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Abstract: Soil moisture sensors can improve water management efficiency by measuring soil
volumetric water content (θv) in real time. Soil-specific calibration equations used to calculate
θv can increase sensor accuracy. A laboratory study was conducted to evaluate the performance
of several commercial sensors and to establish soil-specific calibration equations for different soil
types. We tested five Florida sandy soils used for citrus production (Pineda, Riviera, Astatula,
Candler, and Immokalee) divided into two depths (0.0–0.3 and 0.3–0.6 m). Readings were taken using
twelve commercial sensors (CS650, CS616, CS655 (Campbell Scientific), GS3, 10HS, 5TE, GS1 (Meter),
TDT-ACC-SEN-SDI, TDR315, TDR315S, TDR135L (Acclima), and Hydra Probe (Stevens)) connected
to a datalogger (CR1000X; Campbell Scientific). Known amounts of water were added incrementally
to obtain a broad range of θv. Small 450 cm3 samples were taken to determine the gravimetric water
content and calculate the θv used to obtain the soil-specific calibration equations. Results indicated
that factory-supplied calibration equations performed well for some sensors in sandy soils, especially
5TE, TDR315L, and GS1 (R2 = 0.92) but not for others (10HS, GS3, and Hydra Probe). Soil-specific
calibrations from this study resulted in accuracy expressed as root mean square error (RMSE) ranging
from 0.018 to 0.030 m3 m−3 for 5TE, CS616, CS650, CS655, GS1, Hydra Probe, TDR310S, TDR315,
TDR315L, and TDT-ACC-SEN-SDI, while lower accuracies were found for 10HS (0.129 m3 m−3) and
GS3 (0.054 m3 m−3). This study provided soil-specific calibration equations to increase the accuracy of
commercial soil moisture sensors to facilitate irrigation scheduling and water management in Florida
sandy soils used for citrus production.

Keywords: bulk density; irrigation management; water loss reduction; volumetric water content

1. Introduction

Irrigated agriculture is becoming increasingly important due to the rise in human population
and food demand [1]. Different irrigation technologies can be deployed to improve the planning and
management of water resources for agricultural production. The most used irrigation methods are
surface, subsurface, sprinkler, and microirrigation. The use of each method depends on the crop,
environmental conditions, and installation and maintenance costs. Surface irrigation entails water
flowing by gravity over soil and includes furrow, basin, and border irrigation methods. Subsurface
irrigation applies water below the soil surface to raise the water table into or near the plant root zone.
Sprinkler irrigation applies water to the soil by spraying water through the air on to the soil surface.
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Finally, microirrigation applies water at low rates and pressures to small areas targeting the root zone
through to use of drip emitters, bubblers, or microsprays [2]. Regardless of the irrigation system,
the amount of water applied should always be precisely determined to reduce the potential of water
losses through runoff and percolation and maximize crop yield. Despite the use of weather-based
watering methods, most of the current irrigation scheduling follows rigid calendars using irrigation
timers instead of accounting for the actual crop water requirements. Real-time, less expensive
technologies are needed to increase the large-scale use of water scheduling tools. Recently, the use of
soil-sensing methods has been increasing due to the profusion of sensors available in the market [3].

Soil moisture sensors (SMS) are a recent innovation with potential to estimate soil volumetric
water content (θv) and electrical conductivity in real time [4–6]. Those sensors provide an accurate
estimate of moisture content by measuring the dielectric constant of the soil or relative permittivity
(ε) in response to water content, determined by the time in which an electromagnetic pulse travels
in the soil [7,8]. The propagation of a wave through the soil varies according to its water content [9],
which allows correlating the dielectric constant to the soil water content. The dielectric constant ranges
from ∼1 in the air to 80 in the water [10,11]. Conversion or calibration equations provided by the
manufacturers transform raw sensor measurements into the θv [12].

SMS allow real-time and continuous determination of soil moisture at different depths with
minimum alteration of the natural soil conditions [13]. However, the results of these methods are
affected by site characteristics such as soil type and moisture, soil homogeneity, and the presence of
stones and roots [14,15]. All sensor manufacturers have generic equations for mineral and organic soils.
However, the performance of a given sensor can be increased by 2–3% when a soil-specific calibration is
performed [4]. Therefore, it is essential to evaluate the performance of SMS in determining soil moisture
based on site-specific calibration equations for agricultural fields with large spatial variability [16].

The use of SMS for irrigation scheduling is recent in citrus production in spite of the crop’s
relevance to the country’s economy. The United States’ citrus production in the 2017–2018 season
totaled 6.13 million tons. Florida is the second largest citrus producer in the country, accounting for
36% of the production area [17]. Water is a limiting factor for Florida citrus growers due to the low
water-holding capacity of sandy soils and the uneven distribution of rainfall during the year [18].

Even though generic equations are provided, manufacturers indicate that sensors are more
accurate when soil-specific calibration equations are used [19]. The information of θv for different
Florida sandy soils used in citrus production is still scarce. Maximizing crop productivity in these areas
requires irrigation systems to be designed to ensure uniform water application. Soil water content
affects the amount of water and nutrients available to plants and soil aeration status [20]. Furthermore,
determining how much and when to irrigate is a key element for irrigation management.

This study aims to evaluate the accuracy of data collected from commercial capacitance sensors
and to establish calibration equations for different sandy soils used for citrus production in Florida.

2. Materials and Methods

2.1. Sensor Description

Twelve commercial capacitance sensors from different manufacturers were evaluated under
laboratory conditions (Figure 1 and Table 1). The sensors were connected to a datalogger (CR1000X;
Campbell Scientific, Logan, UT) to provide power and collect data. The communication between the
datalogger and the computer was obtained through a proprietary software (LoggerNet 4.5; Campbell
Scientific, Logan, UT).

Sensors use the physical, chemical and mechanical properties of the soil to take electrical,
electromagnetic, optical, radiometric, mechanical, acoustic, pneumatic, or electrochemical
measurements [21]. In the present study, electrical and electromagnetic measurements were assessed
based on Time Domain Reflectometry (TDR), Frequency Domain Reflectometry (FDR), Transmission
Line Oscillation (TLO), and Time Domain Transmissometry (TDT).
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Figure 1. Soil moisture sensors from different manufacturers used in this study. (Table 1 shows the 
manufacturer information.) 
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soil decreases the speed at which the electromagnetic wave travels [23], which allows the 
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FDR is based on the resonance features of RLC (resistor, inductor, and capacitor) circuits in 
which a capacitor is formed by two electrodes and the in-between and surrounding soil [24]. The 
principle is based on the electrical capacitance of a capacitor that uses the soil as a dielectric pole that 
depends on the soil water content. When connecting the capacitor together with an oscillator to form 
an electrical circuit, changes in soil moisture can be detected by changes in the circuit operating 
frequency. In FDR the oscillator frequency is swept under control within a certain frequency range 
to find the resonant frequency (at which the amplitude is greatest), which is a measure of water 
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TLO is used by some moisture sensors, which have two parallel rods that conform to an open 
transmission line. The two-way travel time of the electromagnetic waves induced by the oscillator in 
the rods varies according to the moisture content in the soil and translates into a change in the 
dielectric constant [26]. 

TDT is a technique analogous to TDR that measures the transmission of an electrical pulse along 
a closed circuit. The principle of this technique is based on the measurement of the time it takes from 
the application of the pulse at one end of the probe to the other end of another probe [27]. The main 
difference between TDR and TDT is that the latter measures the time of transmission and not 
reflection, as TDR does. 

2.2. Study Sites 

The study was conducted from February to June 2018 at the UF/IFAS IRREC in Fort Pierce, FL, 
using soils collected from multiple sites across the State of Florida (Figure 2). We tested five sandy 
soils [28] representing the most common soils for citrus production in Florida: (1) Pineda: Loamy, 
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clay, and 0.5% silt). The particle size distribution reported was obtained from trials using the same 
soil type [29]. 

Figure 1. Soil moisture sensors from different manufacturers used in this study. (Table 1 shows the
manufacturer information.)

TDR is an accurate and widely used method to estimate soil θv based on soil dielectric properties.
According to Topp et al. [22], there is a close relationship between soil θv and the dielectric constant.
The principle behind the TDR method is the determination of the velocity of propagation and return
(or reflection) of an electromagnetic wave in a medium [13]. The presence of water in the soil decreases
the speed at which the electromagnetic wave travels [23], which allows the measurement of soil
water content.

FDR is based on the resonance features of RLC (resistor, inductor, and capacitor) circuits in which
a capacitor is formed by two electrodes and the in-between and surrounding soil [24]. The principle is
based on the electrical capacitance of a capacitor that uses the soil as a dielectric pole that depends on
the soil water content. When connecting the capacitor together with an oscillator to form an electrical
circuit, changes in soil moisture can be detected by changes in the circuit operating frequency. In FDR
the oscillator frequency is swept under control within a certain frequency range to find the resonant
frequency (at which the amplitude is greatest), which is a measure of water content in the soil [25].

TLO is used by some moisture sensors, which have two parallel rods that conform to an open
transmission line. The two-way travel time of the electromagnetic waves induced by the oscillator
in the rods varies according to the moisture content in the soil and translates into a change in the
dielectric constant [26].

TDT is a technique analogous to TDR that measures the transmission of an electrical pulse along a
closed circuit. The principle of this technique is based on the measurement of the time it takes from
the application of the pulse at one end of the probe to the other end of another probe [27]. The main
difference between TDR and TDT is that the latter measures the time of transmission and not reflection,
as TDR does.

2.2. Study Sites

The study was conducted from February to June 2018 at the UF/IFAS IRREC in Fort Pierce, FL,
using soils collected from multiple sites across the State of Florida (Figure 2). We tested five sandy
soils [28] representing the most common soils for citrus production in Florida: (1) Pineda: Loamy,
siliceous, active, hyperthermic Arenic Glossaqualfs (96.0% sand, 2.5% clay, and 1.5% silt); (2) Riviera:
Loamy, siliceous, active, hyperthermic Arenic Glossaqualfs (96.5% sand, 2.0% clay, and 1.5% silt);
(3) Candler: Hyperthermic, uncoated Lamellic Quartzipsamments (97.5% sand, 1.25% clay, and 1.25%
silt); (4) Astatula: Hyperthermic, uncoated Typic Quartzipsamments (98.5% sand, 0.75% clay, and
0.75% silt); and (5) Immokalee: Sandy, siliceous, hyperthermic Arenic Alaquods (98.5% sand, 1.0%
clay, and 0.5% silt). The particle size distribution reported was obtained from trials using the same soil
type [29].
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Table 1. Information on the capacitance sensors tested in this study.

Manufacturer # Measuring
Technique 1 Sensor Model Response Variables 2 Volumetric Water Content (θv) 3 Literature

Decagon

1 FDR 10HS Voltage (2.97 × 10−9) (mV3) − (7.37 × 10−6) (mV2) + (6.69 × 10−3) (mV) − 1.92 [30]
2 FDR GS1 Voltage 4.94 × 10−4

× mV – 0.554 [31]
3 FDR GS3 ε, ECb, T 5.89 × 10−6 ε3

a − 7.62 × 10−4 ε2
a + 3.67 × 10−2 εa − 7.53 × 10−2 [32]

4 FDR 5TE ε, ECb, T 4.3 × 10−6 ε3
a − 5.5 × 10−4 ε2

a + 2.92 × 10−2 εa − 5.3 × 10−2 [33]

Campbell Scientific
5 TLO CS655 ε, ECb, T 4.3 × 10−6 ε3

a − 5.5 × 10−4 ε2
a + 2.92 × 10−2 εa − 5.3 × 10−2 [26]

6 TLO CS650 ε, ECb, T 4.3 × 10−6 ε3
a − 5.5 × 10−4 ε2

a + 2.92 × 10−2 εa − 5.3 × 10−2 [26]
7 TLO CS616 Period 0.0007 × τ2 + ((−0.0063) × τ) + (−0.0663) [34]

Stevens Water 8 TDR Hydra Probe ε, ε’, ECb, T 0.109
√
εr − 0.179 [35]

Acclima

9 TDR TDR-315L ε, ECb, ECw, T 4.3 × 10−6 ε3
a − 5.5 × 10−4 ε2

a + 2.92 × 10−2 εa − 5.3 × 10−2 [36]
10 TDR TDR-315 ε, ECb, ECw, T 4.3 × 10−6 ε3

a − 5.5 × 10−4 ε2
a + 2.92 × 10−2 εa − 5.3 × 10−2 [36]

11 TDR TDR-310S ε, ECb, ECw, T 4.3 × 10−6 ε3
a − 5.5 × 10−4 ε2

a + 2.92 × 10−2 εa − 5.3 × 10−2 [36]
12 TDT TDT ACC-SEN-SDI ε, EC, T 4.3 × 10−6 ε3

a − 5.5 × 10−4 ε2
a + 2.92 × 10−2 εa − 5.3 × 10−2 [37]

1 FDR: Frequency Domain Reflectometry; TLO: Transmission Line Oscillation; TDR: Time Domain Reflectometry; and TDT: Time Domain Transmissometry. 2 ε: dielectric constant; ECb: electrical
conductivity; T: temperature; ECw: electrical conductivity in soil pores; ε’: imaginary dielectric constant. 3 General calibration equation for most mineral soil types according to manufacturers.
Sensor prongs/rods length (cm): #1: 10, #2: 5.2, #3: 5.5, #4: 5.0, #5: 12.0, #6: 30.0, #7: 30.0, #8: 12.4, #9: 20.0, #10: 20.0, #11: 15.0, and #12: 20.0.
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Figure 2. Location of the five sandy soils: Fort Pierce, FL - Pineda soil (1); Vero Beach, FL—Riviera 
soil (2); Fort Meade, FL—Candler soil (3); Lake Placid, FL - Astatula soil (4); and Immokalee, FL—
Immokalee soil (5). Soils were sampled at two different depths (top and bottom layers at 0.0–0.3 and 
0.3–0.6 m, respectively). 
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in poorly defined drainage ways; and in broad, low, flat, and depressional areas. The water table is 
within a depth of 0.254 m of the surface for 1 to 6 months and at a depth of 0.254 to 1.016 m for more 
than 6 months in most years. The slope ranges from 0% to 2% [38,39]. Many areas that correspond to 
Pineda and Riviera soils have been drained and are currently used for citrus production. In their 
original state, these soils are used for pasture, and natural vegetation consists of species of pine (Pinus 
sp.), cypress (Cupressus sempervirens), myrtle (Myrtus communis) and palm (Areca sp.). 

Candler and Astatula soils share certain similarities since both are excessively drained soils 
formed in sandy marine or eolian deposits. These soils are on broad undulating upland ridges and 
knolls on flatwoods. Slopes range from 0% to 8%. These soils are hyperthermic, uncoated Typic 
Quartzipsamments. Typical pedon of Candler sand has 0–5% slopes, whereas the typical pedon of 
Astatula sand is 0–8% [40,41]. These soils are used mainly for citrus and pastures. 

Immokalee soils are characterized by nearly level, poorly drained soils on the flatwoods. These 
soils formed in sandy marine sediments. The slopes of these soils are less than 2%. These soils are 
sandy, siliceous, hyperthermic Arenic Haplaquods [42]. In natural conditions, these soils are used for 
wildlife conservation and forestry but with appropriate management, can be used for citrus, 
vegetables and grasses production. 

2.3. Soil Sampling and Physical Characterization 

Samples were collected from each soil type in two depths: top (0.0–0.3 m) and bottom layer (0.3–
0.6 m). These depths were selected based on the fact that irrigation systems have a capacity to reach 
a moisture dispersion of 60% of the total citrus rooting area (approximately 0.9 m) [18]. Furthermore, 
the highest concentration of roots is located within this depth and there is a greater dynamic of water 
absorption. 

Figure 2. Location of the five sandy soils: Fort Pierce, FL - Pineda soil (1); Vero Beach, FL—Riviera soil (2);
Fort Meade, FL—Candler soil (3); Lake Placid, FL - Astatula soil (4); and Immokalee, FL—Immokalee soil (5).
Soils were sampled at two different depths (top and bottom layers at 0.0–0.3 and 0.3–0.6 m, respectively).

The content of organic matter and the water-holding capacity in these soils generally ranges
from 0.5% to 2% and 25 to 83 mm m−1, respectively [28]. Pineda and Riviera soils are similar and
characterized by poor drainage as they formed on unconsolidated marine sandy and loamy materials
influenced by underlying alkaline material [28,29]. These nearly leveled soils are on low hammocks;
in poorly defined drainage ways; and in broad, low, flat, and depressional areas. The water table is
within a depth of 0.254 m of the surface for 1 to 6 months and at a depth of 0.254 to 1.016 m for more than
6 months in most years. The slope ranges from 0% to 2% [38,39]. Many areas that correspond to Pineda
and Riviera soils have been drained and are currently used for citrus production. In their original state,
these soils are used for pasture, and natural vegetation consists of species of pine (Pinus sp.), cypress
(Cupressus sempervirens), myrtle (Myrtus communis) and palm (Areca sp.).

Candler and Astatula soils share certain similarities since both are excessively drained soils
formed in sandy marine or eolian deposits. These soils are on broad undulating upland ridges and
knolls on flatwoods. Slopes range from 0% to 8%. These soils are hyperthermic, uncoated Typic
Quartzipsamments. Typical pedon of Candler sand has 0–5% slopes, whereas the typical pedon of
Astatula sand is 0–8% [40,41]. These soils are used mainly for citrus and pastures.

Immokalee soils are characterized by nearly level, poorly drained soils on the flatwoods. These
soils formed in sandy marine sediments. The slopes of these soils are less than 2%. These soils are
sandy, siliceous, hyperthermic Arenic Haplaquods [42]. In natural conditions, these soils are used for
wildlife conservation and forestry but with appropriate management, can be used for citrus, vegetables
and grasses production.

2.3. Soil Sampling and Physical Characterization

Samples were collected from each soil type in two depths: top (0.0–0.3 m) and bottom layer
(0.3–0.6 m). These depths were selected based on the fact that irrigation systems have a capacity
to reach a moisture dispersion of 60% of the total citrus rooting area (approximately 0.9 m) [18].
Furthermore, the highest concentration of roots is located within this depth and there is a greater
dynamic of water absorption.
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Sampling began by removing debris from the surface with a hoe to eliminate all nondecomposed
organic material. Subsequently, the soil was manually collected and deposited in 378 L plastic barrels.
The soil samples were completely dried in a forced circulation oven at 75 ◦C for 10 days. Samples
were divided to obtain three replicates. Each replication was placed into 19 L polyethylene buckets for
data collection.

Analysis of the soil physical properties was performed at the beginning of the study. The specific
gravity of solid particles and the bulk density were determined according to the procedure described
by the American Society for Testing and Materials [43] (Table 2). The determination of bulk density
was done in order to further transform the data obtained from the gravimetric method into θv.

Table 2. Physical properties of soils tested.

Soil Sample Depth Bulk Density (g cm−3) Specific Gravity (unitless)

Pineda
Top (0.0–0.3 m) 1.65 2.63

Bottom (0.3–0.6 m) 1.56 2.62

Riviera
Top (0.0–0.3 m) 1.54 2.65

Bottom (0.3–0.6 m) 1.51 2.64

Astatula
Top (0.0–0.3 m) 1.49 2.64

Bottom (0.3–0.6 m) 1.52 2.63

Candler
Top (0.0–0.3 m) 1.51 2.66

Bottom (0.3–0.6 m) 1.54 2.64

Immokalee
Top (0.0–0.3 m) 1.38 2.58

Bottom (0.3–0.6 m) 1.37 2.63

2.4. Experimental Setup

Before starting to take sensor measurements, we calculated the amount of water to be added
incrementally to obtain a broad range of θv values (0%, 5%, 10%, 15%, 20%, and 25%) until reaching
the saturation point at the buckets using volumetric (θv) and gravimetric water content (θg), according
to the Equations (1) and (2) proposed by Schmugge et al. [44]. Thus, a gradual increase of 5% moisture
in the soil to amounts of 0.16 m3 m−3 was established.

The mixing of the given water volume was achieved by pouring the three replicates of each soil
sample into a larger container, thoroughly mixing them, and then depositing them back into the 19-L
polyethylene buckets. This was repeated five times for each soil sample, taking a reading with each
sensor. The moisture percentages were used to obtain the relationship between soil moisture and
sensor measurements. Each sensor was inserted vertically (i.e., the sensor head in air and rods fully
submersed) into the soils in the center of all buckets with minimal disturbance to the surrounding soil
while inserting the rods.

θv =

(
θg
)
(ρsoil)

(ρwater)
(1)

θg =
msoil

mdry soil
× 100% (2)

where θv is the volumetric water content, θg is the gravimetric water content, m is the mass, and ρ is
the density.

Substituting Equation (2) into Equation (1), we calculated the water volume (Wv) as:

mwater =

θv
100% × (ρwater) ×msoil

ρdry soil
(3)

Wv =
mwater

ρwater
(4)
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The θg was obtained from each soil using the method described by Topp and Ferre [45]. Briefly,
soil samples were collected, weighed, dried in a forced circulation oven, and weighed again, which
enabled expressing water content on a mass basis. Additionally, 450 cm3 aluminum cylinders were
weighed with soil samples. Subsequently, cylinders were oven-dried at 75 ◦C for 48 h, and final weight
was recorded. Equations (5) and (6) established by Schmugge et al. [44] were used for θg and θv,
respectively. Reference θv (θref, m3 m−3) was calculated by multiplying θg by soil bulk density [46].

θg =

(
mwet soil) − (m dry soil

)
mdry soil

(5)

θv =
(
θg
)
(ρsoil) (6)

2.5. Data Analysis

Accuracy and precision were used as proxies to assess sensor performance. Accuracy is the ability
of a sensor to estimate the actual water content, while precision is an indication of the uniformity or
repeatability of obtaining the same result [16]. A good sensor should have high accuracy and high
precision. For sensor accuracy, we used the root mean square error (RMSE) and the coefficient of
determination (R2) to verify the quality of fit. Briefly, RMSE is the standard deviation of the residuals
(prediction errors), and the R2 is the proportion of the variance in the dependent variable that is
predictable from the independent variables. For sensor precision, we used the coefficient of variation
(CV) to evaluate the repeatability to obtain the same results from the sensor in comparison to the
gravimetric method. The CV is expressed as the standard deviation by the mean value. The RMSE, R2,
and CV for each sensor were computed across the three replications by soil series, soil depths, and
amount of water added per sample.

To evaluate the performance of the selected sensors, θv readings were compared to θref values.
The Pearson’s correlation coefficient (r) was calculated between the θv obtained by the sensors with
the standard equations (Table 1) and that observed by gravimetry (θref). Finally, a regression analysis
was performed to obtain the calibration for the 12 capacitance sensors using the data collected for each
soil type and soil depth. The equations were estimated using the curve-fitting tool [47]. The statistical
analyses were performed using SAS v. 9.4 [48].

3. Results and Discussion

3.1. Sensor Accuracy

The θv values measured by the sensors were compared to the results obtained from gravimetric
determination in the laboratory. The comparison among different sensors is presented in Table 3.
In general, sensors measured θv accurately, and several sensors presented an R2 > 0.90 (TDR315S,
TDR315L, GS1, 5-ET, TDR315, TDT-ACC-SEN-SDI, and CS655). However, some sensors (10HS, GS3,
and Hydra Probe) were not effective in determining θv, resulting in low R2 and high CV (Table 3).

In our study, the sensors that presented the lowest RMSE are based on the TDR measurement
method (Table 3). In addition, all sensors from Acclima had an R2

≥ 0.90. Out of these, only the
TDT-ACC-SEN-SDI sensor uses a different measurement method, which is TDT. Varble and Chávez [49]
indicate the performance of TDT and TDR sensors is similar in soils with different textures since these
methods operate on similar electromagnetic frequencies.

The RMSE is a sensible indicator of sensor accuracy [50]. A small RMSE value indicates higher
accuracy. Categories for interpreting RMSE values are described by Fares et al. [16]. These categories
include good (RMSE≤ 0.01 m3 m−3), fair (0.01≤RMSE≤ 0.05 m3 m−3), poor (0.05 ≤ RMSE ≤ 0.10 m3 m−3),
and very poor (RMSE≥ 0.10 m3 m−3). The sensors evaluated in this study had RMSE values ranging from
0.023 to 0.049 m3 m−3 (Table 3). The data obtained are similar to those of Singh et al. [51], where the sensors
resulted in RMSE values between 0.02 m3 m−3 and 0.04 m3 m−3. The authors observed that sensors CS655
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and TDR315 were the most accurate, with RMSE < 0.02 m3 m−3 in a low clay content soil. This value
is lower than what we found for these sensors (CS650 = 0.035 m3 m−3 and TDR315 = 0.028 m3 m−3) in
sandy Florida soils.

Table 3. Comparative analysis of θv by sensors and the gravimetric method, where: RMSE = Root
mean square error, R2 = coefficient of determination, and CV = coefficient of variation for each sensor
evaluated. The RMSE, R2, and CV for each sensor were computed across the three replications by soil
series, soil depths, and amount of water added per sample (n = 540).

Manufacturer Sensor Measuring
Technique

RMSE
(m3 m−3)

R2 CV (%)

Meter Group

10HS FDR 0.041 0.81 32.17
GS1 FDR 0.026 0.92 20.48
GS3 FDR 0.049 0.72 39.16
5TE FDR 0.026 0.92 20.45

Campbell
Scientific

CS650 TLO 0.035 0.86 27.66
CS655 TLO 0.029 0.90 22.65
CS616 TLO 0.032 0.86 25.46

Stevens Water Hydra Probe TDR 0.037 0.84 29.11

Acclima

TDR315L TDR 0.026 0.92 20.89
TDR315 TDR 0.028 0.91 22.58

TDR310S TDR 0.023 0.93 18.23
TDT-ACC-SEN-SDI TDT 0.029 0.90 23.28

Since TDR310S, TDR315L, and TDR315 are recently released models, limited research is available to
evaluate sensor performance. However, the accuracy established by the manufacturer is ± 0.02 m3 m−3

for the θv determination [36], which approximates the data obtained in the present study that indicate
an RMSE of 0.023 m3 m−3 for TDR310S, 0.026 m3 m−3 for the TDR315L, and 0.028 m3 m−3 for the
TDR315L sensor (Table 3).

The GS1 sensor also had low RMSE (0.026 m3 m−3) (Table 3). This value was smaller than the
RMSE value of 0.048 reported by Datta et al. [6] for the GS1 in a fine sandy loam soil. These authors
reported that TDR315, CS655, and GS1 sensors performed better in a soil with lower salinity and
lower clay content. Adeyemi et al. [52] reported an RMSE of 0.03 m3 m−3 for both GS1 and TDR315
sensors. Those results were obtained by evaluating sensor performance in a sandy soil with similar
characteristics to the ones evaluated in the present study.

Our results indicated that the TDR315, CS655, and 5TE sensors performed well in sandy soils with
the generic equation presenting a lower mean square error (Table 3). Varble and Chávez [49] tested
the 5TE sensor and concluded that the sensor’s generic equation is not accurate in sandy loam soils.
More recently, a study regarding the 5TE, TDR315, and CS655 sensors showed RMSEs of 0.039, 0.050,
and 0.078 m3 m−3, respectively in loam soils, overestimating the θv present in the samples [53].

Sensors CS650, CS616, Hydra Probe, 10HS, and GS3 had higher CVs, with R2 values ranging
from 0.72 to 0.86 (Table 3). Vaz et al. [4] evaluated the Hydra Probe, 10HS, and CS616 sensors in a soil
composed of 92.7% sand, which is similar to the soils evaluated in the present study. The RMSE obtained
by these authors was 0.058 m3 m−3 for CS616, 0.018 m3 m−3 for Hydra Probe, and 0.077 m3 m−3 for
10HS. In the present study, we obtained a higher RMSE (0.037 m3 m−3) for Hydra Probe. Nevertheless,
the CS616 and 10HS sensors presented lower values than those presented by Vaz et al. [4], which
indicates that the generic equation is better for the soils evaluated in this study due to the soil texture.
Similarly, in research conducted by Singh et al. [53], the CS616 and Hydra Probe sensors provided
higher results with respect to RMSE determined. The CS616 sensor was also evaluated by Varble and
Chávez [49], resulting in an overestimation of the volumetric water content in 0.03 m3 m−3 for a sandy
loam soil. Furthermore, the results indicated that greater accuracy was obtained for sensor CS616 in
sandy clay loam soils at lower θv and not at high θv.
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The GS3 sensor presented an RMSE of 0.049 m3 m−3, which differs from the manufacturer’s
accuracy of± 0.03 m3 m−3 in mineral soils [32]. This value falls into the fair accuracy category as defined
by Fares et al. [16]. These results suggest that GS3 sensor is highly sensitive to soil property variability
(e.g., soil bulk density, total porosity, particle size distribution, pore size, electrical conductivity, etc.)
with a significant impact on sensor performance. Similar results with a high RMSE (0.038 m3 m−3)
were determined by Straten et al. [54] in sandy soils with an organic fraction of 2%. Son et al. [55]
tested the GS3 sensor and found an overestimation of θv with an RMSE of 0.028 m3 m−3, indicating
that the manufacturer’s generic equation is more appropriate for silt loam soils than sandy soils.

A positive correlation was observed betweenθv (measured by sensors) andθref values (determined
by gravimetry) (Figures 3–5). That means the sensor measurements are correlated with the gravimetric
determinations. When comparing the regression graph with the 1:1 reference line, values on the
upper half indicate θv overestimation, while values in the lower half indicate θv underestimation.
Sensors 10HS, GS1, and GS3 had the lowest correlation coefficient (r = 0.8990, r = 0.9212, and
r = 0.8394, respectively; Figure 3a–c), and outlier data points may have been caused by the generation
of nonuniform readings from these sensors. This was more evident for sensors 10HS and GS3, which
showed poor accuracy, low R2, and high CV (Table 3). However, the other sensors showed a high
positive correlation between θv and θref (r > 0.90).
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Figure 3. Pearson correlation coefficient (r) between soil volumetric water content (θv) measured by
sensors using the generic equation provided by the manufacturer and determined by gravimetry (θref )
for the Meter Group sensors 10HS (a), GS1 (b), GS3 (c), and the 5TE (d). The solid line is the fitted
Pearson’s correlation, and the dashed line is the 1:1 reference. Each point represents a single data
value taken from each of the three replications by soil series, soil depths, amount of water added, and
evaluated sensors (n = 540).

The sensors 10HS, GS1, GS3 (Figure 3a–c), CS650 (Figure 4b), TDR310S, TDT-ACC-SEN-SDI, and
TDR315L (Figure 5b–d) overestimated θvas most of the points were above the 1:1 reference line. Many
researchers have also reported overestimation of θv by the CS655 sensor [56–58]. Similar results from
Datta et al. [6] showed that all sensors (TDR315, CS655, and GS1) overestimated θv in a low clay content
soil located in central Oklahoma. Adeyemi et al. [52] found that TDR315 and GS1 underestimated θv in
sandy loam soil. Singh et al. [51] reported that sensors TDR315 and CS655 resulted in θv similar to
reference θ in a sandy soil (RMSE < 0.02 m3 m−3), but the discrepancy was larger for the clayey soils. An
increase in clay content tended to cause TDR315 to underestimate θv and CS655 to overestimate θv [51].
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Figure 5. Pearson correlation coefficient (r) between θv measured by sensors using the generic 
equation provided by the manufacturer and determined by gravimetry (θref) for the Acclima sensors 
TDR315 (a), TDR310S (b), TDT-ACC-SEN-SDI (c), and TDR315L (d). The solid line is the fitted 

Figure 4. Pearson correlation coefficient (r) between θv measured by sensors using the generic equation
provided by the manufacturer and determined by gravimetry (θref ) for the Campbell Scientific sensors
CS655 (a), CS650 (b), CS616 (c), and Stevens Water’s sensor Hydra Probe (d). The solid line is the
fitted Pearson’s correlation, and the dashed line is the 1:1 reference. Each point represents a single data
value taken from each of the three replications by soil series, soil depths, amount of water added, and
evaluated sensors (n = 540).
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Figure 5. Pearson correlation coefficient (r) between θv measured by sensors using the generic equation
provided by the manufacturer and determined by gravimetry (θref ) for the Acclima sensors TDR315 (a),
TDR310S (b), TDT-ACC-SEN-SDI (c), and TDR315L (d). The solid line is the fitted Pearson’s correlation,
and the dashed line is the 1:1 reference. Each point represents a single data value taken from each of the
three replications by soil series, soil depths, amount of water added, and evaluated sensors (n = 540).



Water 2020, 12, 358 11 of 20

The CS616 and Hydra Probe sensors underestimated θv in sandy soils (Figure 4c,d). In contrast,
Evett et al. [59] found that CS616 overestimated θv and Hydra Probe overestimated εa compared to
TDR (slope = 1.437, R2 = 0.966, RMSE = 1.08) more than Acclima, which was highly corrected with
TDR-derived εa (slope = 1.108, R2 = 0.996, RMSE = 0.256). In our study, the sensors 5TE, CS655, and
TDR315 were very precise in determining θv (R2

≥ 0.9604; Figures 3d, 4a and 5a).

3.2. Soil-Specific Calibration Equations

We generated calibration equations for several sandy soils representing the most common types
used for citrus production in Florida (Figure 6; Figure 7). The sensor readings were taken over
increasing θv values, successfully establishing soil-specific calibration equations for all the sensors,
in all the soils sampled, and at the two depths tested. Sensors with output in voltage, period, and
dielectric permittivity followed similar trends for all soil types and soil depths. The slopes on all soils
differed for each sensor, evidencing that soil-specific calibration equations are required to improve
sensor accuracy based on the soil used. That outcome is expected since several SMS have been
evaluated, and most of the studies concluded that the sensor accuracy can be considerably increased
by using soil- or site-specific equations determined in the laboratory and field instead of using the
generic equations provided by the manufacturers [60–62].

In this study, the equations were established according to the different factors, including sensor,
soil type, and soil depth. The linear, quadratic, or higher-order independent terms of each equation
were determined through regression analysis, having the electric permittivity, voltage, or period as the
independent variable and the θv determined by gravimetry as the dependent variable. The sensors’
readings were taken at incrementally θv, obtaining a range of values that allowed the determination of
a soil-specific equation for each soil and depth. As a result, the soil-specific calibration equation in
both depths presented an R2 ranging from 0.83 to 0.99 for Pineda soil (Table 4), from 0.81 to 0.99 for
Riviera soil (Table 5), from 0.81 to 0.99 for Candler soil (Table 6), from 0.46 to 0.99 for Astatula soil
(Table 7), and from 0.79 to 0.99 for Immokalee soil (Table 8).

Table 4. Soil-specific calibration equations for commercial soil moisture sensors in the Pineda soil series.

Sensor Soil Depth (m) Soil-Specific Equation 1 R2

10HS 0.0–0.3
0.3–0.6

2× 10−6x2
− 0.0014x + 0.261

9× 10−7x2
− 0.0005x + 0.008

0.85
0.83

GS1 0.0–0.3
0.3–0.6

1× 10−8x3
− 4× 10−5x2 + 0.04675x− 19.563

3× 10−9x3
− 1× 10−5x2 + 0.0133x− 5.897

0.98
0.98

GS3 0.0–0.3
0.3–0.6

0.054x3
− 0.1099x2 + 0.7332x− 1.519

− 0.0005x4 + 0.0142x3
− 0.1603x2 + 0.7867x− 1.374

0.97
0.98

5TE 0.0–0.3
0.3–0.6

0.0007x3
− 0.0125x2 + 0.0905x− 0.151

− 0.0009x2 + 0.0357x− 0.080
0.99
0.99

CS655 0.0–0.3
0.3–0.6

− 0.0004x3 + 0.0047x2 + 0.0203x− 0.036
0.0002x3

− 0.0052x2 + 0.0652x− 0.089
0.99
0.99

CS650 0.0–0.3
0.3–0.6

0.0004x3
− 0.0091x2 + 0.086x− 0.118

− 7× 10−4x4 + 0.0022x3
− 0.0262x2 + 0.1475x− 0.184

0.99
0.99

CS616 0.0–0.3
0.3–0.6

0.0003x3
− 0.0176x2 + 0.4048x− 3.059

− 0.0018x2 + 0.094x− 1.029
0.99
0.97

Hydra Probe 0.0–0.3
0.3–0.6

0.0003x2 + 0.0319x− 0.087
− 0.0005x3 + 0.0062x2 + 0.0116x− 0.068

0.97
0.99

TDR315L 0.0–0.3
0.3–0.6

3× 10−5x3
− 0.0011x2 + 0.0341x− 0.060

− 6× 10−5x3 + 0.0001x2 + 0.0291x− 0.054
0.99
0.99

TDR315 0.0–0.3
0.3–0.6

0.0003x3
− 0.0073x2 + 0.0809x− 0.158

− 0.0001x4 + 0.0035x3
− 0.041x2 + 0.223x− 0.358

0.99
0.99

TDR310S 0.0–0.3
0.3–0.6

0.0148x + 0.007
0.0188x− 0.015

0.93
0.93

TDT-ACC-SEN-SDI 0.0–0.3
0.3–0.6

− 0.0019x2 + 0.0568x− 0.119
− 0.0026x2 + 0.0617x− 0.129

0.99
0.99

1 Variable corresponds to the response value of the sensor (voltage, period, or dielectric constant). The obtained result from
each equation is the soil volumetric water content (θv). Measuring technique: Frequency Domain Reflectometry—FDR (10HS,
GS1, GS3, and 5TE); Transmission Line Oscillation—TLO (CS655, CS650, and CS616); Time Domain Reflectometry—TDR
(Hydra Probe, TDR−315L, TDR−315, and TDR−310S); and Time Domain Transmissometry—TDT (TDT-ACC-SEN-SDI).



Water 2020, 12, 358 12 of 20
Water 2020, 12, 358 12 of 22 

 

 

   

Figure 6. Raw values measured by all commercial soil moisture sensors in the soil top layer (0.0–0.3 m): 10HS (a), 5TE (b), CS616 (c), TDR315 (d), GS1 (e), CS655 (f), Hydra 
Probe (g), TDR315L (h), GS3 (i), CS650 (j), TDT-ACC-SEN-SDI (k), and TDR310S (l). Each data point is the average of the three samples of the soils taken from each of the 
three replications by soil series (n = 9). 

Figure 6. Raw values measured by all commercial soil moisture sensors in the soil top layer (0.0–0.3 m): 10HS (a), 5TE (b), CS616 (c), TDR315 (d), GS1 (e), CS655 (f),
Hydra Probe (g), TDR315L (h), GS3 (i), CS650 (j), TDT-ACC-SEN-SDI (k), and TDR310S (l). Each data point is the average of the three samples of the soils taken from
each of the three replications by soil series (n = 9).
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Figure 7. Raw values measured by all commercial soil moisture sensors in the soil bottom layer (0.3–0.6 m): 10HS (a), 5TE (b), CS616 (c), TDR315 (d), GS1 (e), CS655 (f), 
Hydra Probe (g), TDR315L (h), GS3 (i), CS650 (j), TDT-ACC-SEN-SDI (k), and TDR310S (l). Each data point is the average of the three samples of the soils taken from each 
of the three replications by soil series (n = 9). 

Figure 7. Raw values measured by all commercial soil moisture sensors in the soil bottom layer (0.3–0.6 m): 10HS (a), 5TE (b), CS616 (c), TDR315 (d), GS1 (e), CS655 (f),
Hydra Probe (g), TDR315L (h), GS3 (i), CS650 (j), TDT-ACC-SEN-SDI (k), and TDR310S (l). Each data point is the average of the three samples of the soils taken from
each of the three replications by soil series (n = 9).
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Table 5. Soil-specific calibration equations for commercial soil moisture sensors in the Riviera soil series.

Sensor Soil Depth (m) Soil-Specific Equation 1 R2

10HS 0.0–0.3
0.3–0.6

3× 10−6x2
− 0.0039x + 1.189

1× 10−6x2
− 0.0013x + 0.272

0.84
0.81

GS1 0.0–0.3
0.3–0.6

3× 10−9x3
− 1× 10−5x2 + 0.0133x− 5.897

− 2× 10−7x2 + 0.001x− 0.767
0.98
0.87

GS3 0.0–0.3
0.3–0.6

− 0.0002x2 + 0.0263x− 0.080
− 0.0009x2 + 0.0354x− 0.107

0.95
0.90

5TE 0.0–0.3
0.3–0.6

0.0202x− 0.039
0.0194x− 0.029

0.98
0.98

CS655 0.0–0.3
0.3–0.6

0.0002x3
− 0.0045x2 + 0.051x− 0.067

0.0003x3
− 0.0071x2 + 0.0694x− 0.089

0.99
0.96

CS650 0.0–0.3
0.3–0.6

3× 10−6x6
− 0.0001x5 + 0.0022x4

− 0.0149x3 +
0.0391x2 + 0.0175x− 0.090

3× 10−5x5
− 0.0012x4 + 0.0192x3

− 0.1391x2 +
0.4702x− 0.503

0.98
0.95

CS616 0.0–0.3
0.3–0.6

0.0018x2
− 0.0555x + 0.437

3× 10−5x4
− 0.0022x3 + 0.0603x2

− 0.7282x + 3.197
0.95
0.92

Hydra Probe 0.0–0.3
0.3–0.6

0.1275 ln(x) − 0.113
0.0004x3

− 0.0133x2 + 0.1422x− 0.315
0.86
0.96

TDR315L 0.0–0.3
0.3–0.6

− 0.0002x2 + 0.0199x− 0.030
0.0001x3

− 0.004x2 + 0.0506x− 0.079
0.99
0.98

TDR315 0.0–0.3
0.3–0.6

− 0.0006x2 + 0.0272x− 0.055
0.0002x3

− 0.0062x2 + 0.072x− 0.133
0.98
0.99

TDR310S 0.0–0.3
0.3–0.6

0.0167x− 0.011
− 0.0006x2 + 0.0259x− 0.026

0.97
0.96

TDT-ACC-SEN-SDI 0.0–0.3
0.3–0.6

− 0.001x2 + 0.0349x− 0.065
− 0.001x2 + 0.0341x− 0.053

0.97
0.94

1 Variable corresponds to the response value of the sensor (voltage, period, or dielectric constant). The obtained result from
each equation is the soil volumetric water content (θv). Measuring technique: Frequency Domain Reflectometry—FDR (10HS,
GS1, GS3, and 5TE); Transmission Line Oscillation—TLO (CS655, CS650, and CS616); Time Domain Reflectometry—TDR
(Hydra Probe, TDR−315L, TDR−315, and TDR−310S); and Time Domain Transmissometry—TDT (TDT-ACC-SEN-SDI).

Based on the determination of the soil-specific calibration equations, new values of RMSE were
calculated. Except in the cases of 10HS (0.129 m3 m−3) and GS3 (0.054 m3 m−3), all sensors had a lower
RMSE value than that presented by the manufacturer’s standard equation (5TE = 0.018; CS616 = 0.025;
CS650 = 0.024; CS655 = 0.020; GS1 = 0.030; Hydra Probe = 0.024; TDR310S = 0.019; TDR315 = 0.022;
TDR315L = 0.019; and TDT-ACC-SEN-SDI = 0.022 m3 m−3). The factors that influenced the increase in
the RMSE for the 10HS and GS3 sensors are still unknown. However, it is important to note that these
sensors presented the highest CV in comparison to the other sensors tested (Table 3). Hignett and
Evett [63] indicated that for efficient irrigation management based on the determination of soil water
content, the RMSE of the water content estimation should be between 0.01 and 0.02 m3 m−3. Thus,
according to the RMSE presented in Table 3, none of the sensors evaluated would have the accuracy
required for the determination of water content using the manufacturer’s generic equation. Therefore,
to reduce the coefficients of variation as much as possible and to find the lowest RMSE, soil-specific
calibration equations should be used to improve sensor accuracy.

Our results indicate that the use of a soil-specific equation had a notable impact on improving
the accuracy of θv determination in sandy Florida soils. Vaz et al. [4] also compared the performance
of the manufacturer’s generic calibration equations for different sensors (CS616, Hydra Probe, 5TE,
and 10HS) with soil-specific equations developed in seven texturally varying soils. Those authors
also demonstrated that soil-specific calibrations improve measurement accuracy to values ranging
from 0.02 to 0.03 m3 m−3. That improvement is imperative for sandy soils like the ones used for
citrus production in Florida since the water-holding capacity is reduced by the large pores present in
sandy soils with more than 96–97% sand. Fares et al. [16] also concluded the soil-specific calibration
equations can mitigate the effects of varying soil properties and improve sensor accuracy for water
content measurements.



Water 2020, 12, 358 15 of 20

Table 6. Soil-specific calibration equations for commercial soil moisture sensors in the Candler soil series.

Sensor Soil Depth (m) Soil-Specific Equation 1 R2

10HS 0.0–0.3
0.3–0.6

2× 10−6x2
− 0.0026x + 0.730

3× 10−6x2
− 0.0035x + 1.054

0.81
0.88

GS1 0.0–0.3
0.3–0.6

0.0004x− 0.408
− 2× 10−10x3 + 7× 10−7x2

− 0.0006x + 0.054
0.95
0.97

GS3 0.0–0.3
0.3–0.6

0.0001x3
− 0.0031x2 + 0.0525x− 0.149

0.001x2 + 0.0085x− 0.021
0.96
0.89

5TE 0.0–0.3
0.3–0.6

0.0217x− 0.042
0.0214x− 0.050

0.93
0.94

CS655 0.0–0.3
0.3–0.6

− 0.0007x2 + 0.0275x− 0.022
0.0171x− 0.004

0.94
0.96

CS650 0.0–0.3
0.3–0.6

− 1× 10−7x6 + 2× 10−5x5
− 0.0004x4 +

0.0053x3
− 0.026x2 + 0.0617x− 0.023

− 8× 10−6x6 + 0.0004x5
− 0.0078x4 +

0.0733x3
− 0.3542x2 + 0.8275x− 0.679

0.92
0.98

CS616 0.0–0.3
0.3–0.6

0.0005x3
− 0.0299x2 + 0.623x− 4.285

0.0006x3
− 0.0334x2 + 0.6688x− 4.466

0.92
0.98

Hydra Probe 0.0–0.3
0.3–0.6

0.1389 ln(x) − 0.132
0.0003x3

− 0.0097x2 + 0.099x− 0.202
0.92
0.93

TDR315L 0.0–0.3
0.3–0.6

− 0.0006x2 + 0.0263x− 0.039
0.0001x3

− 0.0032x2 + 0.0422x− 0.066
0.96
0.99

TDR315 0.0–0.3
0.3–0.6

− 0.0006x2 + 0.0276x− 0.047
0.0002x3

− 0.0043x2 + 0.051x− 0.095
0.94
0.98

TDR310S 0.0–0.3
0.3–0.6

0.016x + 0.002
0.017x− 0.010

0.92
0.97

TDT-ACC-SEN-SDI 0.0–0.3
0.3–0.6

− 0.0011x2 + 0.037x− 0.065
− 0.0006x2 + 0.0274x− 0.035

0.93
0.93

1 Variable corresponds to the response value of the sensor (voltage, period, or dielectric constant). The obtained result from
each equation is the soil volumetric water content (θv). Measuring technique: Frequency Domain Reflectometry—FDR (10HS,
GS1, GS3, and 5TE); Transmission Line Oscillation—TLO (CS655, CS650, and CS616); Time Domain Reflectometry—TDR
(Hydra Probe, TDR−315L, TDR−315, and TDR−310S); and Time Domain Transmissometry—TDT (TDT-ACC-SEN-SDI).

Table 7. Soil-specific calibration equations for commercial soil moisture sensors in the Astatula
soil series.

Sensor Soil Depth (m) Soil-Specific Equation 1 R2

10HS 0.0–0.3
0.3–0.6

2× 10−6x2
− 0.002x + 0.533

3× 10−6x2
− 0.0035x + 1.038

0.91
0.87

GS1 0.0–0.3
0.3–0.6

5× 10−12x4
− 3× 10−8x3 + 5× 10−5x2

− 0.0475x + 15.177
0.5499 ln(x) − 3.865

0.99
0.46

GS3 0.0–0.3
0.3–0.6

− 0.0015x2 + 0.0468x− 0.145
− 2× 10−5x4 + 0.0007x3

− 0.0095x2 + 0.0724x− 0.155
0.93
0.87

5TE 0.0–0.3
0.3–0.6

3× 10−5x4
− 0.0007x3 + 0.0046x2 + 0.0191x− 0.062

0.0003x3
− 0.0071x2 + 0.0723x− 0.139

0.96
0.98

CS655 0.0–0.3
0.3–0.6

− 1× 10−5x4 + 0.0006x3
− 0.0101x2 + 0.081x− 0.104

− 3× 10−5x4 + 0.0014x3
− 0.0197x2 + 0.1136x− 0.129

0.99
0.96

CS650 0.0–0.3
0.3–0.6

− 6× 10−6x6 + 0.0003x5
− 0.0056x4 + 0.0527x3 +

0.2545x2 + 0.6115x− 0.516
− 5× 10−6x6 + 0.0002x5

− 0.0049x4 +
0.0473x3

− 0.2347x2 + 0.5741x− 0.486

0.99
0.99

CS616 0.0–0.3
0.3–0.6

0.0006x2
− 0.0062x− 0.037

0.0005x3
− 0.0299x2 + 0.623x− 4.285

0.96
0.92

Hydra Probe 0.0–0.3
0.3–0.6

0.1216 ln(x) − 0.097
0.0007x3

− 0.019x2 + 0.1691x− 0.336
0.90
0.97

TDR315L 0.0–0.3
0.3–0.6

− 0.0006x2 + 0.0251x− 0.032
0.0003x3

− 0.0074x2 + 0.0691x− 0.106
0.97
0.97

TDR315 0.0–0.3
0.3–0.6

− 0.001x2 + 0.0329x− 0.051
0.0004x3

− 0.0115x2 + 0.1085x− 0.208
0.94
0.94

TDR310S 0.0–0.3
0.3–0.6

0.0148x + 0.007
0.0188x− 0.015

0.93
0.93

TDT-ACC-SEN-SDI 0.0–0.3
0.3–0.6

− 0.0011x2 + 0.0352x− 0.055
− 0.0005x2 + 0.0276x− 0.040

0.92
0.95

1 Variable corresponds to the response value of the sensor (voltage, period, or dielectric constant). The obtained result from
each equation is the soil volumetric water content (θv). Measuring technique: Frequency Domain Reflectometry—FDR (10HS,
GS1, GS3, and 5TE); Transmission Line Oscillation—TLO (CS655, CS650, and CS616); Time Domain Reflectometry—TDR
(Hydra Probe, TDR−315L, TDR−315, and TDR−310S); and Time Domain Transmissometry—TDT (TDT-ACC-SEN-SDI).
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Results from field tests in sandy clay loam and loamy sand soils indicated that a linear calibration
for the TDT, CS616, and 5TE sensors can reduce the errors of the factory calibration of θv to less than
0.02 ± 0.035 m3 m−3 [49]. Previous studies also have noted that RMSE in θv was smaller when using
site-specific calibrations in comparison to generic calibrations [5,64,65]. Singh et al. [53] reported that
soil-specific calibrations led to substantial improvement in θv accuracy beyond factory calibration.
RMSE of CS616 exceeded 0.10 m3 m−3 at both depths when using generic calibration and dropped below
0.02 m3 m−3 for depth-specific and combined data when using soil-specific calibration. The authors
noticed that the RMSE of the evaluated sensors (5TE, EC5, Hydra Probe2, CS616, CS655, and TDR
315) installed at depths of 0.15 and 0.76 m were below 0.015 m3 m−3 using soil-specific regression
calibration sand and below 0.020 m3 m−3 as determined by combining all regression calibrations.

Table 8. Soil-specific calibration equations for commercial soil moisture sensors in the Immokalee
soil series.

Sensor Soil Depth (m) Soil-Specific Equation1 R2

10HS 0.0–0.3
0.3–0.6

4× 10−6x2
− 0.0049x + 1.548

4× 10−6x2
− 0.0054x + 1.686

0.96
0.92

GS1 0.0–0.3
0.3–0.6

− 3× 10−12x4 + 2× 10−8x3
− 3× 10−5x2 + 0.0279x− 9.356

− 1× 10−9x3 + 6× 10−6x2
− 0.0079x + 3.364

0.99
0.95

GS3 0.0–0.3
0.3–0.6

− 0.0004x3 + 0.0115x2
− 0.0803x + 0.173

− 0.0003x3 + 0.0091x2
− 0.0443x + 0.048

0.94
0.97

5TE 0.0–0.3
0.3–0.6

− 0.0002x3 + 0.0061x2
− 0.0252x + 0.032

− 0.0001x3 + 0.003x2 + 0.0043x− 0.026
0.98
0.99

CS655 0.0–0.3
0.3–0.6

8× 10−6x4
− 0.0003x3 + 0.0035x2 + 0.009x− 0.016

− 5× 10−5x3 + 0.0003x2 + 0.028x− 0.047
0.99
0.99

CS650 0.0–0.3
0.3–0.6

2× 10−6x6
− 0.0001x5 + 0.0026x4

− 0.0313x3 +
0.1938x2

− 0.5496x + 0.524
− 2× 10−5x5 + 0.0009x4

− 0.0158x3 +
0.1237x2

− 0.4115x + 0.439

0.99
0.99

CS616 0.0–0.3
0.3–0.6

6× 10−5x3
− 0.0028x2 + 0.0556x− 0.427

0.0002x3
− 0.0101x2 + 0.2205x− 1.644

0.99
0.99

Hydra Probe 0.0–0.3
0.3–0.6

− 2× 10−5x3
− 0.0002x2 + 0.0282x− 0.080

5× 10−5x3
− 0.0028x2 + 0.0583x− 0.151

0.98
0.96

TDR315L 0.0–0.3
0.3–0.6

− 3× 10−5x3 + 0.0004x2 + 0.0177x− 0.036
− 3× 10−5x3 + 0.0003x2 + 0.0229x− 0.049

0.99
0.99

TDR315 0.0–0.3
0.3–0.6

− 3× 10−5x3 + 0.0005x2 + 0.0194x− 0.052
− 6× 10−5x3 + 0.0009x2 + 0.0224x− 0.064

0.99
0.99

TDR310S 0.0–0.3
0.3–0.6

2× 10−5x4
− 0.001x3 + 0.0118x2

− 0.0312x + 0.022
2× 10−5x4

− 0.0008x3 + 0.0098x2
− 0.0177x + 0.002

0.99
0.97

TDT-ACC-SEN-SDI 0.0–0.3
0.3–0.6

1× 10−5x4
− 0.0005x3 + 0.0064x2

− 0.0034x− 0.022
− 0.001x2 + 0.0348x− 0.055

0.99
0.79

1 Variable corresponds the response value of the sensor (voltage, period, or dielectric constant). The obtained result from each
equation is the soil volumetric water content (θv). Measuring technique: Frequency Domain Reflectometry—FDR (10HS,
GS1, GS3, and 5TE); Transmission Line Oscillation—TLO (CS655, CS650, and CS616); Time Domain Reflectometry—TDR
(Hydra Probe, TDR−315L, TDR−315, and TDR−310S); and Time Domain Transmissometry—TDT (TDT-ACC-SEN-SDI).

4. Conclusions

The sensors that performed best in estimating θv using the manufacturer’s generic equation for
the evaluated soils were TDR310S, TDR315L, GS1, and 5TE. These sensors presented the greatest
adjustments to the model and lowest RMSE. Conversely, the low CV for GS3, 10HS, and Hydra Prove
sensors indicated the low accuracy of the standard equation for the θv determination in sandy soils.
The estimated calibration equations can replace the manufacturer’s generic equations as they provide
more accurate data on the soil’s real-time moisture content according to the sensor, soil type, and
depth chosen.

Unsatisfactory results were found for soil-specific calibrations performed on two of the sensors
tested (10HS and GS3). A significant improvement was obtained in estimating θv with respect to the
generic equation for the other sensors. This improvement allows researchers and end users to obtain
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real soil moisture content data in the soils tested, permitting, for example, more efficient irrigation
control and water savings by optimizing the water use.

For the evaluated Florida sandy soils, the calibration equations can be applied with an accuracy
ranging from 0.018 to 0.030 m3 m−3. Sensors 5TE, TDR310S, and TDR315L had a better overall
performance in soil moisture estimation.

These equations can be used under field conditions. However, we still recommend evaluating the
sensors by considering the specific environmental conditions of each site, since they influence sensor
performance. Finally, further research should be carried out to test other commercial sensors, in other
soil types, and with different organic matter contents.
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