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Abstract: Owing to their short duration and high intensity, flash floods are among the most
devastating natural disasters in metropolises. The existing warning tools—flood potential maps
and two-dimensional numerical models—are disadvantaged by time-consuming computation and
complex model calibration. This study develops a data-driven, probabilistic rainfall-inundation
model for flash-flood warnings. Applying a modified support vector machine (SVM) to limited flood
information, the model provides probabilistic outputs, which are superior to the Boolean functions of
the traditional rainfall-flood threshold method. The probabilistic SVM-based model is based on a data
preprocessing framework that identifies the expected durations of hazardous rainfalls via rainfall
pattern analysis, ensuring satisfactory training data, and optimal rainfall thresholds for validating
the input/output data. The proposed model was implemented in 12 flash-flooded districts of the
Xindian River. It was found that (1) hydrological rainfall pattern analysis improves the hazardous
event identification (used for configuring the input layer of the SVM); (2) brief hazardous events
are more critical than longer-lasting events; and (3) the SVM model exports the probability of flash
flooding 1 to 3 h in advance.

Keywords: modified support vector machine; data-driven probabilistic rainfall-inundation model;
flash-flood; early warning; rainfall pattern analysis; rainfall threshold

1. Introduction

Flash floods inundate metropolises with intense precipitation within a short time, causing intense
damages; moreover, they occur on worldwide spatial scales. Taiwan, located between Japan and the
Philippines in the Western Pacific, experiences (on average) three or four typhoons and 166 days of
heavy rainfall warnings per year. Here, heavy rainfall is defined as precipitation with an intensity
above 40 mm/h, or a 24-h cumulative rainfall exceeding 80 mm. Therefore, a flash-flood warning is a
critical requirement of natural disaster mitigation and prevention in Taiwan. Recently, researchers
have published observed data and developed various models for flash-flood warnings in different
metropolises. Applying a two-dimensional (2-D) inundation model and a road impact method,
Yin et al. (2016) [1] evaluated the impact and risk of pluvial flash floods on the intra-urban road
network in Shanghai, China, but their evaluation does not execute in real-time. Candela and Aronica
(2016) [2] and Douinot et al. (2016) [3] applied 2-D numerical models of flash-flood warning in
Italy and France, respectively. However, the spatial extent of their studies was limited by the long
computational time of 2-D models. Clark (2017) [4] applied a nonlinear unit hydrograph flow model
and the antecedent soil-moisture deficit in a flood warning model of Boscastle in the United Kingdom.
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Such a combined model is quick and suitable for fluvial floods, but inapplicable to pluvial flash floods.
A similar combined hydrological model, which derives the rainfall thresholds in pluvial flash floods,
was considered by Forestieri et al. (2016) [5]. In natural hazards induced by short-term heavy rainfall
such as flash floods or landslides, a timely warning is more important than evaluating the disaster
impacts on people. Therefore, the empirical rainfall thresholds of flash floods and rainfall-induced
landslides have been increasingly sought in recent years [5–15].

The local governments in Taiwan also consider the rainfall thresholds in flash floods and
landslides [16–18]. In the official flash-flood warning system of Taiwan, the rainfall thresholds in all
counties and districts are decided from five cumulative rainfalls of durations 1, 3, 6, 12, and 24 h.
At least one rain gauge is assigned as the reference rain gauge for each county or district [19]. In 2017,
the Water Resources Agency (WRA) used 754 sets of rainfall thresholds based on 500 rain gauges and
warned 368 counties and districts of pending flash floods in Taiwan. However, the rainfall thresholds
are based on historical flood records, which lack the parameters (start times, areas, and durations
of the floods) required in complex flood warning models. Most of the historical flood records in
Taiwan are reports of people’s phone calls, which are checked by officers several hours later. Therefore,
when determining rainfall thresholds, the historical flood records of the WRA are useful only for
predicting whether a rainfall event will cause a disaster. Although potential inundation maps improve
the information input [18,20,21], the models based on this information output only a Boolean function
that provides decision makers with simplified yes or no answers to the observed rainfalls.

The added (economic) value of probabilistic forecasts over deterministic forecasts has been
confirmed in many studies [22–25]. Probabilistic forecasts quantify the potential risk of impacts for
decision makers [26]. Therefore, probabilistic flood warning models are increasingly sought in the
hydrological field [18,27–37]. In seven of the above studies [18,27–32], the values of the probabilistic
information were provided to the flood warning models by hydro-meteorological ensembles. In the
other five of the above studies, statistical post-processors are applied to provide probabilistic forecasts,
i.e., the predictive uncertainty, from the output of a single (or multiple) deterministic model (either a
meteorological or a hydrologic model) [33–37]. In most countries, the rainfall data acquired by rain
gauges are the essential weather products for further applications. Therefore, this study develops
a data-driven, probabilistic rainfall-inundation model based on the observed rainfall data and a
modified SVM.

Among the most popular models in statistics and machine learning is logistic regression [38],
which makes probabilistic predictions by linearly combining the observed data. Nevertheless, in
practical applications, linear models may be insufficiently powerful to capture the sophisticated
relationships within the observed data [38]. Nonlinear models with probabilistic predictions include
Random Forest [39], Gradient Boosted Decision Tree [40], and SVM [41]. Among these models, SVM
is well-known for its large-margin design, which confers robustness to overfitting, and for its kernel
trick, which improves the model’s ability to explore sophisticated relationships in the observed data.
Platt (2000) [42] extended the original SVM designed for deterministic classification predictions to
probabilistic outputs by adding a logistic-regression-like stage after the usual SVM learning. Platt’s
model, which inherits the robustness and power from the SVM, is the main tool of the present study.
Using the modified SVM, we develop a data-driven probabilistic model of rainfall-inundation based
on the observed rainfall data.

2. Study Area and Data Used

2.1. Xindian River and Its Flood Disaster Events

The study area was the Xindian River watershed (see Figure 1). Covering 89% of the mountainous
area (921 km2) in Northern Taiwan, the Xindian River watershed lies upstream of the Danshui
River, a main river of length 81 km with a mean slope of 1:54 from southeast to northwest. Fed by
subtropical monsoons and typhoons, Xindian River’s hydrological environment processes a mean
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annual precipitation of approximately 3500 mm and experienced mean flows of 92.27 and 50.03 CMS
in the Jun. to Nov. and Dec. to May periods, respectively. To provide flood control and a stable
water supply to the Taipei Metropolitan Area, Taiwanese authorities constructed the Feitsui Reservoir
upstream of the Xindian River in 1987. This reservoir has a watershed area of 303 km2 and a mean
water supply of 3.45 million CMD. From Showlang Bridge to the reservoir, the time of concentration
is 4.38 hours, the river length is 69.7 km, and the watershed area is 747.75 km2 (Capital Engineering
Corporation, 2009) [43]. Levees with 16 pumping stations, designed to prevent floods with a 200-year
return period, are built downstream of the Xindian River, and the drainage systems of Taipei City and
New Taipei City are designed to prevent floods with a 5-year return period.
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Figure 1. The study area: Xindian River watershed with the locations of rain gauges and water level
stations (district and rain gauge numbers are described in Tables S1 and S2 in the Supplementary
Material, respectively) where the yellow area is a potential inundation area identified by WRA.

Based on the flood reports of WRA from 2012 to 2015, 24 heavy rainfalls and typhoons inundated
12 districts of the Xindian River watershed (see Table S1 in Supplementary Material). As observed in
Table S1 in Supplementary Material, most of the heavy rainfalls induced by stationary fronts (so-called
Mei-yu fronts) occurred during May and June (the Mei-yu season), and eight typhoons influenced the
watershed during July, August, and September. Seven events—the 610 flood event, Typhoon Saola in
2012, Typhoon Trami, the 0822 heavy rainfall event, Typhoon Kong-rey in 2013, the 0519 heavy rainfall
event in 2014, and Typhoon Soudelor in 2015—caused large-scale impacts on over half of the districts
in the watershed. Furthermore, in the 15 and 14 flood events, the Banqiao and Xindian districts had
higher inundation potentials, respectively, than the other 10 districts. Located in the mountainous area
with high terrain, Wulai, Shenkeng, Shiding, and Pinglin have relatively low inundation potentials,
and all disaster events in these four districts were induced by typhoons.

2.2. Dataset

Twenty rain gauges are set up by the Central Weather Bureau (CWB) throughout the Xindian
River watershed (red dots in Figure 1). Table S2 in the Supplementary Material shows the profiles of the
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rain gauges at elevations ranging from 5 to 916 m. The three rain gauges (Sidu, Sishifen, and Taiping)
located upstream of the Feitsui Reservoir were filtered out because the reservoir operation controls the
impacts of the reservoir-watershed rainfall on the downstream floods but not on the upstream floods.
Among the remaining 17 rain gauges, 15 are designated as reference stations for flood warnings by the
WRA (the exceptions are Tunghou and Xiapen).

Table 1 shows the official rainfall thresholds of the 15 rain gauges providing flood warning data to
12 districts. Five of the districts are warned by multiple stations. Officially, 19 sets of rainfall thresholds
based on 15 rain gauges are set to warn 12 districts in the Xindian River watershed. To improve the
appropriateness of flash-flood warnings in the Xindian River watershed, our data-driven probabilistic
rainfall-inundation model uses the observed hourly rainfall data of the 17 rain gauges from 2012
to 2015.

Table 1. Official rainfall thresholds of flood warnings at 15 rain gauges covering 12 districts in the
Xindian River watershed.

City District
Reference Rain

Gauge
Official Cumulative Rainfall Threshold of Each Duration

1 h 3 h 6 h 12 h 24 h

Taipei Wanhua Taipei 70 140 180 340 400
Zhongzheng Gongguan 70 130 180 250 350

Taipei 70 130 180 250 350
Zhongzheng Bridge 70 130 180 250 350

Wenshan Wenshan 60 120 170 240 350
New Taipei Banqiao Banqiao 50 120 150 200 300

Tucheng 50 120 150 200 300
Tucheng Banqiao 60 110 150 210 300

Tucheng 50 110 150 210 300
Zhonghe Zhonghe 50 110 150 230 300
Yonghe Zhongzheng Bridge 60 120 170 230 300
Xindian Quchi 50 130 180 250 350

Xindian 50 130 180 250 350
Wulai Fushan 70 140 270 310 450

Tunghou - - - - -
Xiapen - - - - -

Fushan(3) 70 140 270 310 450
Datungshan 70 140 270 310 450

Shenkeng Shenkeng 60 150 230 350 450
Shiding Shiding 80 150 230 350 450
Pinglin Pinglin 80 150 230 330 400

Based on the hourly water level data of WRA and the hourly rainfall data of CWB, Figure 2
shows the 36-hr rainfall-water level processes of the water level stations Quchi, Showlang Bridge,
and Zhongzheng Bridge, arranged from upstream to downstream, at their three nearest rain gauges
Quchi, Gongguan, and Zhengzheng Bridge respectively, along with the processes at one upstream
rain gauge, Fushan. Data are shown for the eight typhoon events (blue) and 16 Mei-yu front events
(black). When the water levels at the Quchi, Showlang Bridge, and Zhongzheng Bridge stations are 45,
0, and −1.2 m, respectively, there are no observed data. As revealed in Figure 2, the water levels at the
Quchi and Showlang Bridge stations are highly related to the Quchi and Fushan rainfalls upstream
of the Xindian River, whereas that at Zhongzheng Bridge is mainly related to the tide. As per the
introduction of flood prevention for the Xindian River in Section 2.1, the return periods of designed
floods for drainage systems and levees are 5 and 200 years, respectively. Therefore, as no overflow
from levees but from manholes occurred during the 24 events, the floods in recent years were induced
by the failure of drainage systems, also called pluvial floods. Consequently, only the rainfall data are
input to the developed model.
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Figure 2. Rainfall-water level processes of 24 extreme rainfall events in the Xindian River watershed
based on the records of the 4 rain gauges and 2 water level stations from 2012 to 2015.

Because the probabilistic model in this study applies data-driven supervised learning, its inputs
are the cumulative rainfalls of different durations that enter the observations, and the designed output
is a Boolean description that trains the model to identify whether the observed rainfalls will cause
flooding. However, because accurate flood times are missing, identifying the relationship between
rainfall patterns and floods through supervised learning is a challenging task. Therefore, the maximum
cumulative rainfalls of different durations are considered to characterize disaster events in this study.

3. Methodology

3.1. Model Development Process

This study aims to develop a data-driven probabilistic model of rainfall-inundation prediction
that issues flash-flood warnings. The model development proceeds in three main steps: identifying
the characteristics of hazardously extreme rainfalls, optimizing the rainfall-inundation thresholds, and
SVM training and validation. A flowchart of the model development is given in Figure 3. The detail
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of identifying the characteristics of hazardously extreme rainfalls is described in Section 3.2. In the
second step, the rainfall thresholds at each rain gauge are optimized by trial and error based on the
three statistics given in Section 3.3. The final step trains the probabilistic rainfall-inundation model
on operational alarm results generated from the hourly screening of all observed rainfall events
under their best rainfall thresholds. The kernel of the probabilistic rainfall-inundation model, SVM,
is introduced in Section 3.4. The performance of the developed model is compared with that of the
official rainfall-inundation warning system, as shown in Table 1.

Water 2019, 11, x FOR PEER REVIEW 6 of 22 

 

3. Methodology 

3.1. Model Development Process 

This study aims to develop a data-driven probabilistic model of rainfall-inundation prediction 
that issues flash-flood warnings. The model development proceeds in three main steps: identifying 
the characteristics of hazardously extreme rainfalls, optimizing the rainfall-inundation thresholds, 
and SVM training and validation. A flowchart of the model development is given in Figure 3. The 
detail of identifying the characteristics of hazardously extreme rainfalls is described in Section 3.2. In 
the second step, the rainfall thresholds at each rain gauge are optimized by trial and error based on 
the three statistics given in Section 3.3. The final step trains the probabilistic rainfall-inundation 
model on operational alarm results generated from the hourly screening of all observed rainfall 
events under their best rainfall thresholds. The kernel of the probabilistic rainfall-inundation model, 
SVM, is introduced in Section 3.4. The performance of the developed model is compared with that of 
the official rainfall-inundation warning system, as shown in Table 1. 

 
Figure 3. Flowchart of the data-driven probabilistic rainfall-inundation model for flash flood 
warnings. 

3.2. Rainfall Pattern Analysis 

The official rainfall thresholds of the WRA in Taiwan combine five durations (1, 3, 6, 12, and 24 
h) in all rain gauges throughout Taiwan. However, the rainfall patterns captured by the rain gauges 
vary with geographical and hydrological environments [44–46]. For sensitively detecting hazardous 
events throughout the study area, one should identify the key durations of the extreme rainfalls. 

First, the rainfall events in the data of the 17 rain gauges were identified by the following rules. 
The beginning of a rainfall event was detected by the hour of rainfall exceeding 0.5 mm/h, and the 
end of a rainfall event was detected as no rainfall for four consecutive hours [47]. If the ith rain gauge 
makes Ti hourly observations, the data can be denoted as: 𝑅 = ሼ𝑟(1), 𝑟(2), … , 𝑟(𝑡), … , 𝑟(𝑇)ሽ, 𝑖 = 1, … ,17, (1) 

where 𝑅 is the sequence of Ti hourly rainfalls, 𝑟(𝑡), of the ith rain gauge, and the jth event of the 
ith rain gauge can be expressed as Equation (2): 

Figure 3. Flowchart of the data-driven probabilistic rainfall-inundation model for flash flood warnings.

3.2. Rainfall Pattern Analysis

The official rainfall thresholds of the WRA in Taiwan combine five durations (1, 3, 6, 12, and 24 h)
in all rain gauges throughout Taiwan. However, the rainfall patterns captured by the rain gauges vary
with geographical and hydrological environments [44–46]. For sensitively detecting hazardous events
throughout the study area, one should identify the key durations of the extreme rainfalls.

First, the rainfall events in the data of the 17 rain gauges were identified by the following rules.
The beginning of a rainfall event was detected by the hour of rainfall exceeding 0.5 mm/h, and the
end of a rainfall event was detected as no rainfall for four consecutive hours [47]. If the ith rain gauge
makes Ti hourly observations, the data can be denoted as:

Ri =
{
ri(1), ri(2), . . . , ri(t), . . . , ri(Ti)

}
, i = 1, . . . , 17, (1)

where Ri is the sequence of Ti hourly rainfalls, ri(t), of the ith rain gauge, and the jth event of the ith
rain gauge can be expressed as Equation (2):

Eventi, j

=

ri
(
tbegin, j

)
, ri

(
tbegin, j + 1

)
, . . . , ri(t), . . . , ri

(
tend, j − 1

)
, ri

(
tend, j

)∣∣∣∣∣∣∣∣∣∣
ri
(
tbegin, j − k

)
= 0

ri
(
tend, j + k

)
= 0

ri
(
tbegin, j

)
≥ 0.5

,

f or k = 1, . . . , 4.

(2)

where tbegin, j and tend, j are the beginning and end time of the jth event, respectively.
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Table S2 in the Supplementary Material shows the number of rainfall events from 2012 to 2015.
In the Xindian River watershed, rainfalls were more frequent in mountainous areas than in plain areas,
because the number of rainfall events increases from 515 to 890 as the rise of rain gauge elevates.
The exceptions are Fushan(3) and Datungshan, where rainfall events are 345 and 322, respectively,
due to the lack of observed data in 2013 and 2014. Fortunately, the Wulai district, where Fushan(3) and
Datungshan are located, just suffered two floods in 2012 and 2015, respectively. Therefore, the data of
both rain gauges were available for the present study.

To capture the temporal characteristics of hazardous rainfalls in the rain gauge data, the minimum
values of the maximum cumulative rainfalls in the 1- to 36-h durations of all disaster events from 2012
to 2015 were adopted as the lower boundary. This boundary filters out the rainfall events with no
danger potential. The maximum cumulative rainfall in the D-hour duration of the jth event of the ith
rain gauge, CRi, j,D is calculated as follows:

CRi, j,D = max
tbegin, j≤T≤tend, j−D+1

T+D−1∑
t=T

ri(t)

, for D = 1, . . . , 36. (3)

The key events Keyeventi, to be analyzed in further study, were then calculated by Equation (4).

Keyeventi =

{
Eventi, j

∣∣∣∣∣∣CRi, j,D > min
J=hazardous event

{
CRi,J,D

}
, f or D = 1, . . . , 36

}
, (4)

where Keyeventi means the key events of the ith rain gauge. Eventi, j is screened by comparing CRi, j,D

with min
J=hazardous event

{
CRi,J,D

}
. The calculated results are listed in the column “key event no. (2012–2015)”

of Table S2 in the Supplementary Material.
In districts struck by only one or two disaster events, the lower boundary would be high to

carry out few events for further study. This situation happens in most of the rain gauges located in
mountainous area because it is easy to induce rain but hard to induce floods in mountainous areas
with high slope. In order to maintain a sufficient number of rainfall events for statistical analysis,
we selected at least 40 rainfall events in each rain gauge based on their distance to the minimum
cumulative rainfalls of the 1 to 36-h durations in a 36-dimensional space, as shown in Equation (5).

Distance of Eventi, j =
36∑

D=1

(
CRi, j,D − min

J=hazardous event

{
CRi,J,D

})2

(5)

After classifying the cumulative rainfalls of each duration in a given rain gauge into larger and
smaller groups, the difference between the mean cumulative rainfalls of both groups is calculated
for each duration. Generally, this difference should reduce with increasing duration. If this trend is
violated at a certain duration, we specify a feature of hazardous rainfall at this duration. Consequently,
the characteristics of the extreme rainfalls related to disasters at each rain gauge are identified from the
cumulative rainfalls in five 5-hourly intervals: 1–5, 6–10, 11–15, 16–20, and 21–25 h. If the differences
between the rainfalls of two groups satisfy the decreasing trend for the five durations in a given interval,
the cumulative rainfall of the shorter duration is set as the hazardous rainfall feature. The extreme
rainfall characteristics related to disaster are identified through the flowchart shown in Figure 4.
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3.3. Optimization of Rainfall-Inundation Thresholds

Based on the characteristics of hazardous rainfalls identified from Section 3.2, thresholds of
cumulative rainfalls to induce inundation would be carried out in this step. To associate warning events
with observed events, the pluvial flash-flood warnings are evaluated by a binary (yes/no) approach on
the official reports of flood disaster [8]. Because the historical flood records of many countries mainly
contain personal call data, which lack accurate flood times, there should be a certain lag time between
flood records and real floods. Therefore, this study ignored the prediction of when floods happen and
focused on if floods happen. The inundation warning mechanism of rainfall thresholds is composed of
the observed cumulative rainfalls in the five durations identified by the rainfall pattern analysis as
hourly input and a “yes” or “no” flood warning for each hour as output sets. By screening the hourly
historical rainfalls by a flood warning threshold (which can be any cumulative rainfall in one of the five
analyzed durations), one obtains four kinds of results (see Table 2). After constructing the contingency
tables, three statistics were computed from the hits, misses, and false alarms in each contingency table.
The probability of detection (POD) describes the fraction of observed pluvial flash floods that were
correctly forecast:

POD =
hits

hits + misses
. (6)

Table 2. Contingency table for evaluating binary (yes/no) warnings of pluvial flash floods.

Observation

Yes No

Warning Yes Hit False alarm
No Miss Correct negative
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A POD of 1 indicates that all flash floods were correctly warned, and 0 indicates that no flash
floods were detected at the imposed warning threshold. The POD must be considered along with
the false alarm ratio (FAR), which describes the fraction of warning events not associated with an
observed event:

FAR =
f alse alarms

f alse alarms + hits
. (7)

Similarly to POD, FAR ranges from 0 (all warning events were observed events) to 1 (none of the
pluvial flash- flood warnings were associated with an observed event). A third statistic, the critical
success index (CSI), or threat score, was computed as

CSI =
hits

hits + misses + f alse alarms
. (8)

The CSI combines the aspects of POD and FAR, and thus describes the skill of the warning system.
The CSI ranges from 0 (no skill) to 1 (perfect skill).

For operational needs, governments have a responsibility of warning people before inundation.
Therefore, POD is the first priority applied to evaluate the model performance. The second priority of
the three statistics is FAR because the public easily ignores the warning of the model with high FAR.
Consequently, the objective function of the optimized flood warning threshold at each rain gauge for
warning the corresponding monitoring district via trial and error is the highest POD + (1-FAR) with
higher POD. The performances of the given flood warning thresholds could be presented by CSI.

3.4. Support Vector Machine and Its Supervised Data Generation

The SVM [41] is a state-of-the-art supervised learning approach for binary classifications and other
problems. Here, we introduce the soft-margin SVM, the most popular SVM for binary classifications.
The dataset for binary classification is denoted as D =

{
(xn, yn)

}N
n=1, where xn ∈ Rd are the input

feature vectors and yn ∈ {−1, + 1} are the output binary labels representing the two classes (in this
case, yes or no). The linear version of the soft-margin SVM tries to locate a large-margin hyperplane
w · x + b = 0 by solving the following optimization problem:

min
w,b,ξn

1
2

w ·w + C
∑

ξn, (9)

subject to
yn(w · xn + b) ≥ 1− ξn, (10)

ξn ≥ 0. (11)

The first term in the objective function attempts to pull each example by a safe margin from the decision
hyperplane w · x + b = 0, and the second term ensures that the margin violations ξn, if any, are
properly penalized with a penalty parameter C. The large-margin formulation plays a regularization
role and alleviates overfitting of the given dataset by the SVM [41].

The nonlinear extension of the linear version instead solves the following optimization problem:

min
w,b,ξn

1
2

w ·w + C
∑

ξn, (12)

subject to
yn(w ·Φ(xn) + b) ≥ 1− ξn, (13)

ξn ≥ 0. (14)

In the nonlinear formulation, each feature vector xn first passes through a nonlinear transformation
function Φ, which maps it to a (usually) higher dimensional space that improves the data separation.
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In principle, the transformation function Φ can map the feature vectors to a super-high or even
infinite dimensional space if the kernel function K(x, x′) that calculates Φ(x) ·Φ(x′) can be efficiently
computed [48]. In this case, the nonlinear SVM can be solved in the so-called dual form:

min
αn

1
2

∑∑
αnαmynymK(xn, xm) −

∑
αn, (15)

subject to
N∑

n=1

ynαn = 0, (16)

0 ≤ αn ≤ C. (17)

Several kernel functions corresponding to differentΦ functions have been proposed [48]. Our work
adopts the most-widely used kernel function, the Gaussian–RBF kernel K(x, x′) = exp(−γ‖x− x′‖2).
This kernel function is recommended by the standard practical procedure for SVM classification [49],
which advocates a proper scaling of the feature vectors before grid-searching over the

(
log2 C, log2 γ

)
space, and finding the best parameter combination by cross-validation accuracy. The same procedure
was adopted in our experiments. Applying the best

(
log2 C, log2 γ

)
on the whole D, one retrieves the

optimal αn and computes the corresponding b through the relationship between the dual form and the
original SVM problem [50]. Finally, the decision value of each test feature vector x is computed from
the (αn, b) as follows:

g(x) =
N∑

n=1

ynαnK(xn, x) + b. (18)

The sign of the decision value g(x) determines whether vector x belongs to class +1 or class −1.
The decision calculation requires only those (xn, yn) with non-zero αn, which are called support vectors.
The SVM is so named because it identifies the support vectors (and their coefficients αn) needed to
compute the decision values.

The original soft-margin SVM deterministically outputs the sign of the decision value g(x).
Platt (2000) [42] extended the SVM to probabilistic predictions by plugging g(x) as the input to a
variant logistic regression formula that solves

min
A,B

N∑
n=1

(zn log(1 + exp(Agn + B)) + (1− zn) log(1 + exp(−Agn − B))). (19)

In Equation (19), zn is a dataset-dependent value that approaches 1 when yn = +1 and 0 when
yn = −1. gn is a cross-validated estimate of g(xn). After optimizing the (A, B) of the problem,
the probabilistic prediction for each input vector x is computed as

P(+1|x) = 1/(1 + exp(Ag(x) + B)). (20)

The optimal A is typically positive, meaning that P(+1|x) is large if g(x) is large and positive.
This echoes the learning of the classifier sign (g(x)) by the soft-margin SVM. The original extension
solves the optimization problem by the Levenberg–Marquardt method [42]. Lin et al. (2007) [51]
improved the robustness of the original extension by a Newton-method solution with a backtracking
line search. Lin et al.’s (2007) [51] method is adopted in the LIBSVM package [50] and also in the
present study.

Because the proposed probabilistic model of rainfall-inundation prediction is a data-driven model,
its performance highly depends on the quality of the supervised data. However, as mentioned in
the Introduction, the historical flood records of many countries mainly contain personal call data,
which lack the accurate start times of floods. Therefore, generating satisfactory supervised data is a
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crucial step in the present study. The supervised data are composed of hourly input and output sets.
The model inputs are the observed cumulative rainfalls in the five durations identified by the rainfall
pattern analysis, and the outputs are a “yes” or “no” flood warning for each hour.

4. Results and Discussion

4.1. Identifying the Characteristics of Extreme Rainfalls

The characteristics of hazardous extreme rainfalls at Quchi (a mountainous area) and Zhongzheng
Bridge (a plain area) are presented in panels (a) and (b) of Figure 5, respectively. At each rain gauge,
the event number, cumulative rainfalls of two data groups, and the cumulative rainfall differences
between the two groups are presented for rainfall durations from 1 to 36 h. At most rain gauges,
fewer than 20 events lasted longer than 25 h. Therefore, the characteristics of hazardous extreme
rainfalls were identified from the five categories of cumulative rainfalls between 1 and 25 h. At the
Zhongzheng Bridge stations, fewer than 19.55% of the events exceeded half a day, confirming that
brief, intense bursts of rainfall, such as afternoon thunderstorms, dominate the rainfall patterns on
the plains. In contrast, rainfalls lasting longer than 24 h comprised 19.33% of the extreme rainfalls
at the Quchi rain gauges. This reveals that typhoons or frontal-system rainfall patterns significantly
contribute to the hazardous extreme rainfalls in the mountainous area of Taiwan.Water 2019, 11, x FOR PEER REVIEW 12 of 22 
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Examining the cumulative rainfalls of the larger (A) and smaller (B) groups for the two rain gauges,
the average curve of group A changes at approximately 25 h. The change-point implies that the
rainfall pattern of the events lasting longer than one-day changes from typhoon rainfalls to frontal
rainfalls or Northeast monsoon in winter. Furthermore, the range variations between the maximum
and minimum cumulative rainfalls are significantly different in groups A and B. Such a significant
difference in variation can reveal the characteristics of the hazardous rainfall patterns. Therefore, the
characteristics of hazardous extreme rainfalls were identified from the differences between the average
rainfall intensities in groups A and B (see to panels of Figure 5a,b) The segment above 25 h in the
two panels is ignored because the number of events is too small in this region, as mentioned in the
bar-graph discussion. At most of the rain gauges, the average hourly rainfall intensities differed by
over 20 mm, but at the Zhongzheng Bridge rain gauge, they differed by only around 12 mm because
over 400 events were recorded at this location, reducing the variances in the two groups. Although the
average rainfall intensity decreased with increasing duration, its difference between groups A and B
increased only over a certain duration. These differences were adopted as the characteristics related to
hazardous extreme rainfalls.

Figure 6 visualizes the difference in average rainfall intensity between groups A and B over each
duration at the 17 rain gauges, and Table 3 shows the key durations defining the hazardous rainfall
characteristics. During the first interval (1–5 h), the 1-h rainfall intensity was stronger than the other
average rainfall intensities (within 2 to 5 h). If the difference in average rainfall intensity between
groups A and B decreases smoothly, the expected key durations are 1, 6, 11, 16, and 21 h. However,
during the fifth interval (21–25 h), the key durations at 12 out of the 17 rain gauges exceeded 21 h.
Meanwhile, in the second, third, and fourth intervals, 11, 7, and 6 out of the 17 rain gauges recorded
key durations exceeding 6, 11, and 16 h, respectively. These results imply that the key durations are
relatively more critical in the first, second, and fifth intervals than in the other intervals.
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Table 3. Key durations in 5 intervals identified by rainfall pattern analysis.

Rain Gauge Name 1–5 h 6–10 h 11–15 h 16–20 h 21–25 h

Zhongzheng Bridge 1 9 11 16 22
Taipei 1 7 11 16 25

Banqiao 1 6 14 16 24
Gongguan 1 7 11 16 22

Xindian 1 6 12 17 21
Zhonghe 1 10 11 19 21
Tucheng 1 6 14 16 24
Wenshan 1 6 11 17 23
Shenkeng 1 8 11 16 21

Quchi 1 6 12 19 21
Shiding 1 9 11 16 23
Pinglin 1 9 11 16 22

Tunghou 1 9 13 16 21
Fushan 1 10 11 16 22

Fushan(3) 1 6 13 17 25
Xiapen 1 10 11 16 25

Datungshan 1 8 15 17 23

4.2. Optimization of Rainfall-Inundation Thresholds

This subsection optimizes the rainfall-inundation thresholds using the key durations of each
rain gauge. According to the observed hourly rainfall data of the 17 rain gauges from 2012 to 2015
and the disaster events shown in Table S1 in the Supplementary Material, the rainfall-inundation
thresholds were optimized for both the official key durations (1, 3, 6, 12, and 24 h) (Table S3 in the
Supplementary Material) and the key durations identified in the rainfall pattern analysis (Table S4 in
the Supplementary Material). Comparing the optimization results with the current official rainfall
thresholds (Table 1), the optimized 1-h rainfall thresholds in the plain areas (Gongguan, Tucheng,
Quchi, Wenshan, and Zhongzheng Bridge stations) were mostly modified upward (the exceptions
were Taipei, Banquiao, and Xindian stations), while those in the mountainous areas (Tunghou, Xiapen,
Datungshan, Shenkeng, Shiding, and Pinglin) were mostly modified downward (the exceptions were
Fushan and Fushan(3) stations). Most of the optimized 3–24 rainfall thresholds were shifted downward
and upward in the plain and mountain areas, respectively. Based on the differences between the current
and optimal official rainfall thresholds in Table S3 in the Supplementary Material, the maximum
increases were 24 and 20.5 mm for the 1- and 3-h durations respectively in the plains areas, and 25,
113.5, 141, 310, and 326.5 mm for the 1-, 3-, 6-, 12-, and 24-h durations, respectively, in the mountainous
areas. The maximum decreases in the plain (mountainous) areas were 24 (25.5), 67.5 (15.5), 88 (88),
151.5 (86.5), and 218 mm (57 mm) for the 1-, 3-, 6-, 12-, and 24-h durations, respectively. The 1-h rainfall
threshold might be related to the drainage system because the designed capacity of drainage systems in
Taipei and New Taipei cities is calculated by hydrological frequency analysis of the 1- to 1.5-h rainfall
events. Therefore, the upward modifications imply an improvement of the drainage system and
more intensive maintenance in recent years. All of the 1-h rainfall thresholds exceeded 40 mm/hour,
confirming the importance of the official heavy-rain warning threshold (40 mm/h rainfall intensity)
drawn up by the Central Weather Bureau in Taiwan. Furthermore, the downward modification of the
optimized 1-h rainfall thresholds in the mountainous areas implies that the hazardous rainfalls are
often typhoon events with long durations, which have lower rainfall intensities than thundershowers
that happened frequently in plain areas. The official and optimized thresholds of the 1-, 3-, and 6-h
durations slightly differed at several rain gauges, namely, at Gongguan, Taipei, and Zhongzheng
Bridge in the Zhongzheng district, Wenshan in the Wenshan district, Tucheng in the Banqiao district,
Banqiao in the Tucheng district, and Zhongzheng Bridge in the Yonghe district. This implies the
frequent occurrence of flash-flood disasters by extreme hourly rainfall in these districts. Furthermore,
as the optimal thresholds of most rainfall durations in the plains and mountains were below and above
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the official thresholds, respectively, the current official cumulative rainfall thresholds overestimate
and underestimate the number of hazardous extreme rainfall events in the plains and mountains,
respectively. Briefly, Table S3 in the Supplementary Material shows the significant improvement of
optimizing the official rainfall-inundation thresholds.

Through rainfall pattern analysis, key durations of each rain gauge were carried out to replace
the durations of official cumulative thresholds, and the best rainfall-inundation thresholds of the key
durations were re-optimized. Table S4 in Supplementary Material shows the optimal cumulative
rainfall thresholds of the key durations, with the numbers in parentheses. Most of the 1-h and 6-h
rainfall thresholds are matched in Tables S3 and S4 in the Supplementary Material: the exceptions
are the 1-h rainfall thresholds at the Taipei rain gauge in Zhongzheng, the Banqiao rain gauge in
Tucheng, and the Fushan rain gauge in Wulai, and the 6-h rainfall thresholds at the Banqiao rain
gauge in Tucheng. However, at longer durations, only four rain gauges share the same thresholds in
Tables S3 and S4 in Supplementary Material: the 12-h rainfall thresholds at the Quchi and Xindian
rain gauges in Xindian, and the 24-h rainfall thresholds at the Banqiao and Tucheng rain gauges in
Banqiao. The differences between Tables S3 and S4 in the Supplementary Material are related to the
event numbers in different durations (e.g., Figure 5a,b): shorter duration events are more frequent than
long-lasting events. As the number of events increases, the rainfall thresholds become more sensitive
for the change of Table 2, so more of the thresholds converge in Tables S3 and S4 in the Supplementary
Material at shorter durations than at longer durations.

4.3. Building a Probabilistic Rainfall-Inundation Model Based on SVM

After optimizing the rainfall-inundation thresholds of different key durations, the key events of
each rain gauge were screened by optimizing the rainfall-inundation thresholds in a rainfall pattern
analysis. The results are shown in Table S5 in Supplementary Material. To ensure a high-quality
hourly training and a proper input–output (I/O) dataset for testing the SVM, all hourly I/O data
were checked and corrected for hourly misjudgment. Along the time series of the hourly I/O data,
the I/O dataset was sampled once every 6 h, so the ratio of the training and testing data was 5:1.
The warning results of the probabilistic rainfall-inundation model, obtained by the SVM, are given
in the rightmost four columns of Table S5 in Supplementary Material. The warning performances
of the four models, evaluated by the POD, FAR, and CSI criteria, are shown in Table S6 in the
Supplementary Material. Comparing the criteria of the official cumulative rainfall thresholds with
those of the optimized thresholds, the trial-and-error optimization significantly improved the warning
performance. The rainfall pattern analysis that determines the key durations only slightly changed
the POD but improved the FAR and CSI by reducing the number of false alarms. Consequently,
the probabilistic SVM-based rainfall-inundation model was trained by the hourly data and corrected.
The cumulative rainfall thresholds were then optimized based on the rainfall pattern analysis. The main
advantage of the proposed SVM is its probabilistic output. To obtain a deterministic result, a flood
warning was launched when the SVM output exceeded 50%. The well-trained SVM significantly
outperformed the official thresholds, except at the Tucheng rainfall station for warning the Tucheng
district, and the Fushan and Tunghou rainfall stations for warning the Wulai district. At these stations,
the SVM missed one more disaster than the official thresholds but significantly decreased the number of
false alarms. Briefly, based on the criteria differences between the developed SVM model and the official
warning system, the SVM model most improved the warnings at Banqiao from the Banqiao rain gauge,
and least improved the warnings at Tucheng from the Tucheng rain gauge. Figures 7 and 8 are scatter
plots of the warning results versus key duration in the Banqiao and Tucheng districts, respectively.
The rain gauges in both of these districts are located in the plains area, and are co-monitored, meaning
that their geographical separation is small. Therefore, similar key durations were identified in the
rainfall pattern analyses of Banqiao (Tucheng): 1 (1), 6 (6), 14(14), 16 (16), and 24 (24) hours. However,
as the flood prevention capacities differ between the two districts, their disaster event records are
inconsistent (Table S1 in the Supplementary Material). As shown in Figures 7 and 8, the scatter plots
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are more linear in durations three and five than in the other durations, revealing that the hazardous
rainfalls are concentrated around half a day. This phenomenon implies that the rainfall-inundation
thresholds of short durations are more important for flash-flood warnings than the long-duration
thresholds, owing to the limited capacity of the drainage systems (not by overflow from levees).
Figures 7 and 8 also show the complexity of flood warnings based on rainfall thresholds: the hits
(hollow circles) are mixed among the false alarms (solid circles) and misses (solid diamonds), posing
challenges to classification based on rainfall thresholds. The poor performance of the Tucheng rain
gauge in the Tucheng district is likely related to the quality of the training data; because the flooding
hours cannot be sampled when the flood time is only one hour, such cases would be missed.
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Figure 7. Scatter plots of warning results projected on different key durations at the Banqiao rain gauge
in the Banqiao district where (a) is projected on key duration 1 (1 h) and key duration 2 (6 h); (b) is
projected on key duration 2 (6 h) and key duration 3 (14 h); (c) is projected on key duration 1 (1 h) and
key duration 3 (14 h); (d) is projected on key duration 3 (14 h) and key duration 5 (24 h).
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Figure 8. Scatter plots of warning results projected on different key durations at the Tucheng rain gauge
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Whereas most rainfall-inundation warning systems output a simple Boolean description,
our data-driven probabilistic rainfall-inundation model exports the probability of flooding. The hourly
rainfalls of all key events at each rain gauge are shown as a time series in the top panels of the
hyetographs in Figure 9. The hollow circles and solid lines indicate the flooding probabilities computed
by the SVM model and the ideal Boolean outputs generated from the optimized rainfall-inundation
thresholds, respectively. If the flooding probability obtained by the SVM model exceeds 0.5, a flood
warning is launched. According to these results, the SVM model can provide 1- to 3-h advance
warnings when the probability is approaching 0.5. Comparing panels (a) and (b) of Figure 9, which
display the results of the Banqiao and Tucheng rain gauges, respectively, we find that the SVM is more
sensitive in the Banqiao district than in the Tucheng district despite the similar rainfall hyetographs
because more disaster events were sampled for the training data in the former district.
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station for the Banqiao district and (b) the Tucheng rain gauge for the Tucheng district. Outputs were
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5. Conclusions and Recommendations

This study developed a data-driven probabilistic rainfall-inundation model based on a modified
SVM and applied it to probabilistic flood warning in 12 watershed districts. The development was
based on the hourly rainfalls at 17 rain gauges and 24 flood disaster reports from 2012 to 2015.
As accurate flooding times are lacking in the data, our approach identifies the characteristics of extreme
rainfalls by detecting the rainfall events, screening the key events, and analyzing the rainfall patterns.
As a probe of the extreme rainfalls related to disaster events, the key durations are derived from the
cumulative rainfall data and flood information only, with yes/no disaster decisions. The training and
validation datasets of the SVM are then generated by an hourly screening of all rainfall events by the
optimized rainfall thresholds. The screening is performed by trial and error. The resulting probabilistic
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rainfall-inundation model improves the traditional rainfall-inundation warning system from a simple
Boolean description to a probabilistic output. The following conclusions can be drawn from this study:

1. The rainfall patterns obtained by the rain gauges depend on the geographical and hydrological
environment. Therefore, the key durations of the extreme rainfalls related to disaster events,
identified by rainfall pattern analysis of the multi-duration cumulative rainfalls at the rain gauges,
can improve the hazardous event identification.

2. Because the developed probabilistic rainfall-inundation model is a data-driven model, its performance
is highly sensitive to the quality of the supervised data. Here, satisfactory supervised data were
generated by screening the hourly historical rainfalls using optimized flood warning thresholds.

3. Regarding the characteristics of extreme rainfalls, the rainfall patterns showed that most of the
disasters in the plain areas are induced by brief, high intensity rainfall events, whereas those in
mountainous areas are caused by longer-duration typhoons or frontal systems. Furthermore, the
key durations of the first (1–5 h), second (6–10 h), and fifth (21–25 h) intervals are more critical
than those of the third (11–15 h) and fourth (16–20 h) intervals.

4. The rainfall thresholds of each duration were optimized by the trial-and-error method, which is
time consuming but guarantees a global optimum. The optimized rainfall thresholds were related
to the capacities of the drainage systems in the study area. For practical operation, rounding the
estimated values of rainfall thresholds at least till integer or 5 mm values would be appropriate
due to local measurements of rainfall with complicated structure. Moreover, they ensured
adequate supervised data for developing the data-driven probabilistic rainfall-inundation model
of flash-flood warnings.

5. Among four approaches, applying the rainfall-inundation thresholds established by trial and
error to the officially designed durations, and applying the key durations obtained in the
rainfall pattern analysis significantly improved the official warning system. Furthermore,
determining the key durations by rainfall pattern analysis only slightly affected the probability
of disaster detection but significantly improved the FAR and CSI by reducing the number of
false alarms. Moreover, although the supervised data were generated from similar optimized
rainfall-inundation thresholds, the flash-flood warning performance was significantly higher in
the proposed model than in the official warning system.

6. Most rainfall-inundation warning systems only provide a Boolean description, but our data-driven
probabilistic rainfall-inundation model exports the probability of floods. The modified SVM
model can provide 1- to 3-h advance warnings when the probability is approaching 0.5. Through
such probabilistic warning, the model not only quantifies the potential risk of impacts for decision
makers, but also provides early warnings based on probability changes.

7. This analysis was conducted on the station (point) scales. It means local rain gauges only.
Therefore, the spatial impacts by considering the whole stations together need to be addressed to
check such outputs changes over the whole region for further study.

Although the warning performance of the proposed model could be improved, the proposed
framework will promote the quality of real-time flash-flood warnings by quantifying the potential
flood disaster risk. In further study, the model’s efficiency could be enhanced by importing multiple
flood reports and rainfall data, such as flood maps produced by numerical inundation models. These
sources would raise the quality of the flood reports. Moreover, quantified precipitation estimation of
radar data would upgrade the observed rainfall from rain gauge points to entire three-dimensional
field scanning.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/12/2534/s1,
Table S1: Dates and disaster areas of hazardous extreme rainfall events in the Xindian River watershed from
2012 to 2015, Table S2: Profiles of the rain gauges in the Xindian River watershed, Table S3: The optimal official
cumulative rainfall thresholds for the key durations, 1, 3, 6, 12, and 24 hours, Table S4: Optimal cumulative rainfall
thresholds of the key durations based on rainfall pattern analysis, Table S5: Warning results of 4 models in 12
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Taiwanese districts (obtained from the data of 17 rain gauges), Table S6: POD, FAR and CSI performances of the
4 models.
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