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Abstract: The future of the Colorado River water supply (WS) affects millions of people and the
US economy. A recent study suggested a cross-basin correlation between the Colorado River and
its neighboring Great Salt Lake (GSL). Following that study, the feasibility of using the previously
developed multi-year prediction of the GSL water level to forecast the Colorado River WS was tested.
Time-series models were developed to predict the changes in WS out to 10 years. Regressive methods
and the GSL water level data were used for the depiction of decadal variability of the Colorado River
WS. Various time-series models suggest a decline in the 10-year averaged WS since 2013 before starting
to increase around 2020. Comparison between this WS prediction and the WS projection published in
a 2012 government report (derived from climate models) reveals a widened imbalance between supply
and demand by 2020, a tendency that is confirmed by updated WS observation. Such information
could aid in management decision-making in the face of near-future water shortages.
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1. Introduction

The Colorado River is one of the largest water resources in the United States, supplying water
to about 40 million people in the southeast and intermountain states. As recently reported by the
Colorado River Research Group (2018) [1], water supply of the Colorado River (hereafter “WS”) has
decreased in recent decades, while the river basins are facing the biggest drought in recorded history.
In terms of climatic conditions, the decrease in WS is largely attributed to increasing temperatures
that led to less snow and more water being evaporated than normal (Barnett et al. 2008, McCabe
et al. 2007, Udall et al. 2017) [2–4]. However, the long-term future of the WS made by climate
model projections showed an upturn in the Colorado River WS into 2020 (BOR 2012) [5]; this is in
contradiction to an observed decrease through 2018. Notwithstanding future water supply projections,
(BOR 2012) [5] anticipates water demand to surpass supply by as much as 3.2 million acre feet through
2050. Such growing imbalance between supply and demand requires a more accurate and longer-term
predictions of the Colorado River WS given projected water demand.

Western water managers are concerned about multiyear droughts, even more so than for a single
dry year, since the shifts between persistently dry and wet regimes have important implications
for managing the limited water resources (Gangopadhyay et al. 2010) [6]. Multi-year drought is
reflected in the pronounced quasi decadal oscillation of 10–20 years featured in the Colorado River
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WS’s historical record, as noted by a recent study (Wang et al., 2018) [7]; however, this low-frequency
feature is unaccounted for by the climate model projections published in the government report (BOR
2012) [5]. The neighboring watershed of the Upper Colorado River Basin—the Great Salt Lake (GSL)
of Utah—also shows a marked low-frequency variability in its water level variation (Lall et. al. 1995,
Wang et al. 2010) [8,9]. The GSL water level variation is coherent with the low-frequency variation
of the Colorado River WS (Wang et al. 2018) [7]. Meanwhile, past studies (Gillies et al. 2015,
Gillies et al. 2011) [10,11] have developed time series modeling to anticipate the GSL water level out to
5–10 years. Predictability of streamflow and water storage at decadal timescale was reported elsewhere,
such as the Missouri River basin (Neri et al. 2018; Wang et al. 2014) [12,13]. Therefore, a compelling
case can be made that the same multi-year forecast developed for the GSL water level could apply to
the Colorado River WS.

Given the challenges in anticipating the near-term (decadal) variation of the Colorado River
WS imposed by climate models, given their lack of or inconsistent decadal climate variations (BOR,
2012) [5], an empirical prediction model for the Colorado River WS offers a provisional solution.
The goal, therefore, was to explore the role of the aforementioned decadal-scale climate oscillations
and their interconnection to water supply for the near future, beyond seasonal streamflow prediction.
The concept is to examine multi-year predictability in water supply by conducting time series modeling
that uses observational data of the GSL water level and the Colorado River WS. The work presented
here does not analyze the mean-state hydroclimate changes toward the end of the century, which
has already been done (Barnett et al. 2008) [2], nor does it apply climate indices to enhance seasonal
prediction for the Colorado River WS. To this end, data and the time series modeling are introduced in
Section 2. Results and validation of the two modeling approaches are presented in Sections 2.2 and 2.3,
respectively. Discussion of the results, the physical explanation, and the implications are offered in
Section 3. Section 4 provides some concluding remarks.

2. Materials and Methods

2.1. Data and Methodology

We used the annual Colorado River Water Supply data from the Bureau of Reclamation (BOR)
study from 1906 to 2012 and subjected it to a backward 10-year moving average (as was done in
the BOR report). The GSL water level data was obtained from the US Geological Survey up to June
2016. Figure 1 shows the observed time series of the annual Colorado River WS data from 1906 to
2012. The time series does not appear stationary since the mean seems to fluctuate. In order to fit a
time series model, the raw data needs to be transformed into a stationary series with a time-invariant
mean and covariance, which is typically achieved by differencing. Let Wt denote the raw WS data.
The first-order differencing is defined as

Xt = Wt −Wt−1. (1)

The resulting difference series Xt, i.e., the annual WS anomaly, is input into the subsequent time
series analysis. Notice that we skipped the first observation due to the differencing, so Xt has a total of
106 observations. After the analysis is complete, the differencing will be undone to make predictions
for the actual Wt.

To get a first impression of the correlation structure of Xt, the autocorrelation function (ACF) and
the partial autocorrelation function (PACF) of Xt were computed (Figure 2). There appear to be a few
significant lags, in the ACF at lag 1 and in the PACF at lags 1 and 2. The correlations at lags 13 and 19
are marginally significant in the ACF, and so is the correlation at lag 12 in the PACF. These significant
lags suggest that an autocorrelation structure in the WS data is present, one that can be utilized to build
univariate time series models, such as the autoregressive moving-average (ARMA) (p, q), for predicting
WS based on its own historical observations. Here, the numbers p and q denote the autoregressive and



Water 2019, 11, 2433 3 of 14

moving-average orders, respectively. Readers are referred to, e.g., (Brockwell et al. 2002) [14] for the
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function, between two time series, is the correlation between values of the processes at different times 
(Brockwell et al. 1991) [15]. It is an important measure of independence between time series. Significant 
values in the CACF indicate certain correlations of the underlying series. The CACF of the first-order 
difference, i.e., annual anomalies, of the Colorado River WS and the Great Salt Lake (GSL) water level is 
shown in Figure 3. There is a significant cross-autocorrelation at lag −1, which leads us to use the GSL 
time series as an exogenous variable to further improve the univariate model. This approach gave us an 
ARMAX (p, q, w, s) model, which stands for an ARMA (p, q) model with exogenous variables (Cryer 
and Chan 2008) [16]. Here, the numbers w and s denote the autoregressive and moving-average orders 
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Figure 2. (a) The autocorrelation function (ACF) and (b) partial autocorrelation function (PACF) of the
first-order difference of the Colorado River WS time series. The two blue dashed lines on each plot
denote the corresponding 95% confidence interval.

In time series analysis, the cross-autocorrelation function (CACF), or simply the cross-correlation
function, between two time series, is the correlation between values of the processes at different times
(Brockwell et al. 1991) [15]. It is an important measure of independence between time series. Significant
values in the CACF indicate certain correlations of the underlying series. The CACF of the first-order
difference, i.e., annual anomalies, of the Colorado River WS and the Great Salt Lake (GSL) water level
is shown in Figure 3. There is a significant cross-autocorrelation at lag −1, which leads us to use the
GSL time series as an exogenous variable to further improve the univariate model. This approach gave
us an ARMAX (p, q, w, s) model, which stands for an ARMA (p, q) model with exogenous variables
(Cryer and Chan 2008) [16]. Here, the numbers w and s denote the autoregressive and moving-average
orders of the linear filter for the exogenous variables, respectively.Water 2019, 11, 2433 4 of 16 
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In the following sections, we will present in detail each of the ensuing models and their fit to the
WS data. To simplify notations, hereafter, the differenced Colorado River WS time series is denoted by
Xt and the exogenous GSL time series is denoted by St.
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2.2. Univariate Time Series Models

The autocorrelation structure of Xt as shown in Figure 2 seems to suggest a simple ARMA model
such as moving average and MA (1) and auto-regressive AR (2). We tried both models and the
mean squared errors (MSE’s) were 20.24 and 23.37, respectively. Compared to the unconditional
variance 32.25, these two models have explained about 37% and 27% of the total variability, respectively.
The ACF’s of the residuals of the two models are plotted in Figure 4. In principle, the residual should
resemble white noise, i.e., a time series that exhibits no autocorrelations, to indicate sufficiency of the
underlying model. Both residuals shown in Figure 4 are close to being white noise, but still with a few
marginally significant autocorrelations, e.g., at lags 7, 13, 17, and 19 for MA (1) and at lags 3 and 19 for
AR (2). This means that both models are close to but not perfectly fit.
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2.2.1. ARMA (1, 1)

To improve on fitting, we ran a systematic search of low-order ARMA models, but none of them
could completely remove all the autocorrelations. Among these, ARMA (1,1) is the simplest yet
reasonably effective model with an in-sample MSE of 19.98. We thus chose it as one candidate model.
The estimated model equation is
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Xt = −0.094 + 0.1264Xt−1 + Zt − 0.9026Zt−1 (2)

where Zt is a white-noise process with an estimated variance of 19.98. Figure 5 shows three diagnosis
plots of this model. Notice that there are still a couple of marginally significant autocorrelations
(e.g., at lag 13 and 19) as shown in the ACF plot. In fact, lag 19 shows up significant since it is an
important variable for the WS series. This leads us to consider a long-order autoregressive (AR) model
that includes lag 19 in the following.

2.2.2. Sparse AR (19)

AR process is known to have great flexibility that can answer many questions both in theory
and applications of time series analysis (Akaike 1969) [17]. However, very often in practice, in order
for an AR process to achieve satisfactory performances, it must allow for a relatively large order.
For example, in our case, the order must be at least 19, which means there has to be at least 19 variables
in the model. This can be problematic in the situation when a more parsimonious model is desired.
A common solution is to keep the important lags and remove redundant ones, leading to a sparse AR
model, referred to as SAR hereafter. There have been extensive studies of SAR models in the literature,
especially with regard to model selection and parameters estimation (Sang and Sun 2015) [18]. The goal
is to achieve the desired flexibility while keeping the AR model as simple as possible. In our analysis
here, after a systematic search, the best SAR (19) model chosen included lags 1–12, as well as 17 and 19.
The fitted model equation is

Xt = −0.7693− 0.7636Xt−1 − 0.6914Xt−2 − 0.6046Xt−3 − 0.4989Xt−4 − 0.4858Xt−5

−0.4033Xt−6 − 0.5391Xt−7 − 0.45Xt−8 − 0.4607Xt−9 − 0.3942Xt−10

−0.251Xt−11 − 0.2472Xt−12 − 0.1348Xt−17 − 0.2287Xt−19 + Zt

, (3)

where Zt represents a white-noise process with an estimated variance of 16.47. The residual plot and
its ACF are shown in Figure 6, along with the plot of model fitted values and the 95% confidence
intervals versus the observed. Notice that the residuals resemble a white noise with no significant
autocorrelations, which indicates the sufficiency of the model.
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2.3. ARMA Models with Exogenous Variables

2.3.1. SARX (19, 1, 0)

The first ARMAX model selected is SARX (19, 1, 0), meaning that the differenced WS data Xt has
an SAR (19) fitted as the base model, and additionally the differenced GSL data St and its first lag as
the exogenous variables. The model equation is estimated to be

Xt = 0.83 (St − 0.9897St−1) − 0.9139− 0.7854Xt−1 − 0.7249Xt−2 − 0.6983Xt−3

−0.5695Xt−4 − 0.6024Xt−5 − 0.4777Xt−6 − 0.7116Xt−7 − 0.5629Xt−8

−0.6026Xt−9 − 0.5099Xt−10 − 0.3829Xt−11 − 0.3028Xt−12 − 0.1566Xt−17

−0.2655Xt−19 + Zt

(4)

and the estimated variance of the white noise is improved to 14.27. Figure 7 displays the three diagnosis
plots of this model.
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2.3.2. ARMAX (19, 1, 2, 0)

The second ARMAX model selected is ARMAX (19, 1, 2, 0). It fits an ARMA (19, 1) to Xt as the
base model and adds St and its first two lags as exogeneous variables. The estimated model is

Xt = 1.3673 (St − 1.2105St−1 − 0.9484St−2) − xxx− 0.5633Xt−1 − 0.4935Xt−2 − 0.5659Xt−3

−0.4735Xt−4 − 0.4148Xt−5 − 0.4217Xt−6 − 0.6114Xt−7 − 0.4178Xt−8

−0.4981Xt−9 − 0.3982Xt−10 − 0.2857Xt−11 − 0.2691Xt−12 − 0.098Xt−17

−0.227Xt−19 − 0.3073Zt−1 + Zt

, (5)

and the estimated variance of white noise is further reduced to 13.22. The diagnosis plots of this model
are shown in Figure 8.
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2.4. Cross-Validation

Next, cross-validation was performed to assess the forecasts of the models. For a typical time-series
analysis, the standard strategy for cross-validation is to split the data by 90%/10% or 80%/20%. However,
the precondition for doing so is having sufficient amount of data. In this case, the data is extremely
limited considering the complexity of the models, with only 106 observations. In terms of statistical
information, we have to keep the training data as large as possible, otherwise the estimation becomes
unstable and the cross-validation is not meaningful. Since our goal here is to test the forecastibiliy of
five years ahead, we chose the validation set to have only five observations.

The differenced WS data Xt was divided into a training and a test set, with the first 101 observations
being the training set while the last five observations being the test data. We used 10 forecasting
horizons (h = 1, 2, . . . , 10, i.e., length of the forecast) and the coefficients of the model were updated
at every step. For h = 1, (one-step ahead prediction), the model was fitted on observations 1–101 to
predict observation 102, and then the model was fitted using observations 1–102 to predict observation
103, and so on. For h = 2, (two-step ahead prediction) the model was fitted using observations 1–100 to
predict observation 102, then the model was fitted using observations 1–101 to predict observation
103, and so on. The results of the ten forecasting horizons are shown in Table 1, along with the
corresponding root mean squared error (RMSE) and the skill score (Murphy 1988) [19] of each model.
To simplify notations, here in Table 1, we use the acronyms “ARMA,” “SAR,” “SARX,” and “ARMAX”
to represent the ARMA (1, 1), SAR (19), SARX (19, 1, 0), and ARMAX (19, 1, 2, 0) models, respectively.

The ARMA (1,1) model apparently does not quite capture the dynamics of the WS data.
It practically only has one-year-ahead predicting power. As we can see from Table 1, from h = 2 on,
its prediction is almost the same as the constant model, i.e., the unconditional mean. This confirms
our previous finding that lag 19 is an essential variable for forecasting the WS series, and thus, any
effective model has to inevitably account for this complexity.

Among the rest three models, the SAR (19) model has the lowest RMSE for one-step-ahead
prediction and three-step-ahead prediction. For h = 2, 4, 5 and 6, the SARX (19, 1, 0) model is the best.
This model also has the lowest forecasting error when h = 10. For h = 7 to 9, the model with the lowest
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RMSE is ARMAX (19, 1, 2, 0). Numerical details of these results are shown in Table 1. The skill score as
a one-to-one correspondence of the RMSE shows the consistent results.

In conclusion of the cross-validation presented here, the best model appears to be SARX (19, 1, 0),
as this model can achieve the forecasting horizons up to six years.

Table 1. Cross-validation results for the four models developed for the annual Colorado River Water
Supply data. Root mean squared error (RMSE) is shown on top while the skill score (SS) is shown on
the bottom. The columns represent the ten forecasting horizons (h = 1, 2, . . . 10). Highlighted values
are the best statistic for each forecasting horizon.

RMSE 1 2 3 4 5 6 7 8 9 10

ARMA 5.0708 6.9829 6.9649 6.9612 6.945 6.9467 6.9728 6.9438 6.9472 6.9208
SAR 2.8673 4.4851 4.5344 4.319 4.1826 4.1037 4.318 5.1207 5.2668 5.2246

SARX 3.1274 4.3809 4.6646 4.157 3.7697 3.7116 4.1295 5.0421 5.1573 5.1757
ARMAX 2.877 4.3947 4.9787 5.1741 4.0544 3.9955 3.7328 4.4858 4.9159 6.2473

SS 1 2 3 4 5 6 7 8 9 10

ARMA 0.4719 −0.0107 −0.0080 0.0029 0 0 0 0 0 0
SAR 0.8311 0.583 0.5727 0.6162 0.6373 0.651 0.6165 0.4562 0.4252 0.4301

SARX 0.7991 0.6022 0.5479 0.6444 0.7054 0.7145 0.6493 0.4727 0.4489 0.4407
ARMAX 0.83 0.5997 0.4849 0.4491 0.6592 0.6692 0.7134 0.5827 0.4993 0.1852

2.5. Benchmark Modeling Using the 10-Year Moving-Average Data

In the government study of (BOR 2012) [5], the WS data was presented in the form of the
(backward) 10-year moving average in order to highlight its marked decadal-scale variability. Thus,
it is prudent to conduct a similar time series analysis using the 10-year moving average of both the
Colorado River WS and the Great Salt Lake water level. Below is a general formula that was used to
create the moving average.

W̃t =

∑9
i = 0 Wt−i

10
, for t = 10, 11, 12, . . . (6)

where W̃t is the new 10-year moving-average time series and Wt represents the raw annual WS data.
The 10-year moving-average of the GSL data was similarly created. Note that the first 9 observations of
each data set were removed. Figure 9 shows the time series of these 10-year moving-average WS and
GSL. The GSL time series is very smooth due to the large and shallow lake minimizing the interannual
variability and thereby enhancing the low frequency, climate-driven variations (Lall and Mann 1995,
Wang et al. 2010, 2012) [8,9,20]. Again, first-order differencing was applied to these moving-average
data to achieve stationarity. The resulting differenced moving-average series for WS and GSL are
denoted by X̃t and S̃t, respectively. The final models selected are

1. Ten-Year Moving-Average Univariate Model AR (19)

The best univariate model chosen for the 10-year moving-average WS is an AR (19) model; this is
consistent with the raw-data model in Section 2.2. The fitted model is

X̃t = −0.1992X̃t−1 − 0.0514X̃t−2 + 0.1731X̃t−3 + 0.0887X̃t−4 − 0.0282X̃t−5+

0.0334X̃t−6 − 0.1966X̃t−7 + 0.1174X̃t−8 − 0.0532X̃t−9 − 0.5161X̃t−10+

0.1626X̃t−11 − 0.1017X̃t−12 + 0.3447X̃t−13 + 0.0144X̃t−14 + 0.115X̃t−15−

0.1354X̃t−16 − 0.281X̃t−17 − 0.0375X̃t−18 − 0.2447X̃t−19 + Zt,

(7)

where Zt is a white-noise process with an estimated variance of 0.1946.
2. Ten-Year Moving-Average ARMAX (13, 10, 7, 0)
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One of the ARMAX models chosen had an ARMA (13, 10) base, and it includes 7 GSL elevation
lags. The model equation is

X̃t = −0.0493S̃t + 1.772S̃t−1 − 2.4889S̃t−2 + 1.1278S̃t−3 − 0.6349S̃t−4 − 0.4446S̃t−5

+1.4953S̃t−6 − 0.7594S̃t−7 + 0.184X̃t−3 + 0.2239X̃t−13

−0.6748Zt−10 + Zt

(8)

where Zt is a white noise process with an estimated variance of 0.2051.
3. Ten-Year Moving-Average ARMAX (19, 10, 7, 0)

The other competitive ARMAX model for the ten-year moving-average WS also included 7 GSL
lags and had an ARMA (19, 10) base. The equation is estimated as

X̃t = −0.0493S̃t + 1.7720S̃t−1 − 2.4889S̃t−2 + 1.1278S̃t−3 − 0.6349S̃t−4

−0.4446S̃t−5 + 1.4953S̃t−6 − 0.7594S̃t−7 + 0.1837X̃t−3

+ 0.2223X̃t−13 + 0.0153X̃t−18 − 0.1264X̃t−19 − 0.6690Zt−10 + Zt

(9)

where Zt is a white noise process with an estimated variance of 0.2018.

Cross-validation was subsequently applied by dividing the 10-year moving-average WS time
series into a training set and a test set. Considering that the moving-average data has lots of overlaps
among observations (i.e., any two adjacent observations have nine annual data observations in common
in their formations), the split here is slightly different than the annual data. The training set included
the first 81 observations, while the test data set included the last 15 observations. This way, the test data
set has at least five observations that are independent with the training set. Ten forecasting horizons
were used (h =1, 2, . . . 10) as was previously done. The results are shown in Table 2, along with
the corresponding RMSE and the skill score of each model. The two ARMAX models had a similar
performance in terms of the MSE of fitting, i.e., the estimated white noise variance. More importantly,
they significantly outperformed the univariate model in terms of forecasting, as shown in Table 2
(in which the lowest RMSE at each horizon is bold). Table 2 also displays the results of the skill score,
where the model with the highest skill score is indicated.
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Figure 9. Plot of the 10-year moving-average water supply in million acre feet (maf) of the Colorado
River (a) and plot of the ten-year moving average of Great Salt Lake water level (b).

In conclusion of this cross-validation study, the best model for h = 4 and beyond (i.e., forecast out
to at least five years) is the ARMAX (19, 10, 7, 0) model.
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Table 2. Cross-validation results for the three models developed for the 10-year moving average data.
Root mean squared error is shown on top while the skill score is shown on the bottom. The columns
represent the ten forecasting horizons (h = 1, 2, . . . 10). Highlighted values are the best statistic for each
forecasting horizon.

RMSE 1 2 3 4 5 6 7 8 9 10

AR(19) 0.5522 0.5374 0.547 0.4876 0.5062 0.4872 0.4805 0.4951 0.5087 0.4506
ARMAX1 0.4152 0.4123 0.4079 0.4268 0.4297 0.4266 0.4316 0.4369 0.4315 0.4312
ARMAX2 0.4153 0.419 0.4125 0.4197 0.4208 0.4181 0.4185 0.4231 0.4243 0.4265

SS 1 2 3 4 5 6 7 8 9 10

AR(19) 0.0181 0.0802 0.0541 0.2458 0.1811 0.235 0.2537 0.2091 0.1605 0.3391
ARMAX1 0.445 0.4585 0.4739 0.4221 0.4099 0.4135 0.3977 0.3841 0.3959 0.3949
ARMAX2 0.4448 0.4409 0.4621 0.4413 0.434 0.4367 0.4337 0.4223 0.416 0.4081

3. Prediction Results

In this section, we make predictions of water supply for the next 10 years (2013–2022) and discuss
the results from both the annual and moving-average models we have developed in the previous
section. Figure 10a shows the 10-year prediction and the associated 95% confidence interval for the
SAR (19), SARX (19, 1, 0), and ARMAX (19, 1, 2, 0) models that were developed in Section 2 for the
annual WS data. Computation of the confidence interval is based on the asymptotic normality of the
prediction (Brockwell and Davis 2002) [14]. Despite the cross validations that justify their forecasting
performance from statistics viewpoint, the predicted differenced WS in all these models is noisy and
the 95% confidence intervals are too large to be practical. In other words, these models are not suitable
for predicting individual years’ value. Statistically, this is largely due to the insufficiency of data: 106
observations are too few for models with more than 20 parameters. As more data are available, the
predicting power is expected to improve.Water 2019, 11, 2433 12 of 16 
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forecasts of the smoothed WS by both models show an overall decreasing trend in water supply for about 
seven years and then an increase for the next three. The implication is that the water levels may not be 
higher than they are now for at least a decade, at least compared to what was previously projected in 
(BOR 2012) [5]. This predicted widening of the supply-demand imbalance is in agreement with the 
updated WS data published by the Environmental Defense Fund (Rachel O’Connor 2019) [21]. As of this 
writing, the Upper Colorado River snowpack hovers slightly above average (e.g., the 18 February 2019 
BOR data puts the Upper Colorado River Basin headwaters at 110% of the historic average). This inferred 
current condition may seem contradictory to the downtrend predicted in Figure 11, but again, the present 
prediction depicts the 10-year MA, and it should not be a quantitative indication for any individual year. 

Figure 10. Plot of the observed values (black) with the predictions (red) ten years out for (A) SAR
(19) model, (B) SARX (19, 1, 0) model, and (C) ARMAX (19, 1, 2, 0) model in million acre feet (maf).
The gray shaded area denotes the 95% predicting confidence interval.
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To be comparable with the BOR study, i.e., to focus on the low-frequency variation of WS,
we display in Figure 11 the 10-year moving-average of WS along with both predictions using the best
models of the annual data and ten-year moving average data. The predictions here are shown in
terms of their 10-year moving average. Despite the slightly more detailed variations predicted by the
annual data model, forecasts of the smoothed WS by both models show an overall decreasing trend in
water supply for about seven years and then an increase for the next three. The implication is that the
water levels may not be higher than they are now for at least a decade, at least compared to what was
previously projected in (BOR 2012) [5]. This predicted widening of the supply-demand imbalance
is in agreement with the updated WS data published by the Environmental Defense Fund (Rachel
O’Connor 2019) [21]. As of this writing, the Upper Colorado River snowpack hovers slightly above
average (e.g., the 18 February 2019 BOR data puts the Upper Colorado River Basin headwaters at 110%
of the historic average). This inferred current condition may seem contradictory to the downtrend
predicted in Figure 11, but again, the present prediction depicts the 10-year MA, and it should not be a
quantitative indication for any individual year.
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4. Discussion

The different time lags linking the Colorado River WS and the GSL water level reflect the hydrologic
buffering shared by the two basins (Wang et al. 2018) [7], since a majority fraction of the surface water
is contributed by groundwater. (Fang and Shen 2017) [22] showed that the annual streamflow-storage
correlation in this region is medium-high, depicting a high baseflow fraction that normally leads to
a high annual correlation between streamflow-storage correlation. As a result, the GSL water level
and the low-frequency variation of the Colorado River WS are highly coherent (Wang et al. 2018) [7];
this, in turn, enables the former to be a predictor for the latter, a previously undocumented feature
that is examined in this study. Compared to the seasonal statistical water supply forecasts for the
Western US (Pagano et al. 2009) [23], which uses the Z-score regression and has been in operation, the
work presented here employs time series forecasting to predict the multi-year tendency (instead of
individual years’ value).

The various time lags adopted in the models present somewhat different physical meanings.
For instance, the 19-year lag in GSL appears to echo the documented multi-decadal variability associated
with the Interdecadal Pacific Oscillation of ~35 years (i.e., 1/2 cycle) (Dai 2012, Wang et al. 2012) [20,24].
Likewise, the three-year and six-year lags in GSL are coincident with a quarter-phase and half-phase
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of the energetic ~12-year cycle, respectively, that characterizes the Great Basin precipitation (Smith
et al. 2015, Wang et al. 2009) [25,26]. Previous time-series modeling in predicting the GSL level by
(Gillies et al. 2015, 2011) [10,11] have pointed out similar connections with the notable climate cycles in
this region. These results are in line with previous finding by (Switanek and Troch 2011) [27] that it is
possible to forecast Colorado River streamflow at the decadal timescale by using ocean-atmosphere
teleconnections. Future, Leher et al. (2017) [28] pointed out that decadal precipitation trends may be
causing the persistent prediction errors for spring and summer runoff, a trend the present forecast is
trying to capture.

The prediction presented here is not without caveats and one potential problem is in the use of
a moving average in the predictand (i.e., the WS) and the predictor (the GSL); this is because a MA
operator can alter the time structure. When interpreting the forecast of these moving-average model(s),
there could be missing information at the interannual timescale making the year-by-year validation
impractical. Meanwhile, the GSL undergoes considerable diversions leading to a long-term decline
in its water level (Bedford 2009, Mohammed and Tarboton 2012) [29,30]. Quantification of the GSL
diversions is difficult due to the complexity of the Bear River that runs through three states prior to
entry into the GSL, as well as the effect of groundwater withdrawal that reduces recharge to the lake
(Hakala 2014, Masbruch et al. 2016) [31,32]. While GSL diversions create a slow, monotonic downward
trend in the lake level, such a trend produces autocorrelation and thereby should be corrected via the
inclusion of autoregressive terms in the model.

5. Conclusions

The outcome of this study highlights the need to reexamine the water supply of the Colorado River
called for by (Ayres et al. 2016) [33]. The temporal coherence between the low-frequency variations of
the Colorado River and GSL storage systems (Wang et al. 2018) [7] provides the basis for the time series
modeling undertaken here. The models were used to assess the forecast potential and the results point
to the feasibility of using the GSL water level to assist in the forecast of the Colorado River WS, beyond
seasonal timescales. Predictions by these models were compared in terms of annual data versus 10-year
moving averages. The predictive potential of the GSL elevation, as was demonstrated in previous
studies, is one of conceivable application and adoption as a forecast method useful for the Colorado
River WS, especially in the face of prolonged drought as has been observed in the recent decade.

The 170-year-long record of the GSL water level makes it a useful indicator of the Colorado River
WS variation at its decadal frequency (Wang et al. 2018) [7], and the presented analysis demonstrates
that decadal predictability may be obtainable through common time-series modeling approaches. The
multi-year prediction of the Colorado River (Figure 11) is particularly striking in that it suggests a
decrease through 2020 rather than an increase as shown in (BOR 2012) [5]. In other words, the prediction
implies a widened imbalance between supply and demand by as much as 2.5 million acre feet (maf) in
2060; this imbalance, if verified, would be considerably greater than the 2012 estimation of the BOR
study. While water-saving plans can be tailored more to scenarios where water supplies decrease further
in the future, this paper presents statistical prediction of WS that can be useful in the implementation
of these plans. We conclude that Colorado River managers would be pragmatic to periodically assess
future WS through the adaptation of a decadal prediction approach.
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