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Abstract: In this study, a comparative evaluation of the statistical methods for daily streamflow
estimation at ungauged basins is presented. The single donor station drainage area ratio (DAR)
method, the multiple-donor stations drainage area ratio (MDAR) method, the inverse similarity
weighted (ISW) method, and its variations with three different power parameters (1, 2, and 3) are
applied to the two main subbasins of the Euphrates Basin in Turkey to estimate daily streamflow data.
Each station in each basin is considered in turn as the target station where there are no streamflow data.
The donor stations are selected based on the physical similarities between the donor and target stations.
Then, streamflow data from the most physically similar donor station(s) is transferred to the target
station using the statistical methods. In addition, the effect of data preprocessing on the estimation
performance of the statistical methods is investigated. The preprocessing discussed in this study is
streamflow data smoothing using the two-sided moving average (MA). Three statistical methods
using the smoothed data by the MA, named as DAR-MA, MDAR-MA, and ISW-MA, are proposed.
The estimation performance of the statistical methods is compared by using daily streamflow data
with preprocessing and without preprocessing. The Nash–Sutcliffe efficiency (NSE), the ratio of the
root mean square error (RMSE) to the standard deviation of the observed data (RSR), the percent
bias (PBIAS), and the coefficient of determination (R2) are used to evaluate the performance of the
statistical methods. The results show that MDAR and ISW give improved performances compared to
DAR to estimate daily streamflow for 7 out of 8 target stations in the Middle Euphrates Basin and for
4 out of 7 target stations in the Upper Euphrates Basin. Higher NSE values for both MDAR and ISW
are mostly obtained with the three most physically similar donor stations in the Middle Euphrates
Basin and with the two most physically similar donor stations in the Upper Euphrates Basin. The best
statistical method for each target station exhibits slightly greater NSE when the smoothed data by the
MA is used for all target stations in the Middle Euphrates Basin and for 6 out of 7 target stations in
the Upper Euphrates Basin.

Keywords: data preprocessing; donor selection; drainage area ratio; Euphrates basin; moving average;
physical similarity; streamflow estimation; ungauged basins

1. Introduction

In recent years, several factors, such as climate change, global warming, drought, population
growth, and industrialization, have led to a rapid increase in demand for water. Hence, issues related
to the planning and implementation of the water budget become important. Measurements and
estimates of streamflow play an important role in the stage of the planning and implementation of
the water budget. Since drainage basins in many parts of the world are ungauged or poorly gauged,
the International Association of Hydrological Sciences (IAHS) launched a scientific decade from
2003 to 2012 on Predictions in Ungauged Basins (PUB) [1]. It was an effort to improve streamflow
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estimations for ungauged basins. Streamflow estimation at ungauged and poorly gauged basins is an
important issue in growing economies countries such as Turkey because there are a limited number
of stations in the streamflow gauging network of Turkey and streamflow estimates are often needed
at ungauged basins where water resources projects are planned. Some stations in the river basins
of Turkey contain large amounts of missing data during the observation period [2,3]. This lack of
adequate data creates significant problems in the water resources projects for Turkey. For these reasons,
accurate measurement and analysis of streamflow data and reliable streamflow estimates are needed.

Many methods have been used to improve the reliability and the accuracy in estimations for
the development of streamflow estimation methods, and the research in this area still continues. In
order to estimate streamflow, several researchers have suggested the artificial intelligence methods
such as artificial neural networks [4–6], fuzzy logic [7–9], genetic programming [10–12], and machine
learning [13–15]. In addition, artificial intelligence methods have been coupled with the data
preprocessing methods to improve streamflow estimation accuracy and reliability in recent studies
in the literature [16–19]. For example, Wu and Chau [20] used data preprocessing methods such as
moving average (MA) and singular spectrum analysis (SSA) in order to improve the performance of
artificial neural networks (ANN). Results showed that the MA was more effective than the SSA when
they were coupled with the ANN. Moreover, ANN methods coupled with the MA performed the best
among all methods. On the other hand, statistical methods such as interpolation by inverse distance
weighted (IDW) [21,22] and kriging [23,24], regression analysis [25,26], flow duration curves [27,28],
and information transfer methods [29,30] are widely used in the estimation of streamflow. This study
focuses on statistical methods for improving estimation accuracy and reliability for ungauged basins.

Regionalization is a statistical process, which aims to estimate streamflow at ungauged basins.
Various regional methods have been used for regional estimation of streamflow for the different time
scales (i.e., daily, monthly, or annually) at ungauged basins in the literature [31–35]. Streamflow
estimation at ungauged basins where streamflow data are not available requires the transfer of
hydrologic information available at a donor station to the target station where only morphological
and meteorological characteristics are available [36]. Drainage area ratio (DAR) method is one of the
oldest information transfer methods for obtaining streamflow values at the target station from the
donor station. This method is straightforward to apply and is in widespread use by hydrologists
because it requires no additional information other than the streamflow values at the target station
and the drainage areas of the donor and target stations. The DAR method has gained acceptance in
Turkey as well, and it is widely used to estimate streamflow for ungauged basins in Turkey [2,3]. In
the traditional application of this method, area-normalized streamflow values are transferred from
only a single donor station to the target station. In addition to the drainage area, there are some other
factors that have a significant influence on the unique streamflow characteristics of a station. Because
the DAR method is used with only a single donor station, systematic errors can be encountered in
the estimation of a target station [32]. When more streamflow gauging stations are used to estimate
streamflow for the target station, this method is referred to as the multiple-donor stations drainage area
ratio (MDAR) method [2,32]. The MDAR method assumes that the streamflow estimates at the target
station can be computed as the weighted average of the estimates (produced by the DAR method) of
the multiple donor stations selected.

The inverse distance weighted (IDW) method is one of the most widely used interpolation methods
based on the geographical distance between the donor and target stations [21,22]. This method can
be considered as a variant of the DAR method. The IDW method estimates the streamflow value
for the target station by taking the geographical distance between the donor station and the target
station as the weight. The closer the geographical distance between the donor station and the target
station is, the larger the influence on the target station will be. That is, when the distance decreases, the
weight coefficient increases. The IDW method, also called an inverse distance to power, is a weighted
average interpolator, and the main factor affecting the accuracy of the IDW method is the value of the
power parameter. As the power parameter increases, more influence is given to the donor stations
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close to the target station. In the literature, the value of the power parameter is commonly chosen as 2,
which is known as the inverse distance squared weighted [36]. Alternatively, the inverse similarity
weighted (ISW) method [37,38], which is similar to the IDW method, can be applied on the basis of
multiple donor stations. Unlike the IDW method, the ISW method uses physical similarity instead
of the geographical distance between the target and the donor station. The ISW method with three
different power parameters (1, 2, and 3) was used for daily streamflow estimation in this study, and area
normalized streamflow values are directly transferred to a target station from multiple donor stations.

The streamflow characteristics at the ungauged basin are directly affected by the donor stations.
Therefore, the selection of hydrologically similar donor stations is important for estimating streamflow
values at the ungauged basin. In practical applications, the donor station is usually selected as
the geographically nearest station to the ungauged basin [36,39,40]. However, the geographical
distance may not always be correct for the selection of the donor stations [41,42]. In this study, the
physical similarities between the donor and the target station were taken into account when selecting
the appropriate donor station for the target station. Physical similarity defines which stations are
most similar in terms of some physical characteristics such as drainage area, elevation, precipitation,
temperature, latitude, and longitude. According to the physical similarity, donor stations were defined
for each target station. This procedure is described in detail in the section “Selection of Donor Stations”.

In this study, continuous daily streamflow data were used between 1986–2009 for selected
streamflow gauging stations in two subbasins of the Euphrates basin. In order to estimate daily
streamflow at the ungauged basin, the single-donor station drainage area ratio (DAR) method, the
multiple-donor stations drainage area ratio (MDAR) method, and the inverse similarity weighted
(ISW) methods were applied. Three different power parameters (1, 2, and 3) of the ISW method
were compared to determine their accuracy and suitability for estimating daily streamflow values. In
addition, the daily streamflow data were smoothed with symmetric two-sided moving average (MA)
filtering in order to reduce noise. The observed (original) data (without data preprocessing) or the
smoothed data (with data preprocessing by the MA) were used as inputs of the statistical methods
for estimating daily streamflow values at the target station. In the former case, the estimated daily
streamflow values at the target station were compared to the observed (original) daily streamflow
values at the target station, while in the latter case, the estimated daily streamflow values at the target
station were compared to the observed-MA (smoothed) daily streamflow values at the target station.
These two approaches were presented to estimate the daily streamflow values with and without MA.
It is believed that the results will help decision makers choose the best one for their objectives. In
summary, the major objectives of this study can be listed as follows: 1) to test applicability of the
statistical methods to two subbasins of the Euphrates basin in Turkey, 2) to evaluate the success of
physical similarity approaches in selecting donor stations in this basin, and 3) to investigate the effect
of the statistical methods coupled with the data preprocessing method of moving average (MA) on the
accuracy of streamflow estimation.

2. Study Area and Data

2.1. Study Area

Turkey is divided into 25 hydrological river basins, where the Euphrates-Tigris (indicated with
basin number 21) is regarded as one single basin (Figure 1). Euphrates-Tigris Basin is located in the
eastern part of Turkey with a drainage area of 185,000 km2, which is the largest basin of Turkey. It has
also nearly 28.5% of the water potential of Turkey. As the biggest water source of the Euphrates-Tigris
Basin, the Euphrates River is the longest and one of the most historically significant rivers of the
Middle East. The total length of Euphrates is nearly 2800 km, and 40% of its length is in Turkey, 25% is
in Syria, and 35% is in Iraq. The Euphrates River consists of two major tributaries, the Karasu River
and the Murat River, which both originate in the Eastern Anatolia mountains of Turkey. These two
rivers merge near the Keban Dam, which is one of the largest dams of Turkey. The Euphrates River
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Basin is subdivided into the Upper Euphrates, the Middle Euphrates, and the Lower Euphrates basins,
which have some distinctive physical features. The water regime of the Euphrates River Basin depends
heavily on winter rainfalls and spring snowmelt.
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In order to determine the water potential of the Euphrates-Tigris Basin, a large number of
streamflow gauging stations were established on the Euphrates River and its tributaries. However,
there was a large amount of missing data in the daily streamflow measurements of some streamflow
gauging stations. These missing data lead to significant problems in hydrological modeling studies.
Statistical estimation methods require the use of daily streamflow time series obtained from a large
number of streamflow gauging stations within the study area. Also, the observation period should be
the same for all these streamflow gauging stations. In the Euphrates Basin as a case study, a total of 15
streamflow gauging stations, which have 24 years (1986–2009) of common daily streamflow data, was
selected. Eight of these stations are located in the Middle Euphrates Basin, and the other seven stations
are located in the Upper Euphrates Basin (Figure 2). Moreover, they are not located downstream of
a dam.
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2.2. Hydrological and Meteorological Data

Eight streamflow gauging stations from the Middle Euphrates Basin and seven streamflow
gauging stations from the Upper Euphrates Basin were selected for this case study. The stream
networks of these two basins and the locations of the selected streamflow gauging stations in each
basin are shown in Figure 3. Continuous daily streamflow data of the streamflow gauging stations
operated by the General Directorate of State Hydraulic Works (DSI) were used. Each streamflow
gauging station contains a 24-year period spanning from 1986 to 2009, and there is no missing data
within the streamflow time series. The main characteristics of these streamflow gauging stations are
listed in Tables 1 and 2. As shown by Table 1, drainage areas of the stations in the Middle Euphrates
Basin vary between 65.3 and 25,515.6 km2 whereas their elevations range between 852 and 1810 m
above sea level. As shown by Table 2, drainage areas of the stations in the Upper Euphrates Basin vary
between 233.2 and 15,562 km2 whereas their elevations range between 840 and 1830 m above sea level.
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Station Number Drainage Area (km2) Elevation (m) Long-Term Mean (m3/s) Record Period (Years)

D21A167 250 1650 3.55 1986–2009
D21A169 276.1 1600 3.35 1986–2009
D21A213 65.3 1810 0.74 1986–2009
E21A002 25,515.6 852 239.82 1986–2009
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E21A058 1577.6 1310 18.91 1986–2009
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Table 2. Characteristics of streamflow gauging stations in the Upper Euphrates Basin.

Station Number Drainage Area (km2) Elevation (m) Long-term Mean (m3/s) Record Period (Years)

D21A001 233.2 1830 2.75 1986–2009
D21A193 518.1 1000 6.31 1986–2009
E21A033 3284.8 875 89.38 1986–2009
E21A051 8185.6 1355 60.23 1986–2009
E21A054 2886 1675 19.68 1986–2009
E21A056 15,562 865 153.57 1986–2009
E21A066 5430 840 78.26 1986–2009

Basin characteristics such as geographical, topographical, and climate variables were considered
for determining the physical similarity between the donor and target stations. Annual mean total
precipitation and annual mean temperature were selected as climatic variables. Concurrent precipitation
and temperature data of the meteorological stations operated by the Turkish State Meteorological
Service (DMI) were used. The annual mean total precipitation and annual mean temperature values
for each streamflow gauging station were calculated by the Thiessen polygon method (Figure 4). Thus,
annual mean total precipitation and annual mean temperature values of the drainage area represented
by each streamflow gauging station were obtained using the precipitation and temperature data of the
meteorological stations. Drainage area, elevation, basin slope, and channel length were selected as
topographical variables. Basin slope and channel length for the drainage basin of each streamflow
gauging station were extracted using geographic information system (GIS) software. The latitude
and longitude were selected as geographical variables because geographically nearby streamflow
gauging stations could have similarities in hydrological behavior. They were converted to decimal
degrees and then used to calculate the similarity coefficient. Since the latitude and longitude define the
geographical location of the streamflow gauging stations, these selected basin characteristics combine
the physical similarity approach with the geographical proximity approach [43]. Descriptive statistics
of the selected physical characteristics are presented in Table 3 for the Middle Euphrates Basin and in
Table 4 for the Upper Euphrates Basin.
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Table 3. Statistics of physical characteristics used in the Middle Euphrates Basin.

Physical Characteristics Maximum Minimum Mean

Drainage Area (km2) 25,515.6 65.3 4849.3
Elevation (m) 1810 852 1402

Annual Mean Total Precipitation (mm) 939.50 431.20 679.68
Annual Mean Temperature (◦F) 53.60 42.26 47.29

Basin Slope (%) 2.69 0.19 1.21
Channel Length (km) 565.11 14.75 142.27

Latitude (◦) 39.54 38.69 39.19
Longitude (◦) 42.78 39.93 41.58

Table 4. Statistics of physical characteristics used in the Upper Euphrates Basin.

Physical Characteristics Maximum Minimum Mean

Drainage Area (km2) 15,562 233.2 5157.1
Elevation (m) 1830 840 1205.7

Annual Mean Total Precipitation (mm) 840.17 374.90 524.15
Annual Mean Temperature (◦F) 56.48 42.26 48.52

Basin Slope (%) 2.82 0.16 0.96
Channel Length (km) 381.60 25.10 161.19

Latitude (◦) 40.11 38.86 39.44
Longitude (◦) 41.39 38.41 39.79

3. Methods

Estimation of daily streamflow time series at the target station consists of the following steps:
(1) the selection of hydrologically similar donor stations to the target station and (2) the transfer of the
daily streamflow time series from the donor station to target station by using statistical streamflow
transfer methods. Proposed flowcharts for streamflow estimation at the target station are illustrated
in Figure 5.
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3.1. Statistical Information Transfer Methods

For daily streamflow estimation at the target stations, three statistical streamflow transfer methods
are considered in this study. These methods include the single-donor station drainage area ratio
(DAR) method, the multiple-donor stations drainage area ratio (MDAR) method, and the inverse
similarity weighted (ISW) method. Moreover, the variations of the ISW method, in which constant
power parameters are modified, are utilized as well. The DAR and the MDAR methods were based
on the drainage area of the stations, whereas the ISW method was based on the physical similarity
between the donor and target stations. Each statistical method is briefly described below.

3.1.1. Drainage Area Ratio (DAR) Method

The DAR method [39,40] assumes that the streamflow per unit drainage area for the target station
equals that at the streamflow gauging station used as a donor station for a given day, as described in
Equation (1).

Qtarget =
Atarget

Adonor
Qdonor (1)

where Qtarget is the daily streamflow for the target station, Qdonor is the streamflow at a donor station,
and Atarget and Adonor are the drainage areas for the target station and the donor station, respectively.

3.1.2. Multiple-Donor Stations Drainage Area Ratio (MDAR) Method

The MDAR method [2,32] generates the streamflow estimation at the target station as the weighted
average of the DAR method estimations from the donor stations. The streamflow at the target station
from the n donor stations can be calculated for a given day using Equation (2).

Qtarget =

∑n
i=1 wiQ̂donori∑n

i=1 wi
(2)

where wi is the weight of the donor station i on the target station, Q̂donori is the daily streamflow
estimations from each donor station, and n is the total number of the donor stations. The values of the
weights in Equation (2) which show the similarity between the target station and donor station can be
calculated as Equation (3).

wi =

1
di∑n

i=1
1
di

(3)

where di is the similarity distance between the target station and donor station i. The drainage
area is frequently considered as the most important variable in many hydrological regionalization
studies [39,40,44]. Moreover, the drainage area is also the only scaling factor used in the DAR method
for streamflow estimation at the target stations. Therefore, it was used as the similarity distance in this
study. It can be calculated using Equation (4).

di =
∣∣∣Atarget −Adonori

∣∣∣ (4)

where Adonori is the drainage area of the donor station i and Atarget is the drainage area of the target station.

3.1.3. Inverse Similarity Weighted (ISW) Method

The ISW method [37,38] estimates streamflow values at the target station as the weighted average
of the streamflow values at n donor stations. The weights are inversely proportional to the power of
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physical similarity from the target station. The mathematical expression of the ISW method is given by
Equation (5).

qtarget =
n∑

i=1

wiqdonori and Qtarget = qtargetAtarget (5)

where qtarget is the area normalized streamflow (m3/s/km2) at the target station and qdonori is the area
normalized streamflow (m3/s/km2) at the donor station i. The weights wi based on physical similarity
can be calculated for all donor stations using Equation (6). The sum of the weights assigned to each
donor station is equal to 1.

wi =

1
si

p∑n
i=1

1
si

p

and
n∑

i=1

wi = 1 (6)

where si is the similarity coefficient between the target station and donor station i and where the
exponent p is called a power parameter (p > 0). In this study, the estimation performance of the ISW
method was evaluated using different power parameters from 1 to 3. For power parameters of 1, 2,
and 3, the ISW method was referred to as ISW1, ISW2, and ISW3, respectively.

The similarity coefficient, s, is used to define the physical similarity between the target station and
the donor station, which is calculated using Equation (7) [43,45]. Drainage area, elevation, annual mean
total precipitation, annual mean temperature, basin slope, channel length, latitude, and longitude were
considered as the basin characteristics in order to measure the physical similarity between the donor
station and the target station. The station with the lowest similarity coefficient was selected as the
donor station. The similarity coefficient was used both to select the donor stations and to transfer
streamflow from several donor stations as the weight.

s =
k∑

i=1

∣∣∣∣Xdonor
i −Xtarget

i

∣∣∣∣
max(Xi) −min(Xi)

(7)

where i indicates one of a total of k selected basin characteristics; Xdonor
i and Xtarget

i are the values of
basin characteristic i for the donor station and the target station, respectively; and max(Xi) and min(Xi)

are the maximum and the minimum values of basin characteristics over the set of stations considered,
respectively.

3.2. Selection of Donor Stations

For transferring the streamflow to the target (ungauged) station, the streamflow values of the
donor stations are used. Therefore, the selection of the donor stations is an important step in estimating
streamflow at the target station. In this study, the physical similarity approach was considered to
identify donor stations. In the physical similarity approach, the station that minimizes the similarity
coefficient defined in Equation (7) was used as the donor station. That is, the best donor station
was given to the station having the smallest s value. Although all stations are gauged, initially, each
station in each basin was considered in turn as a target station and daily streamflow time series were
estimated for all stations assumed as a target station within each basin. Subsequently, their actual
streamflow time series were used in order to evaluate the performance of the streamflow estimation.
When using one donor station, the most physically similar station was identified for each target station.
On the other hand, when using more than one donor station, the two or three most physically similar
stations were identified for each target station (Figure 5). Therefore, the DAR method was applied
to each station using the most physically similar station as the donor station, while the MDAR and
ISW methods were applied to each station for two different cases: 1) using the two most physically
similar stations as the donor stations and 2) using the three most physically similar stations as the
donor stations. The results for these two different cases were compared with the original observations
to evaluate which one provides better estimation performance.
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3.3. Data Preprocessing

The streamflow data may contain possible errors, and these errors are collectively referred to
as noise. As the noise in the data increases, reliable results will be difficult to achieve. In this study,
data preprocessing was conducted to remove noise and to improve the reliability of daily streamflow
estimates. The data preprocessing discussed here was daily streamflow data smoothing using the
moving average (MA). Each daily streamflow time series of all stations was smoothed by a centered
(or symmetric two-sided) moving average of length m = 2k + 1, i.e., MA(m), and then, the smoothed
streamflow time series were used into the statistical methods. Hereafter, the statistical methods, DAR,
MDAR, and ISW are referred to as DAR-MA, MDAR-MA, and ISW-MA, respectively. A centered
moving average smooths data by replacing each observed daily streamflow value with the average of
the current day, previous day, and subsequent days and is defined as Equation (8). For example, a
centered moving average of length m = 3 (hence k = 1), i.e., MA(3) with equal weights, replaces the
observed daily streamflow value xt at time t with the averages of xt−1, xt, and xt+1.

x∗t =
1

2k + 1

k∑
i=−k

xt+i (8)

where x∗t is the smoothed streamflow value at time t and m = 2k + 1 is the number of observed values
that are averaged.

In order to smooth daily streamflow data, MA was applied with lengths of 3, 5, 7, 9, and 11 days
in this study, and then, it was seen that the larger the length m = 2k + 1, the more the streamflow peaks
(maximum values) and streamflow valleys (minimum values) were smoothed out. The peaks and
valleys of streamflow are not well represented by the relatively high length of MA(5), MA(7), MA(9),
and MA(11). For a better representation of streamflow peaks and valleys, MA(5), MA(7), MA(9), and
MA(11) were excluded from the rest of the study.

3.4. Evaluation Criteria

A jackknife (leave one out) procedure was used for evaluating the performance of each method.
In this procedure, each station in each basin was considered in turn as a target station and was removed
from the database. This procedure was repeated for all stations considered for this study.

The performance of each statistical method was evaluated in terms of the Nash–Sutcliffe efficiency
(NSE) [46], the ratio of the root mean square error (RMSE) to the standard deviation of the observed data
(RSR) [47], the percent bias (PBIAS), and the coefficient of determination (R2) between the estimated
and observed streamflow values. NSE, RSR, PBIAS, and R2 were calculated as follows:

NSE = 1−

∑n
i=1

(
Xobs

i −Xest
i

)2

∑n
i=1 (X

obs
i −X

obs
)

2 (9)

RSR =
RMSE√∑n

i=1

(
Xobs

i −X
obs

)2

n

=

√∑n
i=1

(
Xobs

i −Xest
i

)2√∑n
i=1 (X

obs
i −X

obs
)

2
=
√

1−NSE (10)

PBIAS =

∑n
i=1

(
Xobs

i −Xest
i

)
∑n

i=1

(
Xobs

i

) x100 (11)



Water 2020, 12, 459 11 of 22

R2 =


∑n

i=1 (X
obs
i −X

obs
)(Xest

i −X
est
)√∑n

i=1 (X
obs
i −X

obs
)

2
√∑n

i=1 (X
est
i −X

est
)

2


2

(12)

where Xobs
i is the ith observed daily streamflow value; Xest

i is the ith estimated daily streamflow value;

X
obs

and X
est

are the mean of observed and estimated daily streamflow values, respectively; and n is
the total number of observed daily streamflow values.

The NSE values range between −∞ and +1, where a value of 1 indicates a perfect agreement
between estimated and observed streamflow values. The values closer to 1 indicate an increasingly
better agreement, whereas the values far from 1 indicate an increasingly poor agreement. The RSR
standardizes RMSE using the standard deviation of the observed data. The RSR varies from the optimal
value of 0 to a large positive value. The lower the RSR, the better the performance of the method [47].
PBIAS measures the average tendency of the estimated values to be larger or smaller than corresponding
observed values. The optimal value of PBIAS is 0, and the closer it is to 0, the more accurate the
estimated values are to the observed values. Negative PBIAS values indicate overestimation, while
positive PBIAS values indicate underestimation [47]. The coefficient of determination (R2) is the square
of the correlation coefficient according to Pearson. The R2 values range from 0 to 1, with higher values
indicating better agreement between estimated and observed values. Generally, R2 values greater than
0.5 are considered acceptable [47].

Moriasi et al. [47] suggested performance ratings of recommended statistics such as NSE, RSR,
and PBIAS for monthly streamflow. According to Moriasi et al. [47], the performance of the method is
considered satisfactory when the NSE is greater than 0.5, the RSR is less than 0.7, and the PBIAS ranges
are less than ±25%. However, NSE values lower than 0.5 for daily streamflow can still be considered
satisfactory [48]. Therefore, some of the constraints for the recommended statistics can be relaxed
for daily streamflow. In this study, the adjusted performance ratings of the NSE and PBIAS statistics
for the daily time scale proposed by Kalin et al. [49] were used to evaluate the performance of the
statistical methods (Table 5).

Table 5. Performance ratings of the Nash–Sutcliffe efficiency (NSE) and percent bias (PBIAS) statistics
for daily streamflow.

Performance Rating NSE abs(PBIAS) %

Very good NSE ≥ 0.7 abs(PBIAS) ≤ 25
Good 0.5 ≤ NSE < 0.7 25 < abs(PBIAS) ≤ 50

Satisfactory 0.3 ≤ NSE < 0.5 50 < abs(PBIAS) ≤ 70
Unsatisfactory NSE < 0.3 abs(PBIAS) > 70

4. Results and Discussion

4.1. Middle Euphrates Basin

The statistical methods described above were applied on each of eight streamflow gauging stations
in the Middle Euphrates Basin, which were considered in turn as the target station. The donor station
or stations based on physical similarity was selected to transfer daily streamflow data to the target
station. Table 6 shows the sequence of the donor stations for each target station in the Middle Euphrates
Basin which was determined according to the similarity coefficient.

In order to estimate daily streamflow at the target stations, the DAR method was applied by
using the most physically similar station to each target station. In order to test the applicability of
the donor station selection criteria for the study area, the NSE values were determined for the donor
stations identified by the physical similarity and compared with the NSE values obtained from the
donor stations traditionally selected as the geographically nearest stations. On the other hand, the
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MDAR and ISW methods were applied by using the two and the three most physically similar stations
to each target station. In order to test the effect of different power parameter selection in the use of
the ISW method on the accuracy of daily streamflow estimation, the ISW method was applied with
power parameters of 1, 2, and 3. In addition, the comparisons between the statistical methods with
and without the MA were carried out to indicate the effectiveness of the MA-based preprocessing on
the accuracy of daily streamflow estimation. Daily streamflow values estimated using both observed
and smoothed data from the donor stations were compared with observed data at the target station.
According to the selection criteria of the donor stations, the NSE values obtained for the target stations
in the Middle Euphrates Basin are given in Table 7 for DAR and MDAR and in Table 8 for ISW with
three different power parameters (1, 2, and 3). Performance evaluations of the best statistical method
without and with the MA for each target station in the Middle Euphrates Basin are presented in Table 9
and in Table 10, respectively.

Table 6. Physically similar donor stations for each target station in the Middle Euphrates Basin.

Target Station
Donor Station

1st 2nd 3rd 4th 5th 6th 7th

D21A167 D21A213 D21A169 E21A022 E21A058 E21A077 E21A064 E21A002
D21A169 E21A058 E21A077 D21A167 D21A213 E21A022 E21A064 E21A002
D21A213 D21A167 E21A022 D21A169 E21A058 E21A077 E21A064 E21A002
E21A002 E21A064 E21A058 E21A077 E21A022 D21A169 D21A167 D21A213
E21A022 D21A213 E21A077 D21A167 E21A058 D21A169 E21A064 E21A002
E21A058 E21A077 D21A169 E21A064 E21A022 D21A167 D21A213 E21A002
E21A064 E21A058 E21A077 D21A169 E21A002 E21A022 D21A167 D21A213
E21A077 E21A058 D21A169 E21A022 E21A064 D21A213 D21A167 E21A002

Table 7. NSE values for the drainage area ratio (DAR) and multiple-donor stations drainage area ratio
(MDAR) methods in the Middle Euphrates Basin.

Target Station
The Geographically

Nearest Donor Station
The Most Physically

Similar Donor Station
Two Most Physically

Similar Donor Stations
Three Most Physically
Similar Donor Stations

DAR DAR MDAR MDAR

D21A167 0.313 −0.187 0.312 0.316
D21A169 0.581 0.850 0.852 0.595
D21A213 0.718 0.354 0.369 0.608
E21A002 −0.171 −0.171 0.433 0.729
E21A022 −0.205 −0.205 0.622 0.718
E21A058 0.826 0.814 0.894 0.839
E21A064 0.649 0.724 0.694 0.706
E21A077 0.300 0.647 0.651 0.781

Table 8. NSE values for the inverse similarity weighted (ISW) with powers of 1, 2, and 3 in the Middle
Euphrates Basin.

Target Station
Two Most Physically Similar

Donor Stations
Three Most Physically Similar

Donor Stations

ISW1 ISW2 ISW3 ISW1 ISW2 ISW3

D21A167 0.136 0.060 −0.009 0.317 0.184 0.065
D21A169 0.844 0.849 0.852 0.816 0.825 0.833
D21A213 0.501 0.463 0.429 0.608 0.556 0.502
E21A002 0.418 0.396 0.374 0.696 0.664 0.630
E21A022 0.432 0.375 0.316 0.636 0.591 0.535
E21A058 0.893 0.892 0.892 0.904 0.907 0.906
E21A064 0.696 0.701 0.706 0.712 0.713 0.714
E21A077 0.641 0.651 0.656 0.774 0.743 0.716
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Table 9. Performance evaluation of the best statistical method without the moving average (MA) for
each target station in the Middle Euphrates Basin.

Target Station Method NSE RSR PBIAS

D21A167 ISW1 0.317 3 0.827 23.265 1

D21A169 ISW3 0.852 1 0.385 6.459 1

D21A213 ISW1 0.608 2 0.626 −6.122 1

E21A002 MDAR 0.729 1 0.520 −30.114 2

E21A022 MDAR 0.718 1 0.531 −39.089 2

E21A058 ISW2 0.907 1 0.304 3.123 1

E21A064 DAR 0.724 1 0.525 18.865 1

E21A077 MDAR 0.781 1 0.468 −11.015 1

1 Very good, 2 good, 3 satisfactory, and 4 unsatisfactory.

Table 10. Performance evaluation of the best statistical method with the MA for each target station in
the Middle Euphrates Basin.

Target Station Method NSE RSR PBIAS

D21A167 ISW1-MA 0.326 3 0.821 23.265 1

D21A169 ISW3-MA 0.876 1 0.352 6.459 1

D21A213 ISW1-MA 0.618 2 0.618 −6.122 1

E21A002 MDAR-MA 0.767 1 0.483 −30.114 2

E21A022 MDAR-MA 0.725 1 0.524 −39.089 2

E21A058 ISW2-MA 0.921 1 0.282 3.123 1

E21A064 DAR-MA 0.744 1 0.506 18.865 1

E21A077 MDAR-MA 0.817 1 0.428 −11.015 1

1 Very good, 2 good, 3 satisfactory, and 4 unsatisfactory.

For 2 out of 8 target stations (i.e., E21A002 and E21A022), the geographically nearest and the most
physically similar station were the same. For 3 out of the remaining 6 target stations (i.e., D21A169,
E21A064, and E21A077), higher NSE values were obtained using DAR with the most physically similar
station as the donor station. For 3 out of the target stations (i.e., D21A167, D21A213, and E21A058),
higher NSE values were obtained using DAR with the geographically nearest station as the donor
station. According to these results, for half of the target stations in the study area, the geographical
distance seems to be a good selection criterion as the donor station; however, for the remaining half
of the target stations, geographical distance cannot identify the best donor station. Therefore, donor
station selection criteria can provide different estimated results that vary from basin to basin.

As can be seen in Table 7, for all target stations other than E21A064, higher NSE values were
obtained with MDAR compared with DAR. Especially for D21A167, E21A002, and E21A022, negative
NSE values obtained with DAR using the most physically similar donor station improved considerably
when the three most physically similar donor stations were used with MDAR. The performance of the
DAR method was unsatisfactory for D21A167, E21A002, and E21A022. This was mostly due to the
significant increase in the drainage area ratio between the donor and target stations. D21A213 has
the smallest drainage area (65.3 km2) in the Middle Euphrates Basin and was determined as the most
physically similar donor station for both D21A167 (250 km2) and E21A022 (5882.4 km2). Moreover,
E21A002 has the largest drainage area (25,515.6 km2) in the Middle Euphrates Basin. Its drainage
area is more than four times the next largest station. For all target stations other than D21A169 and
E21A058, MDAR using of the three most physically donor stations produced better NSE values than
that using the two most physically similar donor stations. For D21A169, the NSE value decreased from
0.852 to 0.595 when the three most physically similar donor stations were used instead of the two
most physically similar donor stations (see Table 7). In case of the use of the three most physically
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similar donor stations, the third most physically similar donor station for D21A169 was determined as
D21A167. The NSE value obtained for D21A169 using the DAR method and utilizing D21A167 was
lower than the NSE values obtained from the other two donor stations (i.e., E21A058 and E21A077).
The drainage area of the donor station D21A167 is very close to the target station D21A169. On the
other hand, the drainage areas of the other two donor stations are much larger than D21A169. Hence,
the weight of donor station D21A167 for streamflow estimation of D21A169 is significantly larger
compared to the other two. Consequently, the NSE value obtained for D21A169 using MDAR with the
three most physically similar donor stations is predominantly influenced by donor station D21A167.
Similarly, for E21A058, the decrease in the NSE (i.e., from 0.894 to 0.839) was due to the same reason as
for D21A169.

As can be seen in Table 8, in case of the use of the two most physically similar donor stations,
the best performance results were obtained with ISW1 for 5 out of 8 target stations (i.e., D21A167,
D21A213, E21A002, E21A022, and E21A058). On the other hand, in case of the use of the three most
physically similar donor stations, the best performance results were obtained with ISW1 for 5 out of 8
target stations (i.e., D21A167, D21A213, E21A002, E21A022, and E21A077). In both cases, the most
reasonable estimation results were mostly obtained when ISW1 was applied instead of ISW2 and ISW3.
Moreover, the NSE values mostly improved when the three most physically similar donor stations
were used instead of the two most physically similar donor stations.

As can be seen in Table 9, for all target stations other than for E21A064, the MDAR and the ISW
methods resulted in higher NSEs compared to the DAR method. For 6 out of 8 target stations, the
results can be rated as “very good” for NSE according to the performance ratings in Table 5. For 7 out
of 8 target stations, the RSR values were considered satisfactory (i.e., less than 0.7) according to the
performance ratings recommended by Moriasi et al. [47]. The negative PBIAS values for D21A213,
E21A002, E21A022, and E21A077 demonstrate that the method overestimated daily streamflow, while
positive PBIAS values for D21A167, D21A169, E21A058, and E21A064 demonstrate underestimation.
For all target stations, the statistical methods with the MA tend to achieve slightly higher NSE values.
However, the PBIAS values of the target stations did not change when the statistical methods with the
MA were used.

For the target station E21A058 as the example, the estimated daily streamflow values from the
statistical methods without MA were compared to the observed (original) daily streamflow values
in the hydrograph and scatter plots in Figure 6. The remarkably better agreement between observed
and estimated daily streamflow values by three statistical methods (i.e, DAR, MDAR, and ISW) was
obtained for E21A058 compared to the other target stations in the Middle Euphrates Basin. ISW2
gave a coefficient of determination (R2) of 0.91, which was higher than the R2 values of 0.87 and 0.90
obtained by using the DAR and MDAR, respectively. The NSE values for these methods ranged from
0.814 to 0.907, and the best NSE value was achieved by ISW2. The best NSE performance for E21A058
was obtained using ISW2 with the three most physically similar donor stations.

On the other hand, for the target station E21A058 as the example, the estimated daily streamflow
values from the statistical methods with MA were compared with observed-MA (smoothed) daily
streamflow values in the hydrograph and scatter plots in Figure 7. The statistical methods with MA
performed slightly better for E21A058.
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4.2. Upper Euphrates Basin

Using the same procedure applied for the Middle Euphrates Basin, the statistical methods were
applied on each of seven streamflow gauging stations in the Upper Euphrates Basin for the purpose of
estimating daily streamflow. Table 11 shows the sequence of the donor stations for each target station
in the Upper Euphrates Basin which was determined according to the similarity coefficient.

Table 11. Physically similar donor stations for each target station in the Upper Euphrates Basin.

Target Station
Donor Station

1st 2nd 3rd 4th 5th 6th

D21A001 E21A054 E21A051 D21A193 E21A033 E21A033 E21A066
D21A193 E21A033 E21A066 E21A056 E21A051 E21A051 E21A054
E21A033 E21A066 D21A193 E21A051 E21A056 E21A056 D21A001
E21A051 E21A054 E21A056 E21A066 E21A033 E21A033 D21A193
E21A054 E21A051 D21A001 E21A033 E21A056 E21A056 D21A193
E21A056 E21A051 E21A066 E21A033 D21A193 D21A193 D21A001
E21A066 E21A033 E21A051 E21A056 D21A193 D21A193 D21A001

According to the selection criteria of the donor stations, the NSE values obtained for the target
stations in the Upper Euphrates Basin were given in Table 12 for DAR and MDAR and in Table 13 for
ISW with three different power parameters (1, 2, and 3). Performance evaluations of the best statistical
method without and with the MA for each target station in the Upper Euphrates Basin are presented in
Table 14 and in Table 15, respectively.

For 2 out of the 3 target stations (i.e., E21A054 and E21A056) for which the geographically nearest
and the most physically similar stations were not the same, higher NSE values were obtained using
DAR with the most physically similar station (see Table 12). For E21A054 and E21A056, the NSE values
improved considerably when the most physically similar station was used. These results indicate
that the physical similarity may be a better selection criterion for the donor station in the study area
compared to the geographical distance between the stations.

Table 12. NSE values for the DAR and MDAR methods in the Upper Euphrates Basin.

Target Station
The Geographically

Nearest Donor Station
The Most Physically

Similar Donor Station
Two Most Physically

Similar Donor Stations
Three Most Physically
Similar Donor Stations

DAR DAR MDAR MDAR

D21A001 0.619 0.619 0.630 −0.328
D21A193 0.299 −0.646 −0.053 0.089
E21A033 0.446 0.446 0.377 0.319
E21A051 0.883 0.883 0.932 0.362
E21A054 0.159 0.885 0.585 −5.128
E21A056 −3.199 0.769 0.415 −0.586
E21A066 −0.067 −0.067 0.698 0.732

Table 13. NSE values for ISW with powers of 1, 2, and 3 in the Upper Euphrates Basin.

Target Station
Two Most Physically Similar

Donor Stations
Three Most Physically Similar

Donor Stations

ISW1 ISW2 ISW3 ISW1 ISW2 ISW3

D21A001 0.633 0.629 0.626 0.597 0.626 0.631
D21A193 0.015 −0.085 −0.185 0.307 0.217 0.108
E21A033 0.416 0.439 0.444 0.353 0.412 0.435
E21A051 0.931 0.928 0.921 0.811 0.877 0.905
E21A054 0.753 0.775 0.794 0.244 0.580 0.719
E21A056 0.404 0.541 0.640 −0.788 −0.306 0.083
E21A066 0.479 0.191 0.033 0.645 0.331 0.097
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Table 14. Performance evaluation of the best statistical method without the MA for each target station
in the Upper Euphrates Basin.

Target Station Method NSE RSR PBIAS

D21A001 ISW1 0.633 2 0.606 40.537 2

D21A193 ISW1 0.307 3 0.832 −51.370 3

E21A033 DAR 0.446 3 0.744 47.035 2

E21A051 MDAR 0.932 1 0.261 −10.006 1

E21A054 DAR 0.885 1 0.339 −7.892 1

E21A056 DAR 0.769 1 0.480 25.436 2

E21A066 MDAR 0.732 1 0.518 −22.121 1

1 Very good, 2 good, 3 satisfactory, and 4 unsatisfactory.

Table 15. Performance evaluation of the best statistical method with the MA for each target station in
the Upper Euphrates Basin.

Target Station Method NSE RSR PBIAS

D21A001 ISW1-MA 0.646 2 0.595 40.537 2

D21A193 ISW1-MA 0.305 3 0.834 −51.371 3

E21A033 DAR-MA 0.453 3 0.740 47.035 2

E21A051 MDAR-MA 0.939 1 0.248 −10.006 1

E21A054 DAR-MA 0.897 1 0.322 −7.892 1

E21A056 DAR-MA 0.780 1 0.469 25.436 2

E21A066 MDAR-MA 0.749 1 0.501 −22.120 1

1 Very good, 2 good, 3 satisfactory, and 4 unsatisfactory.

As can be seen in Table 12, for all target stations other than E21A033, E21A054, and E21A056,
higher NSE values were obtained with MDAR compared with DAR. Especially for E21A066, the NSE
value improved considerably with MDAR as compared with DAR. For D21A001, E21A051, E21A054,
and E21A056, the NSE values decreased when MDAR was applied using the three most physically
similar donor stations instead of the two most physically similar donor stations (see Table 12). In case
of use of the three most physically similar donor stations, the third most physically similar donor
stations for the target stations D21A001, E21A051, and E21A054 were determined as D21A193, E21A066,
and E21A033, respectively. All NSE values obtained for these target stations using the DAR method
utilizing their third most physically similar donor stations were negative. The drainage areas of these
target stations and their third most physically similar donor stations are very close to each other.
Therefore, the weight of their third most physically similar donor stations for streamflow estimation of
these target stations is significantly larger. As a result, the NSE values obtained for the target stations
D21A001, E21A051, and E21A054 using MDAR with three most physically similar donor stations are
predominantly influenced by their third most physically similar donor stations. On the other hand, for
E21A056, the reason is slightly different from the others. The NSE value obtained for E21A056 using
the DAR method utilizing its third most physically similar donor station E21A033 was too low (i.e.,
−10.029). Although the contribution of the donor station E21A033 is not much more than the other
two, this leads to poor estimation performance for E21A056 when MDAR was applied using the three
most physically similar donor stations.

As can be seen in Table 13, in case of the use of the two most physically similar donor stations,
the best performance results were obtained with ISW1 for 4 out of 7 target stations (i.e., D21A001,
D21A193, E21A051, and E21A066). On the other hand, in case of the use of the three most physically
similar donor stations, the best performance results were obtained with ISW3 for all target stations
other than D21A193 and E21A066. As the power parameter increased from 1 to 3, the NSE values
mostly improved when the three most physically similar donor stations were used, whereas the NSE
values mostly decreased when the two most physically similar donor stations were used. Moreover,
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the NSE values mostly improved when the two most physically similar donor stations were used
instead of the three most physically similar donor stations.

As can be seen in Table 14, for all target stations other than for E21A033, E21A054, and E21A056,
the MDAR and the ISW methods resulted in higher NSE compared to the DAR method. For 4 out of 7
target stations, the results can be rated as “very good” for the NSE according to the performance ratings
in Table 5. For 5 out of 7 target stations, the RSR values were considered satisfactory (i.e., less than
0.7) according to the performance ratings recommended by Moriasi et al. [47]. The negative PBIAS
values for D21A193, E21A051, E21A054, and E21A066 demonstrate that the method overestimated
daily streamflow, while positive PBIAS values for D21A001, D21A033, and E21A056 demonstrate
underestimation. For all target stations other than D21A193, the statistical methods with MA tend to
achieve slightly higher NSE values. However, the PBIAS values of the target stations did not change
when the statistical methods with MA were used.

For the target station E21A051 as the example, the estimated streamflow values from the statistical
methods without the MA were compared to observed (original) streamflow values in the hydrograph
and scatter plots in Figure 8. The remarkably better agreement between observed and estimated
streamflow values by three statistical methods was obtained for E21A051 compared to the other stations
in the Upper Euphrates Basin. Both MDAR and ISW1 gave a coefficient of determination (R2) of 0.94,
which was higher than the R2 values of 0.89 by using DAR. The NSE values for these methods ranged
from 0.883 to 0.932, and the best NSE value was achieved by MDAR. The best NSE performance for
E21A051 was obtained using MDAR with the two most physically similar donor stations.
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On the other hand, for the target station E21A051 as the example, the estimated streamflow values
from the statistical methods with the MA were compared to observed-MA (smoothed) streamflow
values in the hydrograph and scatter plots in Figure 9. The statistical methods with the MA performed
slightly better for E21A051.
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5. Conclusions

This study provided a comparative evaluation of three statistical methods, DAR, MDAR, and
ISW, which estimate daily streamflow at ungauged basins. These statistical methods were applied to
two study basins: The Middle and Upper Euphrates basins in Turkey. DAR was implemented with the
most physically similar donor station determined using the similarity coefficient. On the other hand,
the two and the three most physically similar donor stations were used with both MDAR and ISW.
By using three different power parameters (1, 2, and 3) in ISW, the effect of the selection of different
power parameters on the accuracy of the daily streamflow estimation was tested. In addition, this
study investigated the effects of the statistical methods using the smoothed data by the MA on the
accuracy and reliability of daily streamflow estimation. Three statistical methods using the smoothed
data by the MA, named DAR-MA, MDAR-MA, and ISW-MA, were proposed. The performance of
each statistical method was evaluated in terms of the NSE, RSR, PBIAS, and R2 between the observed
and estimated daily streamflow. When the estimated daily streamflow values at the target station were
obtained from the statistical methods using the observed (original) daily streamflow values at the
donor station(s), they were compared to the observed (original) daily streamflow values at the target
station. On the other hand, when the estimated daily streamflow values at the target station were
obtained from the statistical methods using the observed-MA (smoothed) daily streamflow values at
the donor station(s), they were compared to the observed-MA (smoothed) daily streamflow values
at the target station. These two approaches were presented to estimate the daily streamflow values
with and without MA. It is believed that the results will help decision makers choose the best one for
their objectives.

In the Middle Euphrates Basin, the DAR method resulted in negative NSE values. indicating
unsatisfactory performance for 3 out of 8 target stations when the most physically similar donor station
was used. These negative NSE values obtained with DAR improved considerably when the three most
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physically similar donor stations were used with MDAR. Higher NSE values were mostly obtained
from both MDAR and ISW used with the three most physically similar donor stations instead of the
two most physically similar donor stations. ISW with a power parameter of 1 (i.e., ISW1) mostly
outperformed compared to ISW2 and ISW3, when both the two and the three most physically similar
donor stations were used. The results obtained for 8 target stations in the Middle Euphrates Basin
indicated that ISW for 4 stations, MDAR for 3 stations, and DAR for 1 station performed best in
estimating daily streamflow. For all but one target station, the NSE values obtained were greater
than 0.6, indicating good or very good performance. For all target stations, the performance of the
best statistical method for each target station slightly improved when the smoothed data by the MA
was used.

In the Upper Euphrates Basin, for one target station, the NSE value improved from a negative to
over 0.7 when MDAR was applied instead of DAR. Higher NSE values were mostly obtained from
both MDAR and ISW used with the two most physically similar donor stations instead of the three
most physically similar donor stations. ISW1 used with the two most physically similar donor stations
and ISW3 used with the three most physically similar donor stations gave better performance than the
others. The results obtained for 7 target stations in the Upper Euphrates Basin indicated that DAR for
3 stations, MDAR for 2 stations, and ISW for 2 stations performed best in estimating daily streamflow.
For all but two target stations, the NSE values obtained were greater than 0.6, indicating good or very
good performance. For 6 out of 7 target stations, the performance of the best statistical method for
each target station slightly improved when the smoothed data by the MA was used.

The overall results suggest that, besides the statistical method selection, the selection of appropriate
donor stations is an important step to achieve better streamflow estimates at target stations. Also
important is that increasing the number of donor stations can also improve or decrease estimation
performance. Besides, the estimation performance of the statistical methods can vary from basin
to basin. Moreover, data preprocessing can have a positive effect on the estimation performance of
statistical methods.

Finally, since obtaining reliable and accurate streamflow estimations is very important in water
resource studies, the statistical methods used in the study can be easily applied for decision making
and design in many water resources projects that have difficulty in obtaining data.
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