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Abstract: The roles of dissolved organic matter (DOM) in microbial processes and nutrient cycles
depend on its composition, which requires detailed measurements and analyses. We introduce a
package for R, called staRdom (“spectroscopic analysis of DOM in R”), to analyze DOM spectroscopic
data (absorbance and fluorescence), which is key to deliver fast insight into DOM composition
of many samples. staRdom provides functions that standardize data preparation and analysis of
spectroscopic data and are inspired by practical work. The user can perform blank subtraction,
dilution correction, Raman normalization, scatter removal and interpolation, and fluorescence
normalization. The software performs parallel factor analysis (PARAFAC) of excitation–emission
matrices (EEMs), including peak picking of EEMs, and calculates fluorescence indices, absorbance
indices, and absorbance slope indices from EEMs and absorbance spectra. A comparison between
PARAFAC solutions by staRdom in R compared with drEEM in MATLAB showed nearly identical
solutions for most datasets, although different convergence criteria are needed to obtain similar
results and interpolation of missing data is important when working with staRdom. In conclusion,
staRdom offers the opportunity for standardized multivariate decomposition of spectroscopic data
without requiring software licensing fees and presuming only basic R knowledge.

Keywords: dissolved organic matter; DOM; PARAFAC; R; spectroscopy; fluorescence; absorbance;
EEM; peak picking; drEEM; staRdom

1. Introduction

Dissolved organic matter (DOM) is the dominant organic matter form in nearly all aquatic
ecosystems, where it modifies a plethora of ecosystem processes [1]. For example, it is a crucial
nutrient source for microbial processes and a driver for microbial community composition in aquatic
ecosystems [2–4]. DOM also controls different biogeochemical cycles, is a key modifier of primary and
secondary production in lakes [5–7] and the ocean [8–11], and modifies microbial nitrate uptake [12,13]
and changes the transport and the toxicity of pesticides in aquatic ecosystems (e.g., [14]). All these
functions of DOM are related to its molecular composition. As significant fractions of DOM consist
of chromophoric (light-absorbing) and fluorophoric (fluorescent) compounds [15,16], spectroscopic
measurements can provide insights into DOM composition. Importantly, such ultraviolet–visible
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spectroscopy is fast and cost-efficient, allowing immediate measurements during sampling campaigns
with high sample throughput. Although some DOM fractions are not spectroscopically active and its
spectral properties do not resolve fine details of its molecular structure, spectroscopic measurements
can distinguish groups of DOM molecules in a meaningful way [17–19]. DOM spectroscopic properties
have been shown to discriminate between sources, pathways, and undergone processes in aquatic
ecosystems [20–24].

While absorbance data have mainly been used to estimate DOC concentrations and to detect
the presence of aromatic compounds in DOM [25,26], fluorescence characteristics, such as the
position, height, and shape of different fluorescence peaks, deliver additional information on DOM
composition [15]. Electrons within DOM molecules are excited by photons of specific wavelengths and
emit light at longer wavelengths due to energy loss (called Stokes shift; [27]). This Stokes shift defines
the wavelength of fluorescence emission relative to the wavelength of excitation, and both depend on
the structure of the excited DOM molecule. Three-dimensional excitation–emission matrices (EEMs)
represent the spectroscopic measurements of DOM best [28], showing the complex picture of different,
partially overlapping wavelengths of fluorescent light from various DOM molecules. Such EEMs cover
a wide range of excitation and emission wavelengths (between approximately 200 and 700 nm) and
can easily have more than 3000 data points per sample (e.g., [20]). For such large datasets, multivariate
approaches are required to distinguish between chemically meaningful spectral patterns.

The most common approach for analyzing EEMs is Parallel Factor Analysis (PARAFAC, also called
canonical decomposition, CANDECOMP) [29–33]. PARAFAC is a statistical model approach that
extracts independent fluorophores from EEMs under ideal conditions [32]. Currently, the most popular
software tools used to analyze EEMs by PARAFAC are the drEEM toolbox [32] and its predecessor
DOMFluor [34], which both work in a MATLAB software environment. In both cases, the N-way
toolbox calculates the actual PARAFAC model using an alternating least squares (ALS) algorithm [35].
Although these toolboxes are released under an open-source license, a commercial license for MATLAB
is needed to run them.

Due to its open-source nature, the R software environment for statistical computing and
graphics [36] is widely used in ecological research nowadays [37]. In R, a reliable PARAFAC
toolbox is the multiway package [38]. The multiway package uses an ALS algorithm similar to N-way
to solve PARAFAC models; however, the initialization procedure is limited in comparison to the ones
offered by the N-way toolbox. Like N-way, multiway is not tailored toward a particular use case and
thus requires in-depth knowledge of the R language for its application to spectroscopic data. While
drEEM and DOMFluor have addressed this shortcoming, there is no spectroscopy-tailored PARAFAC
toolbox available in R.

Besides PARAFAC analysis, many studies investigate specific absorbance spectra and fluorescence
peak heights for analyses of DOM spectroscopic data. The method of “peak-picking” uses fluorescence
intensities at predefined wavelengths or wavelength regions as a proxy for DOM composition [39].
In the aquatic sciences, commonly reported peaks include B (tyrosine-like), T (tryptophan-like),
A (humic-like), M (marine humic-like), and C (humic-like) [40]. Furthermore, multiple indices are used
to characterize aquatic DOM. Fluorescence-based indices usually use ratios of fluorescence intensities at
two different predefined wavelengths or wavelength ranges, such as the humification index HIX, used
to represent molecular complexity [41], the fluorescence index FI, indicating degree of autochthony [22],
and the biological index BIX, showing recent autochthonous contributions [42]. Indices also exist for
absorbance spectra, such as the specific UV absorbance at 254 nm (SUVA254) which indicates degree of
aromaticity [25,43], and spectral slopes and slope ratios, which may relate to molecular size [44].

Data preparation is always necessary prior to PARAFAC modeling or index calculation (Figure 1).
For fluorescence, this includes correction of wave dependency of the exciting light, dilution correction,
inner-filter effect correction, signal normalization (Raman units or Quinine-sulfate equivalents), removal
of Rayleigh scatter and Raman scatter, and outlier checks [32,45,46]. Currently available toolboxes
that facilitate data preparation require either a commercial software environment (drEEM requires
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MATLAB) [32] or a license themselves (Solo/MIA). For R, there is a free package available that can
pre-process spectral data (eemR [47]). Until now, this package was not integrated into any PARAFAC
package within R.

The need for a user-friendly software to correct and analyze EEMs was stated earlier [45].
We additionally identified the need for free software in a programming environment that ecologists
and biogeochemists are familiar with [37] to reduce the initial hurdle of applying advanced data
analysis methods. In this paper, we present and test a new package for fast and comprehensive
spectroscopic analysis of DOM in R, called staRdom (“spectroscopic analysis of DOM in R”), which is
suitable for the demands of both beginners and experienced users. This package combines and extends
existing R packages, namely the multiway package [38] for PARAFAC and the eemR package [47] for
data preparation and index calculation and provides additional ways for EEM data preparation and
absorbance data analysis. Furthermore, staRdom includes plots and statistics based on established
procedures for generating and validating PARAFAC models [32]. Due to its link to the eemR package,
staRdom imports ASCII files generated with many fluorescence spectrometers, and accepts generic
input files from less common instruments. staRdom delivers various output formats, including an
option to transfer data to the OpenFluor database for existing PARAFAC models from DOM EEMs [48].
This study presents the capabilities of staRdom to analyze the optical properties of DOM and compares
PARAFAC model results and the performance between staRdom (which uses the multiway package
for model fitting) and drEEM (which uses the N-way toolbox for model fitting).

2. Materials and Methods

The staRdom package provides functions necessary for a detailed analysis of fluorescence and
absorbance data of DOM, providing means for (i) data preparation, (ii) peak picking, calculations
of (iii) fluorescence and (iv) absorbance indices, and (v) PARAFAC analysis. We show common
approaches in the tutorial (Supplement S2); furthermore, specific functions are available for specific
cases. For beginners, (i) data preparation, (ii) peak picking, (iii) fluorescence and (iv) absorbance index
calculation can also be done using a template, which guides the user through the process. The user
only needs to provide necessary data and parameters in an R Markdown (.rmd) file (plain text, refer to
Supplement S1). No knowledge of R programming is necessary, and the calculations are automated.
At the end of the analysis, staRdom places tables, plots, and a report of the analyses into a directory
defined by the user. For (i)–(iv) and (v) PARAFAC analysis, all necessary steps and functions can be
followed in the detailed tutorial (supplement S2). The user can either compile a specific R script with
help from the tutorial or already use the example script and data for exercises and demonstrations.

Below, we introduce the basic features of staRdom including the respective commands of the
presented functions. In the supplementary material, we provide a detailed manual for the version 1.0.26
of staRdom. Frequently updated, stable versions of staRdom together with vignettes for up-to-date
tutorials and manuals can be downloaded from the staRdom pages on Comprehensive R Archive
Network (CRAN, https://cran.r-project.org/package=staRdom) and newer, experimental versions can
be downloaded from GitHub (https://github.com/MatthiasPucher/staRdom).

The offered functions follow the established concept [32]:

1. Data preparation [47],
2. Decomposing EEMs via PARAFAC/CANDECOMP [31,38], and
3. Validating the model using a split-half analysis [49], the model fit and visual examination of

the residuals.

In addition, staRdom includes the following features:

1. Calculating fluorescence peaks and indices (tutorials S1 and S2) [47],

◦ autochthonous productivity index/freshness index (BIX) [33,42],
◦ classical peaks based on manual peak picking (B, T, A, M, C) [40],

https://cran.r-project.org/package=staRdom
https://github.com/MatthiasPucher/staRdom


Water 2019, 11, 2366 4 of 19

◦ fluorescence index (FI) [22] and
◦ humification index (HIX) [41].

2. Calculating common absorbance (slope) indices:

◦ absorbance at 254 nm (a254) [43],
◦ absorbance at 300 nm (a300) [50],
◦ ratio of absorbance at 250 to 365 nm (E2:E3) [51],
◦ ratio of absorbance at 465 to 665 nm (E4:E6) [52],
◦ spectral slope within log-transformed absorption spectra range (S275–295, S350–400, S300–700)

and the ratio of S275–295 to S350–400 (SR) [44],
◦ the wavelength distribution of absorption spectral slopes [53] and
◦ user-defined values and slopes can be extracted or calculated from the absorbance spectra.

In addition to these functions, staRdom provides experimental analysis approaches to stimulate
research and offers scientists the opportunity to apply methods that have not yet been investigated
in peer-reviewed publications. For example, staRdom allows recombining PARAFAC components
from different models to project sample data onto a recombined model. We marked such functions
as experimental in the documentation and the tutorial. Whenever possible, staRdom functions use
multiple CPU cores to accelerate the calculation. This parallelization is used for simultaneously
generated PARAFAC models with different random initializations as well as for the calculation of
absorbance parameters and EEM interpolation of different samples.

For the demonstration, we used the example data from the drEEM tutorial [32] and followed the
same analytical steps (Figure 1). The data consist of 206 fluorescence EEMs collected during seasonal
surveys of San Francisco Bay [54]. Table 1 shows selected staRdom functions and the analytical step
they are most probably used in.
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Table 1. List of selected staRdom functions and the step of the analysis scheme (Figure 1) that are most
probably used.

Step of the Analysis staRdom Functions Used Purpose of the Function

import raw data eem_read load EEM data
absorbance_read load absorbance data

check data consistency eem_checkdata check presence and names of samples
view data ggeem create single plots

eem_overview plot create multiple plots
correct biases abs_blcor absorbance baseline correction

eem_spectral_cor EEM spectral correction
eem_remove_blank subtract blank sample
eem_ife_correction inner-filter effect correction

eem_raman_normalisation,eem_raman_normalisation2 normalize EEM data to Raman units

remove scatter eem_rem_scat remove Rayleigh and Raman scattering of 1st and
2nd order

eem_setNA remove noise manually
eem_interp interpolate missing data

synchronize sample wavelength eem_red2smallest remove all wavelengths that are not present in all
samples

eem_extend2largest create all wavelengths present in any sample in all
samples

correct for sample dilution eem_dilution multiply EEM data by a dilution factor
smooth data eem_smooth smooth EEM data

normalize no dedicated function, argument normalise
= TRUE in eem_parafac normalize EEM data

eem_biological_index calculate BIXfluorescence peaks and indices
eem_coble_peaks calculate Coble peaks

eem_fluorescence_index calculate FI
eem_humification_index calculate HIX

absorbance indices abs_parms calculate absorbance indices, spectral slopes, and
selected ratios

calculate PARAFAC model
(preliminary and final) eem_parafac calculate PARAFAC models

view PARAFAC models eempf_compare compare PARAFAC models (with different numbers
of components) visually

eempf_comp_load_plot plot single PARAFAC models
identify outliers eempf_leverage calculate the leverage of each sample and wavelength

eempf_leverage_plot plot leverages
eempf_leverage_ident manually select samples in leverage plots

remove outliers eem_exclude remove samples and wavelengths from the data set
evaluate model eempf_convergence extract convergence behavior of a model

eempf_cortable, eempf_corplot show correlation between components
eempf_corcondia calculate the core consistency

sensitivity analysis splithalf, splithalf_plot calculate and plot a split-half validation
interpret the results eempf4analysis export table with component loadings

eempf_report create an analysis report in html format
eempf_openfluor export data for openfluor.org

2.1. Data Import

In the first step, users import files written by the fluorometer into staRdom. Currently, staRdom
can read ASCII data from Cary Eclipse, Horiba Aqualog, Horiba Fluoromax-4, Shimadzu, and Hitachi
F-7000 as well as raw CSV-files.

For absorbance data import, data has to be provided by tables in CSV or TXT format
(absorbance_read). A separate table containing dilution factors, Raman areas, or photometer pathlengths
for each sample can be loaded to provide case-specific information in further analysis.

The function eem_checkdata checks for potential problems with the input data, such as missing
data in samples, duplicate or invalid sample names, wavelength mismatches, and missing samples in
either absorbance or fluorescence data. This data check does not change the original data but points at
questionable characteristics in the data set. This function can be applied at any time in the analysis to
ensure that the data is still coherent.

2.2. Data Preprocessing

staRdom partially applies functions from eemR [47] and uses additionally developed functions to
correct EEM data and reduce noise in multiple ways. Here, we follow the same procedures used by
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drEEM as described in Reference [32]. In short, the data are corrected for instrument-specific errors,
making spectra comparable among measurements on different instruments and at different time points.
Spectral correction factors are used to remove effects of wavelength-dependent shifts of the light source
or the emission detector (eem_spectral_cor). Raman normalization (eem_raman_normalisation) is applied
to remove instrument-dependent fluorescence intensity factors, such as different light source type,
voltage, and light source age [45]. To produce linearity between sample fluorophore concentration
and its fluorescence, the effect of internal light absorbance of the sample, i.e., the inner-filter effect, is
removed (eem_ife_correction). To reduce or remove Rayleigh and Raman scatter a blank can be subtracted
(eem_remove_blank) or the known area of the scattering can be removed specifically (eem_rem_scat). In
addition, users can manually remove EEM data anywhere in the EEMs (eem_setNA). This may prove
useful if noise has been introduced by instrument errors and parts of EEM spectra should be removed.

Missing values produced by scatter or other EEM data removal can be interpolated with different
interpolation options (eem_interp). The default method used in staRdom is the multilevel B-spline
approximation [55]. It is an accurate method to interpolate smooth but complex surfaces, which
is exactly, what one would expect from a theoretical EEM. We suggest interpolating missing data
whenever possible since the occurrence of non-converging models and models that converge in local
minima has been shown to increase along with the proportion of missing values [56]. Therefore,
eem_checkdata explicitly calculates the ratio of missing to nonmissing data to warn the user of this
potential risk. To ensure a convenient interpolation in many cases, staRdom offers five different
methods for interpolation from which the user can choose. The available methods are filling missing
values with zeros, spline interpolation [55], piecewise cubic hermitean interpolation polynomials in
one and two dimensions [57] and linear interpolation. In case of an analysis covering samples of
different origin, samples measured with different instrument settings or array detectors (as used in the
Horiba Aqualog), wavelength pairs in the sample set must be synchronized. Synchronization can be
done by either reducing the data to wavelength pairs available in the whole set (eem_red2smallest) or
adding and interpolating data that is missing in some samples but present in others (eem_extend2largest).
Optionally, EEM data can be smoothed to stabilize results for calculations of fluorescence-based indices
(eem_smooth). However, we do not recommend smoothing fluorescence EEM data before applying
PARAFAC. Finally, the dilution of samples can be reverted by applying a dilution factor, where a factor
of 2 represents a 1:2 dilution (eem_dilution).

We applied the following corrections to the example data: spectral correction, blank correction,
inner-filter effect correction (Figure 2); and subsequently Raman normalization, scatter removal,
wavelength cutting to remove spectral parts with low information content and high instrument noise,
and interpolation of cut parts (Figure 3).
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Figure 3. The same EEM sample as in Figure 2 after Raman normalization, scatter removal (Rayleigh
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We have also included absorbance data pre-processing steps in staRdom. Absorbance can be
corrected by subtracting the mean of a chosen wavelength range (abs_blcor) [58] to correct a baseline
drift in the instrument or correct for scatter due to particles. Within the chosen wavelength range the
absorbance should be indistinguishable from the solvent (ultrapure water), which is usually the case at
higher wavelengths (e.g., > 650 nm) when the measurement pathlength is small (<10 cm). Whether the
water baseline is shifted from zero can be checked by comparing samples to ultrapure water measured
right before or after the samples in question. Some instruments apply a baseline correction before the
data is shown or exported and it does not have to be done by the user explicitly.

2.3. PARAFAC Analysis

2.3.1. Calculation of a PARAFAC Model from EEM Data

PARAFAC models assume that each sample set can be decomposed depending on a predefined
number of components (N) using the following Equation (1) [29,30].

xi jk =
N∑

f=1

ai f b j f ck f + ei jk (1)

In Equation (1), xijk is the value of the ith sample, the jth emission wavelength, and the kth
excitation wavelength. Here, eijk is the respective residuum, i.e., data not modeled by PARAFAC
components. a (samples), b (emission), and c (excitation) are matrices (also called modes) with N
columns and multiple rows, equal to the numbers of samples, emission wavelengths, or excitation
wavelengths, respectively. The matrices resulting from a multiplication of the vectors bf and cf show
the PARAFAC components, resemble EEMs, and can, therefore, be interpreted easily.
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A PARAFAC model can be calculated using eem_parafac. At a minimum, users need to supply the
EEM data and the number of components N. For each N, a model is calculated and the comparison
of peak shapes and model errors between multiple models can help finding the best solution.
Optionally, the data can be normalized, which can be helpful if the samples span a wide range
of DOC concentrations or if the components are highly correlated (see below). The model can be
constrained to non-negativity, smoothness, or unimodality for each mode. Since fluorescence is always
positive, non-negativity is commonly assumed for all modes [59]. The known shape of a fluorescence
peak is smooth in emission and excitation modes and unimodal in the emission mode. Unimodality
constraints are not always used because PARAFAC models typically show plausible results using only
non-negativity constraints (e.g., [20,32]). Still, imposed unimodality can improve the interpretability of
the results (e.g., [60,61]). The PARAFAC algorithm uses randomly generated start values. The stepwise
least-squares approximation can return invalid local minima of the sum-of-squared-error (SSE) instead
of the global minimum. To ensure that the global minimum is identified, several models are calculated
using different random start values. The convergence tolerance can be set to provide an adjustable
trade-off between accuracy and speed.
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Plot functions can show the goodness of fit for the simultaneously calculated models and the
components in two views, via matrix plots (Figure 4) and modes plots (not shown). Both are created
using the function eempf_compare. These plots provide a quick overview on how well the model fits the
data and how physically plausible the components are. Besides, different models can be compared
visually. Studies describing shape characteristics of plausible fluorescence peaks [62] and peak shapes
of pure substances can also be used to check for plausible shapes [63]. By plotting, different models
can be compared visually. Certain model modes and components can also be plotted individually
(eempf_comp_load_plot).

2.3.2. Identification of Outliers

In EEM datasets, outliers can result from sampling or analysis errors and can be identified if
certain samples differ from others and influence the model [64]. Additionally, wavelengths in the
emission or excitation modes can be identified as outliers, if there is noise at specific wavelengths in
the majority of samples. Prior to a PARAFAC analysis, the best suitable data set needs to be found
by analyzing both the noise and the influence certain samples or wavelengths have on the model.
Decisions about removal of potential outliers are done via case-wise checks, where a new PARAFAC
model is created with the reduced data set and compared to the original one.

In staRdom, outliers can be determined by calculating the leverage of each sample and each
emission or excitation wavelength in a PARAFAC model (eempf_leverage). Values between 0 and 1 show
the influence of each sample and each wavelength on the overall model. A function is available to
identify samples and wavelengths visually, which should be considered for removal (eempf_leverage_plot,
eempf_leverage_ident, Figure 5). Alternatively, the leverage can be viewed as a table (eempf_leverage, [31]).
In the example, the samples dsfb676psp and dsgb447wt are identified as outliers because of a leverage
much higher than all others.
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Viewing the residual plots (eempf_residuals_plot) can also reveal unsuitable models. Residuals
should only show random noise, which is especially common in areas where scattering was removed
(Figure 6, samples A to D). Patterns can be easily seen and samples showing nonrandom data, maybe
even peaks (Figure 6, samples E and F), can be identified.

If samples were removed before fitting the model, they can be reincluded later to see their loadings
and residuals regarding the model (A_missing). This can help in interpreting outliers and including
them in the analysis again despite their exclusion from the model creation. In Figure 6, the samples E
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and F were considered outliers and removed before the model was created. Their residual plots show
the part of the sample not covered by the final model.
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excluded from the model calculation.

2.3.3. Model Evaluation

Because the PARAFAC decomposition depends on the number of components N and this value
is chosen by the user, finding an appropriate number N is an important task during the analysis.
Hence, generating PARAFAC models is an iterative process where multiple models are compared and
validated. These models can differ in terms of N, preprocessing, removed outliers, normalization of
EEM matrices, and many more. Murphy et at. provide a detailed description on how to find a good
PARAFAC model [32].

Depending on the data and the preprocessing steps, PARAFAC models can be unstable. Unstable
models tend to show diverging results in different initializations either in convergence behavior or
model error. The user can keep all of the calculated models and compare their results using the
argument output = “all” in eem_parafac and extract the information using eempf_convergence. In case of
less than, e.g., 5 similar, converging models, we advise to review the parameters used for model creation
(e.g., increase the number of initialization, decrease the convergence criterion) and the preprocessing
(e.g., interpolate missing data, use another interpolation algorithm).

For a solid interpretation of a PARAFAC model, the shape of the derived compounds should look
similar to fluorescence patterns found in pure substances or combinations of pure substances [62,63].
This means they should be smooth in the excitation mode and smooth and unimodal in the emission
mode [32].

The PARAFAC model assumes that the chemical species involved in the decomposition vary
independently. There is an easy way to plot the correlation of components’ loadings (eempf_cortable,
eempf_corplot, Figure 7). This plot shows the distribution of the loadings for each component of
the PARAFAC model diagonally as well as the regression curve (lower triangle) and the Pearson
correlation coefficient (upper triangle) between two components. For datasets encompassing large
concentration gradients, fluorophores can strongly across the dataset, challenging the assumption of
independent variability of the PARAFAC components. Furthermore, very high correlation between
component scores can indicate over-fitting, i.e., too many components used in the PARAFAC model.
One preliminary model in the example had highly positively correlated components 1 and 2 (Figure 7a).
After normalization of the EEM data over each sample, the collinearity is greatly reduced (Figure 7b).
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The models are validated using a split-half validation, which is a specific method of
cross-validation [32]. A robust model validation requires enough samples (depending on the data
approximately 100–200 samples). Split-half validation is realized with the splithalf function in staRdom.
Here, models are compared based on different subsets of the original data. The implemented test uses
4 splits, 6 combinations, and 3 tests (S4C6T3): the data are split into four subsets (A, B, C, and D) and
recombined to compare one half of the data to the other in different combinations (AB–CD, AD–BC,
AC–BD) [32]. The comparison is done visually by plots showing the spectral loadings (splithalf_plot,
Figure 8) and by calculating Tucker’s congruence coefficient [65] (TCC) or shift- and shape-sensitive
congruence [66] (SSC, splithalf_tcc). Subsets can be automatically generated or manually defined.
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The quality of a PARAFAC model can also be tested using the core consistency (eempf_corcondia) [67].
Models specified with an appropriate number of components should have high core consistencies (near
100%), whereas low core consistencies indicate that too many components were specified. The core
consistency diagnostic should protect against over-fitting but rigid adherence to guidelines can lead to
under-fitted models. For real-life fluorescence datasets, it has been suggested that the core consistency
diagnostic is overly severe [31]. Further research is needed to establish the utility of the core-consistency
diagnostic for validating PARAFAC models of natural organic matter EEMs.

2.4. Export and Further Interpretation of Results

For further analysis and interpretation, staRdom offers a table containing the loadings of each
component per sample (eempf4analysis). Peaks and indices from EEM data can be included in this table.
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PARAFAC models can be exported to a file and uploaded to openfluor.org (eempf_openfluor) [48].
By doing that, a comparison to published and partly peer-reviewed models is possible and can help in
interpreting the results.

An overview of a model optionally including information, such as applied correction methods,
leverages and split-half validation, can be written as an HTML file (eempf_report).

2.5. Toolbox Comparison

We compared the results from multiple PARAFAC models using staRdom (PARAFAC model
calculated by the multiway package) and drEEM (PARAFAC model calculated by the N-way toolbox).
The models were derived from four published datasets, which comprised of marine, lake, and stream
samples from different areas and climate zones and were measured on different instruments from
different ecosystems and/or from different landscapes. Additionally, two datasets consisting of pure
fluorophore spectra were compared (Table 2).

For each dataset, 3000 PARAFAC models were calculated with convergence criteria varying
between 1 × 10−6 and 1 × 10−9 for drEEM and between 1 × 10−8 and 1 × 10−11 for staRdom, in steps of
1 × 10−1. Different convergence criteria were necessary because the toolboxes use different methods
to monitor convergence, as shown in Equations (2) and (3). Due to this difference, when identical
convergence criteria are supplied in the function inputs to both staRdom and drEEM, then drEEM
return models with a smaller modeling error.

staRdom:
(SSEn − SSEn−1)∑

X2 ≤ crit (2)

drEEM:
(SSEn − SSEn−1)

SSEn
≤ crit (3)

SSEn—sum-of-squared-error of nth iteration
X—EEM data
crit—convergence criterion
For both toolboxes, the maximum number of iterations was set to 2500, and non-negativity

constraints were applied in all modes. The time until convergence (TUC) was measured by initializing a
timer function just before each call to the PARAFAC function and stopping it just after completion of each
call to the respective PARAFAC functions. The remaining model metrics were supplied by the respective
toolboxes and included the number of iterations until convergence, and the sum-of-squared-error (SSE)
of each model. Lastly, the number of models that reached the iteration limit or stopped due to other
reasons before convergence was compared.

To show the influence of the number of random initializations we used a Monte-Carlo simulation,
i.e., the respective number of models was picked from the whole set of models 5000 times randomly
for each data set and convergence criterion. The sum of TUC of the models in a subset was considered
to equal the calculation time of a set under realistic conditions running on a single CPU core. The best
model per subset was used as a representative for this set, to mimic a standard analysis. From within
all models of each data set, the one with the least SSE was used as a reference for model quality.
We calculated the TCC to compare each of them with the best models [48]. The TCC is a parameter
for assessing similarity between pairs of fluorescence excitation and emission spectra and ranges
between 0 (totally different) to 1 (identical). The 99% quantile of SSE within all model subsets with the
same convergence criterion and the same number of initializations was considered being the accuracy
that can be achieved using exactly these conditions. Model parameters were accepted as sufficiently
accurate if the TCCs of all components were at least 0.999. The TCC is a parameter for model similarity
between 0 (totally different) to 1 (identical). In comparisons between different studies a TCC of 0.95 is
considered to show a good similarity between two components [48].
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Table 2. Test datasets and important characteristics.

Name
Number of %

Description Reference
Comps 1 Samples Em 2 Ex 3 NA 4

Amino3 3 5 201 61 0 Pure amino acids [31]

Fjord6 6 191 91 44 16.6 Solid-phase extracts of DOM
from three arctic fjords [68]

Headwater4 4 235 151 43 0
Headwater streams, and
agricultural catchments,
Denmark and Uruguay

[20]

PortSurvey6 6 206 73 42 9.5
port and oceanic marine samples

(USA, Pacific coast), drEEM
tutorial dataset

[54]

Pure5 5 60 50 40 0 Pure substances with added
artificial noise unpublished

RioEx4 4 58 97 111 0 Photodegradation experiment of
solid-phase extracted DOM [69]

1 components of the PARAFAC model, 2 emission wavelengths, 3 excitation wavelengths, 4 missing data.

3. Results and Discussion

For five of the six tested datasets, PARAFAC models obtained from both toolboxes were highly
similar to the best solution with TCCs of at least 0.999 in scores and loadings. For one of the datasets
(Fjord6), no convergent models were obtained using staRdom; possible reasons and solutions for this
are missing data (see Section 3.3). Both software tools required different considerations regarding
model parameters (Figure 9 and Table 3). As such, we identified the convergence criterion, the number
of random initializations and susceptibility toward missing data as important factors during the
comparison of staRdom and drEEM. The impacts of different model parameters on the results are
highly dependent on the data set. In the following, we address particularities and provide suggestions
for smooth practical work and mitigations of possible problems.Water 2019, 11, x FOR PEER REVIEW 15 of 21 
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Table 3. Summary of test performance for five datasets that produced convergent PARAFAC models.

Name Software Convergence
Criterion Initializations Relative Error Minimum

TCC

Amino3
staRdom 1 × 10−8 10 1.000069 1.0000
drEEM 1 × 10−8 10 1.000000 1.0000

Headwater4
staRdom 1 × 10−9 10 1.000010 1.0000
drEEM 1 × 10−7 10 1.000002 1.0000

PortSurvey6 staRdom 1 × 10−11 30 1.000042 0.9997
drEEM 1 × 10−7 10 1.000039 0.9997

Pure5
staRdom 1 × 10−10 40 1.000071 0.9993
drEEM 1 × 10−7 10 1.000056 0.9993

RioEx4
staRdom 1 × 10−10 30 1.000022 0.9999
drEEM 1 × 10−7 20 1.000015 1.0000

3.1. Number of Initializations

Implementing repeated starts of PARAFAC models under identical conditions but with different
(random) starting values is common practice to identify a robust least-squares solution. If an insufficient
number of random initializations is used, a local minimum solution may be identified instead of the
global least-squares solution.

Our analysis showed good results with staRdom for five datasets assuming 40 initializations
(Figure 9). This indicates that it is preferable to start at least 40 models in order to obtain a solution that
is sufficiently stable and close to the global minimum of the PARAFAC modeling error. Users should
monitor the error of all solutions and increase the number of random starts, if the best solution is far
better than the others.

However, an issue was sometimes encountered whereby a proportion of models did not converge.
Except in the case of the Fjord6 dataset, multiple convergent solutions were obtained using staRdom and
a reasonable model could be obtained from within the subset of models that converged. As a solution
for slow and incomplete convergence, Reference [56] demonstrated the interpolation of missing data.

staRdom monitors the number of models that converged within the specified number of iterations.
By adding the argument output = “all” in the function eem_parafac, eempf_convergence can provide
detailed information on the convergence behavior of the model. As a general precaution, eem_parafac
always informs the user if less than 50% of models converged. In response, users can either increase
the number of random starts or specify that models should be calculated until a specified number of
convergent models have been produced (strictly_converging = TRUE in eem_parafac). This function
was not applied in the demonstration and the number of models shown in the results contain
both convergent and nonconvergent models. drEEM does not currently provide a similar function
for tracking nonconvergence, but nonconvergence appeared to occur less frequently analyzing the
described data sets.

3.2. Convergence Criterion

For the datasets we investigated, staRdom provided a similar modeling error as drEEM as long as
the convergence criterion was increased by two to three orders of magnitude (Figure 9 and Table 3).
Therefore, the default convergence criteria are 1 × 10−6 in drEEM and 1 × 10−8 in staRdom. As the
results in this study are based on model errors, these differences do not further influence any results of
the shown PARAFAC models.

3.3. Influence of Missing Data

Only two of the six test datasets (Fjord6 and PortSurvey6) contained missing data corresponding
to regions of Rayleigh and Raman scatter, while the remaining datasets were interpolated prior to
PARAFAC modeling. It seems likely that for the Fjord6 dataset, a relatively large proportion of missing
numbers (16.6% missing) was a causal or contributing factor explaining why staRdom did not reach



Water 2019, 11, 2366 15 of 19

convergence prior to the maximum number of iterations. It appears that staRdom may be more
sensitive to missing data than drEEM, although further tests are needed to determine if this is the case.

Previous studies have shown that missing data should generally be interpolated in order to avoid
local minima [56]. In order to obtain robust results, we stress the advantage of interpolating areas
of Rayleigh and Raman scatter. To support users in finding an interpolation leading to a reasonable
PARAFAC model, staRdom offers five different interpolation methods (see Section 2.2). Future studies
and developments in the multiway package should address this issue to improve the convergence
behavior where interpolation is no option for mitigation.

3.4. Time until Model Convergence

Since PARAFAC modeling of large datasets can be time-consuming, the time elapsed until model
convergence (using parameters as stated in Table 3) using three common CPU architectures (introduced
2013–2017) was compared. For both toolboxes, the algorithms reached convergence within similar
timespans, even in cases where staRdom calculated with a higher number of initializations (Figure A1).
Comparing time elapsed for the oldest to the newest CPU model gives an idea of how modeling speed
is affected by improvements in hardware. For the computers tested in this study, improvements in
CPU reduced the time until convergence by approximately 50% in MATLAB and 20% in R.

3.5. Outlier Calculation and Split-Half Validation

Both, the outlier identification [31] and the split-half analysis [49] rely on a PARAFAC model.
The approaches applied after the PARAFAC algorithm are implemented identically in staRdom and
drEEM, so we limited our tests on the PortSurvey6 dataset only.

For the PortSurvey6 data, outlier identification (Figure 5) and split-half analyses (Figure 8)
produced essentially identical outputs using either staRdom or drEEM.

4. Conclusions

We introduced “staRdom”, a new toolbox for the analysis of absorbance spectra and fluorescence
EEMs using the R statistical computing environment. Data preprocessing steps and routines in staRdom
are for the most part identical to those available in the established drEEM toolbox for MATLAB.
Results from both toolboxes are interchangeable apart from datasets with a relatively high fraction
of missing data. The availability of multiway analysis tools in the free R software environment will
reduce barriers in spectroscopic research and stimulate advances in DOM biogeochemistry for natural
and engineered systems.
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