a propensity of enduring consecutive years of natural
excursions from the mean. This information has evident implication for the designing, operation, and
management of hydro projects.

7. Conclusions

This study adapts the recently proposed Sen’s trend test to persistent data via a variance correction
approach. Two expressions for the variance of the trend test statistic were newly derived under the
assumption of persistence. One variance is tailored to short-term persistent data, characterized by
the AR(1) model. The other expression is designed for long-term persistent data and is represented
by the FGN model. The computation of these new variances is convenient, as they only require one
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additional parameter, i.e., the lag-one autocorrelation coefficient or Hurst coefficient. We also fixed the
original variance for independent data, thereby correcting its negative bias.

An innovative variance-corrected Sen’s trend test was developed with the aid of newly derived
variances. Simulation results verified the effectiveness of the new test on alleviating the side effect
of persistence. By correcting the variance with the most approximate persistent model of the data,
the rate of committing Type I errors remains within an acceptable range of the nominal significance
level. The power of trend detection monotonically increases for higher trend slopes. The power
losses depend on how much the persistence inflates the variance of the trend test statistic. The more
seriously inflated the variance, the less powerful the test. A stepwise procedure was recommended for
performing the new test on real hydrometeorological observations. Case studies explained in detail
how to differentiate independent, short-term persistent, and long-term persistent data, so as to invoke
the corresponding variance prudently.

The actual advantage of the Sen’s trend detection method is to deduce the overall trend and
hidden sub-trends in various categories simultaneously on a furnished 1:1 trend plot. The flexible
categorization of observations provides detailed information about the trend characteristics for each
cluster. However, in the context of trend significance analysis, Sen’s trend test does not perform better
than the conventional Mann–Kendall test. The purported novelty of Sen’s trend test, i.e., it is free
of any restrictive assumptions, is not supported by the current study. This finding renders some
published trends based on the original Sen’s trend test problematic and may therefore need to be
reassessed. The proposed new Sen’s trend test attaches its test statistic to the distinctive persistent
feature of hydrometeorological data. Sen’s trend plot with the help of variance-corrected Sen’s trend
test yields more reliable statistical evidence of the changes occurring and sheds light on the future
evolution of hydrological and climatic processes.
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