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Abstract: Best management practices (BMPs) are an effective way to control water pollution.
However, identification of the optimal distribution and cost-effect of BMPs provides a great challenge
for watershed policy makers. In this paper, a semi-distributed, low-data, and robust watershed
model, the Revised Generalized Watershed Loading Function (RGWLF), is improved by adding
the pollutant attenuation process in the river channel and a bank filter strips reduction function.
Three types of pollution control measures—point source wastewater treatment, bank filter strips,
and converting farmland to forest—are considered, and the cost of each measure is determined.
Furthermore, the RGWLF watershed model is coupled with a widely recognized multi-objective
optimization algorithm, the non-dominated sorting genetic algorithm II (NSGAII), the combination
of which is applied in the Luanhe watershed to search for spatial BMPs for dissolved nitrogen
(DisN). Fifty scenarios were finally selected from numerous possibilities and the results indicate
that, at a minimum cost of 9.09 × 107 yuan, the DisN load is 3.1 × 107 kg and, at a maximum cost of
1.77 × 108 yuan, the total dissolved nitrogen load is 1.31 × 107 kg; with the no-measures scenario, the
DisN load is 4.05 × 107 kg. This BMP optimization model system could assist decision-makers in
determining a scientifically comprehensive plan to realize cost-effective goals for the watershed.
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1. Introduction

Water pollution has received increasing attention, and many countries have increased their
investments into water pollution control and water resources protection [1]. Designing scientific,
reasonable, and efficient management measures to control or reduce pollutants at the watershed scale
has become one of the most challenging problems for policy researchers and decision makers [2].
Many policies for the selection of best management practice (BMPs) have been created and applied
to specific cases all around the world. For example, the United States and Europe have developed
the corresponding Total Maximum Daily Loads and European Water Framework Directive for such
purposes [3,4]. The implementation of these plans has provided a sufficient theoretical basis for
subsequent watershed governance research [5].

BMPs are the most effective measure for controlling watershed pollution, including vegetative filter
strips, land-use transformation, reducing the amount of fertilizer, terraces, and so on [6]. In general,
BMP implementation plans should consist of a combination of maximum pollution reduction and
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minimal financial costs, due to limited budgets [7]. To our best knowledge, there are three optimization
techniques which achieve the purpose. The first is setting a fixed number of scenarios manually and
then calculating the corresponding pollutant production and cost separately [8,9]. By comparing the
results of a limited number of different BMP scenarios, the final solution can be picked out. This
method is straightforward and easy to implement, but may cause biased results as it depends on the
experience of managers. Thus, the solution may not be the most cost-effective at the watershed scale [10].
The second is aggregating the environmental goals and economic factors into a single compromised
objective function (e.g., a genetic algorithm or TaBu search algorithm) [11,12]. Through coupling
the watershed model and optimization algorithm, only one optimal solution can be searched [13].
Compared with the first method, this method is more objective but usually takes more time, due to
the necessary model runtime for each population per generation. The last technique is the coupling
of a multi-objective optimization algorithm and a distributed watershed model to search over a set
of solutions. This technique is similar to the second one, but it is able to provide a range of different
trade-off BMPs among two or more conflicting objective functions. Due to its comprehensiveness and
accuracy, it has been widely used in recent years [14].

The non-dominated sorting genetic algorithms II (NSGAII) is the most popular method for
multi-objective optimization, whose ultimate goal is to find “Pareto-optimal” solutions, which is a
modified version based on the genetic algorithm [15]. For example: Maringanti et al. utilized the
Soil and Water Assessment Tool (SWAT) model and NGSAII to analyze the funding input under
different combinations of fertilization reduction ratios, riparian filter belt widths, and other agricultural
management measures in a tributary of the Mississippi River [16,17]; Ahmadi et al. combined the
SWAT model and the NSGAII algorithm to evaluate the prevention and treatment effects of Atrazine
through various evaluation indicators and non-point source management measures in the Eagle Creek
Watershed in Indiana, USA [18]; and Geng et al. coupled the SWAT model and NSGAII algorithm to
calculate the relationship between the amount of nutrient reduction and the required funding in the
Chaohe River Watershed upstream of the Miyun Reservoir in China [19]. However, almost all studies
in this category have focused on non-point source pollution BMPs and ignored point source BMP
measures. It can be inferred, therefore, that the description of point source measures is not easy in the
management practices of the watershed model.

Besides the selection of optimization technique, effective watershed management requires an
understanding of the fundamental hydrologic and physicochemical processes in the watershed system,
which are non-linear, dynamical, and complex [20]. Therefore, the applicability of the basin watershed
model is very essential. A number of comprehensive watershed models have been developed to
simulate hydrology and water quality in basins, and previous studies have demonstrated that some
watershed models are well-behaved for the selection and targeted placement of BMPs (e.g., SWAT and
AnnAGNPS) [21,22]. However, the watershed models in most previous studies have a high demand for
data, and are difficult to apply in some areas where there is a lack of data [23]. The Revised Generalized
Watershed Loading Function (RGWLF) is an improved semi-distributed hydrological model based on
the Generalized Watershed Loading Function (GWLF) model, which has favorable stability, robustness,
and less data requirements [24].

Given the above considerations, in this study, we incorporated RGWLF and NSGAII to identify a
set of optimal BMPs based on both point and non-point source pollution control practices. Three tasks
were completed to accomplish this research target: (1) adding the nutrient channel routing algorithms
into the RGWLF then calibrating and verifying the parameters of the model; (2) determining the specific
point source and non-point source management measures based on the established model; and (3)
coupling the RGWLF model and NSGAII optimization algorithm based on a parameter sensitivity
analysis to identify the optimal spatial allocation of BMPs for dissolved nitrogen.
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2. Materials and Methods

2.1. Study Area and Data Sources

The Luanhe River watershed, which is located in North China (Figure 1), was selected in this
study. It is a major component of one of the nine main river watersheds in China: the Haihe River
watershed. It has been listed by the Chinese government as an important ecological conservation
area in the Beijing–Tianjin–Hebei region. At the same time, its downstream reservoir is an important
source of drinking water. The study watershed covers an area of about 30,000 km2. According to the
2010 national Land Cover Data set, the watershed consists of 39.2% forest, 33.3% grassland, 21.6%
agricultural area, and 1% water bodies. The climate is dominated by temperate semiarid monsoon
climate. From 2000–2014, the annual average temperature for this area was 5.7 ◦C and the mean annual
precipitation was 422 mm. Most of the precipitation was concentrated between April and August.
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Figure 1. Location, sub-basins, land-use distribution, and elevation of the Luanhe watershed.

QGIS3 (https://qgis.org/en/site/index.html) and TauDEM (http://hydrology.usu.edu/taudem) were
used to divide the Luanhe River Watershed into 62 sub-basins. Climate data were obtained from the
Annual Hydrological Report P. R. China for precipitation data and the China Meteorological Data
Service Center for temperature data. Thirty-meter resolution digital elevation models (DEMs) were
downloaded from the Geospatial Data Cloud (http://www.gscloud.cn). Furthermore, a land-use map (in
vector format) was provided by the National Earth System Science Data Center (http://www.geodata.cn).
Observed flow data were gathered from the Annual Hydrological Report P. R. China. The hydrological
monitoring station and the water quality monitoring station are located in sub-basin 62, which is at the
outlet of the whole watershed. The above-mentioned data for the model setup are summarized in
Table 1.
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Table 1. Watershed Model input data used in the study.

Data Type Data Description Source Time

Weather

Rainfall stations with the daily
precipitation; Annual Hydrological Report P.R. China 2005–2014

Temperature stations with the daily
average temperature

China Meteorological Data Service Center
(http://cdc.cma.gov.cn/en) 2005–2014

DEM Digital elevation model (30 m × 30 m) Geospatial Data Cloud (http://www.gscloud.cn/) 2009

Land-use Shapefile Institute of Geographic Sciences and Natural
Resources Research, CAS 2010

Hydrology Streamflow/Monthly Annual Hydrological Report P.R. China 2006–2014

Water Quality Dissolved Nitrogen/Monthly Chinese Academy of Environmental Planning 2006–2014

Point source Annual discharge Chinese Academy of Environmental Planning 2005–2014

2.2. The Watershed Model

The RGWLF model is a semi-distributed simulation model, which includes sub-basin calculation
and the channel routing process, in contrast to the original model (GWLF) [25]. Detailed improvements
and verification can be referred to in the author’s previous article [24]. However, the original study
did not include a description of the pollutant transport process in the channel. In this study, we added
nutrient channel routing algorithms and made several references to the equations of the Sparrow
models. Its main assumption is that contaminant flux along the stream satisfies a first-order decay
process and the fraction of contaminant removed over a given stream distance is estimated as an
exponential function of a first-order reaction rate coefficient and the cumulative water time of travel
over this distance [26]:

NtrStorei,t = NtrStorei−1,t + UpNtri,t + LandNtri,t + PntNtri,t, (1)

NtrOuti,t = NtrStorei,t × FlowOuti,t/FlowStorei,t, (2)

NtrOuti,t
′ = NtrOuti,t × exp(θi·TravelTimei,t), (3)

where

NtrStorei,t represents the amount of nutrient load in reach i at day t;
UpNtri,t represents the amount of nutrient load from upstream in reach i at day t;
LandNtri,t represents the amount of nutrient load from local land area in reach i at day t;
PntNtri,t represents the amount of nutrient load from a point source in reach i at day t;
NtrOuti,t represents the amount of nutrient load to an outflow before attenuation in reach i at day t;
NtrOuti,t’ represents the amount of nutrient load to an outflow after attenuation in reach i at day t;
θi represent the nutrient attenuation exponent in reach i; and
TravelTimei,t represents the flow travel time in reach i at day t.

2.3. BMPs and Costs

Three management practices were selected in this study: point source wastewater treatment, bank
filter strips, and converting farmland to forest. The cost information for each practice is summarized in
Table 2, which was based on published data and reports for this region.

According to the characteristics of point source wastewater in the study area, the sequencing
batch reactor (SBR) treatment process was selected as the treatment method. This process is suitable
for treating starch plant wastewater [27,28]. The cost of wastewater treatment consists of two parts:
the construction of a wastewater treatment plant and wastewater treatment per unit volume:

Costpns =
∑n

i=1

[
2.9178×Qi

0.9427 +
∑T

k=1

(
qi,t ×Ce

)]
, (4)

http://cdc.cma.gov.cn/en
http://www.gscloud.cn/
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where 2.978 × Qi
0.9427 represents the construction costs of the sewage treatment plant [29], where Qi

(m3
·day−1) represents the scale of sewage treatment in sub-basin i; T represents the total number of

days during the simulation; qi,k (m3) represents the actual treatment flow of the sewage treatment plant
in sub-basin i at day t; and Ce (yuan/m3) represents the costs of treating wastewater per cubic meter.

The cost of land-use conversion refers to the policy documents of the Chinese Ministry of Finance
on returning farmland to forests. The bank filter strip trapping efficiency for nutrients is calculated
using the following equations:

trapsurface = 0.367×
(
widthfiltstrip

)0.2967
, (5)

trapsubsurf = 0.01×
(
2.1661×widthfiltstrip − 5.1302

)
, (6)

where trapsurface is the fraction of the constituent loading trapped by the filter strip, trapsubsurf is the
fraction of the subsurface flow constituent loading trapped by the filter strip, and widthfiltstrip is the
width of the filter strip (m).

Table 2. Cost information and type of practices in the optimization.

Practice Type Sub-Basin Cost

Wastewater treatment 1 0%, 10%, 20%, 30%, 40%, 50% 8, 9, 34, 53–55 1.42 yuan/m3

Converting farmland to forest 0%, 10%, 20%, 30% All 5250 yuan/ha
Filter strips 0, 5, 10, 20, 30 m All 2.83 yuan/m2

1 Sewage treatment plant scale is designed as the corresponding ratio of maximum wastewater discharge from the
sub-basin during the simulation.

2.4. Multi-Objective Functions and NSGAII Optimization Processes

NSGAII generates offspring using a specific type of crossover and mutation and selects the
next generation according to non-dominated sorting and crowding distance comparison. Figure 2
illustrates the genetic encoding of the various measure’s structures for arrangement of conservation
practices in the optimization algorithm. The sub-basins delineated by RGWLF and the configurations
of management practices in each sub-basin form the basic chromosome units. The length of each
chromosome is equal to the total number of sub-basins.
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Figure 2. Gene string (chromosomes) for best management practices (BMPs) optimization in
the watershed.

The analytical flow chart for this research is outlined in Figure 3. The watershed model was
created to provide the nutrient load; the cost of management practices will be calculated by referring
to the policy literature and actual surveys. To obtain the most cost-effective set of BMPs, the operation



Water 2020, 12, 235 6 of 12

must satisfy two objective functions—the minimization of net total cost and the lowest dissolved
nitrogen load—which are expressed by the equations:

min =
∑n

i=1
Costpns,i + Costlu,i + Coststrip,i, (7)

min =
∑n

i=1
DisNi,BMPs, (8)

where Costpns,i, Costlu,i, and Coststrip,I are the costs of wastewater treatment plant, converting land-use,
and bank filter strisp in sub-basin i; and DisNi,BMPs is the total dissolved nitrogen load in sub-basin i.
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The optimization process consists of several procedures, as follows:

(1) Initialize the population and read the watershed model input data. Then, simulate the
baseline scenario.

(2) For the two objective functions, obtain the pollutant load of the basin model and the net cost of
each management measure combination.

(3) Through a series of processes, including non-dominated sorting, calculation of crowded
distance, selection, crossover, and mutation, NSGAII obtains the Pareto-optimal result set of
the current generation.

(4) Repeat the second process, determine whether it is the last generation, and then perform the
third process.

3. Results and Discussion

3.1. RGWLF Model Calibration and Validation

Nine years of monthly records of observed streamflow and dissolved nitrogen data were used
for model calibration and verification at the outlet of the watershed. The simulation period was from
2005–2014, in which the first year (2005) was used as a warming-up period, the data from 2006–2011
were used for the calibration process, and the rest were used for model validation.

The generalized likelihood uncertainty estimation (GLUE), a frequently used Bayesian parameter
estimation method, was used for calibration analysis in terms of both hydrology and pollutants for the
watershed model [30,31]. Table 3 lists the uniform prior distribution range and best value for each
calibrated parameter after 10,000 iterations. The Nash–Sutcliffe efficiency (NES) and the coefficient of
determination (R2) were selected as the simulation evaluation criteria [32]. NSE can range from minus
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infinity to 1 and an efficiency of 1 indicates a perfect performance. R2 ranges from 0 to 1, with higher
values indicating a better fit for the model.

Table 3. Parameters selected for the calibration.

Parameters Name Initial Range Calibration

Recession coefficient 0.008 [0, 0.015] 0.00782
Seepage coefficient 0.01 [0, 0.02] 0.00671
Recession threshold 10 [0, 20] 17.784
Seepage threshold 10 [0, 20] 6.497
Leakage coefficient 0.06 [0, 0.08] 0.0436

CN2 1 - [−0.15, 0.15] −0.0418
Agriculture 75 - -

Forest 35 - -
Grass 45 - -
Urban 95 - -

Dissolved nitrogen Concentration (mg/L) - - -
Agriculture 4.0 [2.0, 6.0] 4.66

Forest 0.2 [0.1, 0.3] 0.12
Grass 2.0 [1.0, 3.0] 1.76

During fertilizer (mg/L) Agriculture 10.0 [7.0, 15.0] 12.47
Underground dissolved nitrogen concentration 0.1 [0.01, 0.5] 0.24

Dissolved nitrogen attenuation exponent 0.0004 [0.0, 0.0008] 0.000233
1 Relative changes apply to the CN2 range.

As shown in Figure 4, during the calibration period, the NES was 0.93 for streamflow and 0.68 for
DisN; moreover, the R2 values were 0.93 and 0.68 for the simulated streamflow and DisN, respectively.
At the same time, the model validation for the streamflow R2 and NES were 0.77 and 0.78, respectively.
Similar to streamflow, DisN had a lower validation value of 0.60 for R2 and 0.58 for NES. Both
streamflow and DisN simulations by the model had a good performance on a monthly time scale,
which indicates robustness of the RGWLF model, according to previous research [33].
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3.2. Sensitivity Analysis of NSGAII Operational Parameters

To ensure accuracy of the NSGAII and optimization operational efficiency, sensitivity analyses
were performed for the four key parameters, including population size, generations, crossover, and
mutation probability, by the one-at-a-time sensitivity analysis method [16,34]. Table 4 lists the default
and per-change values for the four NSGAII parameters.

Table 4. Parameters selected for sensitivity analysis of non-dominated sorting genetic algorithms
II (NSGAII).

Order Population Size Generations Crossover Probability Mutation Probability

1 30 50 0.1 0.001
2 40 80 0.3 0.005
3 50 100 0.5 0.01
4 80 200 0.7 0.03
5 100 500 - 0.05
6 200 - - 0.08

default 80 100 0.5 0.01
optimal 50 200 0.5 0.03

Figure 5a–d illustrate the Pareto-optimal fronts under per-change for the four key parameters.
It is apparent in Figure 5a that the improvement in the Pareto-optimal fronts was remarkable as the
population size increased from 30 to 50, but there was little gap for Pareto-optimal fronts when the
population size was increased from 80 to 200. The main reason for this case is possibly that a population
size of 50 had enough convergence chance for the solution space’s freedom of the whole optimization
system. Furthermore, a value of 50 would considerably reduce the computation time, compared to the
default values of 80, 100 and 200.
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As shown in Figure 5b, the number of generations also had an appreciable impact on the
Pareto-optimal fronts. A significant improvement in the Pareto-optimal front was noticed, with the
number of generations increasing from 50 to 200. In stark contrast, increasing from 200 to 500 did not
bring any improvement for the Pareto-optimal fronts.
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Unlike the above two parameters, the Pareto-optimal front was not sensitive to changes in the
crossover probability, which is displayed in Figure 5c. The Pareto-optimal front had an inconspicuous
shift approaching the origin as the crossover probability increasing from 0.1 to 0.5. When the crossover
probability reached a value of 0.7, the Pareto-optimal front was farther away from the origin.

The trend of the Pareto-optimal front, as affected by the change of Mutation probability, is presented
in Figure 5d. What stands out most in this figure is that mutation probability is a sensitive parameter,
especially in the range from 0.001 to 0.03, where the Pareto-optimal front approached the origin with
an increase of parameter value. However, there was no benefit for the Pareto-optimal front as the
parameter increased from 0.03 to 0.08.

Considering all of the above analyses, the values 50, 200, 0.5 and 0.03 were used as population size,
generations, crossover, and mutation probability, respectively, for the further optimization processes.

3.3. Optimization Result and Cost-Effectiveness Analysis

The baseline scenario for this watershed was no management practice and 4.05 × 107 kg for the
total dissolved nitrogen load over nine years.

Figure 6 provides the final optimization progress with two objectives, minimizing the net cost and
dissolved nitrogen load by scattering four Pareto-optimal fronts belonging to four generations (1, 50,
100 and 200). The overall trend for the four scatter diagrams was that the dissolved nitrogen decreased
as the net cost increased. Each new generation’s chromosomes were initialized by random numbers
without no optimization process (such as non-dominance, selection, crossover, and so on), so it was
regarded as the 0th generation and not shown in the figure. In the first generation, the distribution of
points was more concentrated, indicating that the solutions were less differentiated. As the number
of generations increased, the solution became more and more scalable, and came closer to the origin.
For the final generation, the most widespread solution set, which was closest to the origin, can be
seen. Thus, the best quality and broadest decision supports were supplied to the policy researchers
and decision-makers.
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The set of solutions was divided into three segments with four endpoints, which were: the lowest
cost, the lower tertile cost point, the higher tertile cost point, and the highest cost. The values of cost,
dissolved nitrogen load, and spatial distribution of corresponding management measures for the four
scenarios are shown in Figure 7. For the lowest cost scenario (Figure 7a), the scale of treatment of
polluted water plants is small and the measures are mainly bank filter strips and converting farmland
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to forest. As cost increased, the intensity and scale of management practices also increased, which is
illustrated in Figure 7b,c. At the point of maximum cost (Figure 7d), the load of dissolved nitrogen
reached its minimum value, where the designed daily treatment capacity of the sewage plant was
extremely high and there was no conversion of farmland to forests in some upstream sub-basins.
The majority of management practices are concentrated in middle and lower regions of the watershed.
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4. Conclusions

In this study, we supplemented the RGWLF model with the addition of a pollutant attenuation
process in the river channel and a bank filter strips reduction function, based on our previous research.
Meanwhile, taking into account the regional pollution source composition of the watershed studied
and the characteristics of the models used, three types of pollution control measures—point source
wastewater treatment, bank filter strips, and converting farmland to forest—were considered, and the
cost of each measure was determined. Furthermore, the optimization algorithm NGSAII was linked
with the RGWFL watershed model and the implemented measures to search for a Pareto-optimal set
of BMPs. Before the final optimization calculation, sensitivity analyses for the four key parameters of
NGSAII were performed. According to the results of the sensitivity analysis, the entire coupled model
system supplied 50 solutions which could provide managers with many pollution reduction options.
In the end, depending on the cost, we chose four gradient solutions and demonstrated the geospatial
distribution of their different management measure characteristics and briefly analyzed the differences
and features of the four solutions.

The research results show that, with almost no increase in data requirements, dissolved nitrogen
had an excellent simulation performance, expanding the spatial scope of pollutant simulation for
the GWLF. Moreover, due to its robustness and semi-distribution, the RGWLF model was able to be
coupled with NSGAII. The entire linkage system had good performance in the optimization process
and provided a range of watershed implementation measures for DisN reduction and minimizing
cost, which is a worthy reference for policy researchers and decision-makers to realize their watershed
management goals. However, limited by the available data, funding, and researchers’ capabilities,
we did not consider other target indicators, such as sediment, phosphorus, and so on, which could be
carried out in future research.
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