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Abstract: Recent years have witnessed considerable developments in multiple fields with the potential
to enhance our capability of forecasting pluvial flash floods, one of the most costly environmental
hazards in terms of both property damage and loss of life. This work provides a summary and
description of recent advances related to insights on atmospheric conditions that precede extreme
rainfall events, to the development of monitoring systems of relevant hydrometeorological parameters,
and to the operational adoption of weather and hydrological models towards the prediction of flash
floods. With the exponential increase of available data and computational power, most of the
efforts are being directed towards the improvement of multi-source data blending and assimilation
techniques, as well as assembling approaches for uncertainty estimation. For urban environments,
in which the need for high-resolution simulations demands computationally expensive systems,
query-based approaches have been explored for the timely retrieval of pre-simulated flood inundation
forecasts. Within the concept of the Internet of Things, the extensive deployment of low-cost sensors
opens opportunities from the perspective of denser monitoring capabilities. However, different
environmental conditions and uneven distribution of data and resources usually leads to the adoption
of site-specific solutions for flash flood forecasting in the context of early warning systems.

Keywords: flash flood; flood forecast; flood prediction; rainfall prediction; precipitation forecast;
early warning systems; flood inundation forecast

1. Introduction

Flash floods (FFs) are among the most damaging types of weather-related disasters faced nowadays.
They may be caused either by extreme precipitation, by the failure of human-made structures, such as
dams, or by complex water-snow interactions. The fast development of FFs imposes additional
challenges for early prediction when compared to riverine floods. Structural measures adopted to
reduce the impact of these events include the construction of physical components aimed to enhance
the overall resilience of drainage systems, such as levees and detention ponds. Nonstructural solutions
include the adoption of regulations for land use/occupation, personal training for responsive actions,
and the implementation of operational flash flood early warning systems (FFEWSs).

A core feature of FFEWSs is the capability to perform timely and accurate FF forecasts. Methods
for FF forecasting demand continuous improvement, mainly in the current context of progressive
changes in urbanization and climate patterns that lead to an increased susceptibility to FFs observed in
different locations worldwide [1–3]. The work developed by Hapuarachchi et al. in 2011 [4] brings
comprehensive state-of-the-art for its time in the topics of input data, modeling approaches and
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estimation of uncertainties related to FF forecasting. Since then, several advances were observed in
multiple related fields driven by an expansion of monitoring capabilities, consolidation of extensive
datasets, and the establishment of higher resolution models due to increasing computational power.

The objective of this review paper is to provide a centralized summary of recent developments
associated with FF forecasting with a focus on existing or potential real-time operational applications
and to discuss the latest insights on promising opportunities for their enhancement. The main
contribution of this paper relies on answering the questions, “How has flash flood forecasting evolved
in the last decade?” and “Which are the current major gaps and trends in this field?”.

As such, a non-structured literature review was performed over a selected number of papers
published in renowned peer-reviewed journals, official technical reports, and conference abstracts
considered relevant for topics related to the enhancement of operational FF forecasting.

Scope, Definitions, and Work Structure

Flash floods are defined by the United States’ (US) National Weather Service as “A rapid and
extreme flow of high water into a normally dry area, or a rapid water level rise in a stream or creek
above a predetermined flood level, beginning within six hours of the causative event (e.g., intense
rainfall, dam failure, ice jam)” [5]. From an operational perspective, priority is usually given to the
capability of predicting their occurrence, while for riverine floods primary importance is given to the
prediction of their magnitudes [6].

Various terminologies can be applied for specific activities associated with prediction systems.
In this work, “anticipation” is used to qualitatively describe the expected occurrence/non-occurrence
of an event in the near future, with no (or very few) details about the upcoming scenario. The term
“forecast” is used for the activities that generate quantitative information in time and space. Specifically,
the terms “short-term forecast” and “nowcast” are used for forecast windows of up to 6 h [7,8],
and “long-term forecast” is applied when the forecast window is longer.

This work considers only events driven by extreme precipitation due to their significantly higher
occurrence when compared to the ones triggered by other circumstances. Pluvial FFs can be caused by
deep and local convective precipitation, orographic effects, storm surges, and cyclones. As cyclones
are usually associated with synoptic-scale patterns and have their specific and extensive research field,
they are not explicitly discussed in this work. From this perspective, FF forecasting is highly related to
the challenging meteorological problem of predicting extreme local rainfall events [9].

Multiple approaches were proposed and implemented for FF prediction as environments with
different configurations and available datasets are prone to such types of hazards, usually leading to the
adoption of customized solutions. FF prone areas include non-urban steep catchments [10], urban or
semi-urban catchments [2], urban neighborhoods served [11] (or not [12]) by a central drainage channel,
and coastal urban zones [13], as illustrated in Figure 1. In this work, we use the expression “catchment”
(and “sub-catchment”) for areas in which runoff is directed to a single outlet point (and an inlet point
is present). When the boundaries of the study area take into consideration non-geomorphological
delineations (as administrative borders), the term “neighborhood” is used. When both boundary
definitions are acceptable, the expressions “zone” or “environment” are interchangeably used.

As this type of hazard is mainly characterized by occurring with short development time and on
small catchments, advances towards: (1) increase in the spatiotemporal resolution and precision of
input and output data, (2) increase of overall lead time and awareness, and (3) reduction of the total
computational expenses for the generation of relevant products are assumed to be of interest to the
problem and are explored in this work.

The discussion is presented as follows. In Section 2, the different approaches usually adopted to
determine whether a FF is expected or not are described. In Section 3, we comment on results from
a selected number of recently published exploratory analyses on atmospheric contributing factors
for extreme precipitation events. In Section 4, recent advances and developments on remote sensing
techniques relevant to the subject are commented on. Precipitation prediction and hydrodynamic
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models involved in forecasting chains are presented in Sections 5 and 6, respectively. The work is
concluded with a summarizing discussion of the key findings from the presented literature review and
recommendations of future work in the field.
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Figure 1. Different types of flash flood-prone environments include (a) non-urban steep catchments and
(b) urban neighborhoods served or (c) not by a central drainage channel, and (d) coastal urban zones.

2. Criteria for Deciding Flash Flood Occurrence

At the operational time, the resolution of whether or not a FF event is expected to happen in the near
future at a given location can be determined through different approaches and it is usually responsible
for triggering (or not) the first responsive actions to the upcoming hazard. The choice of which method
to adopt depends on multiple factors, including resource availability, previous experience acquired,
and even personal preferences of the operational team. The different approaches are presented in four
classes (Section 2.1 to 2.4), sorted by an increasing level of complexity. Such division is derived from
the classification adopted by Hapuarachchi et al. [4], with the difference that two families of rainfall
comparison methods are defined, taking into consideration whether surface conditions are considered
or not in the representation of the rainfall-runoff process. A simplified diagram of the different families
of approaches is presented in Figure 2.
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2.1. Flash Flood Susceptibility Assessment (FFSA)

One relatively simple approach that can be used as a first step for anticipating FF events is
based on the assessment of multiple hydrometeorological conditions known to precede extreme
precipitation scenarios. It can be performed through ingredients-based [14], checklists [15], or scoring
techniques [16].

Quantitative precipitation forecast (QPF) products are frequently considered to be part of the data
available for FF forecasters. However, when they are missing or considered not reliable, a core objective
becomes the prediction of extreme rainfall events itself. Meteorological parameters traditionally
explored for such include precipitable water (PW), relative humidity (RH), dew point temperature
(Td), convective available potential energy (CAPE), and the so-called K-index, which describes the
local potential for thunderstorms [17]. When antecedent surface conditions, such as surface soil
moisture (SSM), are part of the predictors, they are accounted for through simplified means, such as
the integration of recently observed precipitation. Due to its meteorological-driven basis, this family of
monitoring activities is usually performed by weather service teams (i.e., meteorologists) instead of by
river forecast centers (i.e., hydrologists).

Research areas of benefit for the flash flood susceptibility assessment (FFSA) include the search
for optimal meteorological FF predictors, the application of data provided by newly available
meteorological monitoring systems by operational teams, and the proposal of strategies to communicate
uncertainties associated with the eventual unavailability of part of the data used [18].
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2.2. Rainfall Comparison with Surface Conditions Neglected (RC-SN)

When QPF products are available, the decision of whether a FF is expected to happen on a
catchment can be made based solely on a threshold-exceedance assessment of the predicted peak
precipitation accumulation value [19].

Rainfall frequency analysis approaches can be used for establishing the raw static thresholds.
Rainfall return periods are usually adopted on FFEWS designed for large areas covering multiple
low-urbanized catchments, since such locations are usually poorly monitored and the dataset needed
for empirical definitions is thus unavailable. QPF intensity values are translated to their respective
estimated return periods based on reforecast analysis (e.g., European Precipitation Index based on
simulated Climatology (EPIC) [20,21]) or on intensity duration frequency (IDF) curves retrieved either
from radar (e.g., Guadalhorce basin Flood Warning System (GFWS) [22], European Rainfall-InduCed
Hazard Assessment system (ERICHA) [23]) or rain gauge [24] observations. When the monitored
catchments are assumed to share similar rainfall-runoff response behavior, a common return period
value is usually applied as the threshold for all gauges covered by the system, which favors a fast
interpretation of the data.

For urban environments, in which rainfall-runoff response can be highly heterogeneous in space,
rainfall thresholds can be defined at neighborhood level if past FF events were properly documented.
Under such circumstances, recent works have obtained acceptable results by simply performing
graphical analysis of historical events [25] or by updating first-guess thresholds established from
simplified hydrodynamic simulations on a hit-and-miss fashion [26]. These works illustrate the
importance and applicability of high-quality disaster datasets for FF forecasting.

Since the QPF was the sole input considered by this approach, advances in precipitation forecast
capabilities are considered of special benefit for rainfall comparison with surface conditions neglected
(RC-SN) approaches.

2.3. Rainfall Comparison with Surface Conditions Considered (RC-SC)

The family of approaches based on rainfall comparisons with surface conditions considered
(RC-SC) evaluates the raw rainfall forecasted taking into consideration the respective effective rainfall
to be generated. For each location, a static flood-initiating runoff threshold (Thresh-R) value is defined.
In real-time, catchment states (e.g., SSM and channel storage) are continually updated taking into
consideration remotely sensed data. To consider such transient conditions, FF-generating rainfall
thresholds are also dynamically updated and then compared against QPF peak values (backward
comparison). The additional component, usually a hydrologic model, in the prediction chain used for
tracking the estimated surface parameters increases the overall complexity of such systems. At gauged
locations in which a reliable rating curve is available bank full water level values can be used as the
Thresh-R [27]. For ungauged sites, Thresh-R values can be estimated from the flow frequency analysis
of simulation datasets [28].

The flash flood guidance (FFG) is probably the most prominent framework of this approach. It was
adopted by river forecast centers in the US in the 1970s and has been recently implemented operationally
in different countries [6]. It is based on the recurrent estimation of the total raw precipitation needed to
occur during specific time intervals (usually 1, 3, and 6 h) to cause flood scenarios, and the rainfall-runoff

transformation is usually performed by a continuous hydrological model, be it spatially lumped flash
flood guidance (LFFG) or gridded flash flood guidance (GFFG) [29,30]. Regardless of the discretization
used to represent the terrain in the hydrological model, rainfall is finally represented as uniformly
distributed so that a single precipitation value can be used as a threshold. The uncertainty estimation
for these methods should account for both the rainfall data aggregation step [31] and the uncertainties
of the own input data used [32]. Recent efforts applied to enhance the representativeness of the
uncertainty associated to FFG values include the consideration of the spatial rainfall features defined
through statistical analysis [33] and the adoption of Bayesian probabilistic approaches to consider the
fact that the same amount of accumulated rainfall may or may not trigger floods [34].
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To simplify the operational forecasting chains, promising probabilistic approaches based on
Bayesian utility [35] and risk entropy [36] paradigms were presented. The probabilistic functions used
to dynamically update the critical rainfall values were fitted using extensive offline hydrological model
simulations assuming simplified antecedent SSM conditions.

2.4. Flow Comparison (FC)

Flow comparison (FC) approaches use QPF products as input to real-time running hydrological
models so that the simulated output surface flow (expressed as surface runoff or channel discharge) is
directly compared against static Thresh-R values (forward comparison). Such a direct comparison has
the advantage of also providing information related to the magnitude of the upcoming event.

To enhance communication among stakeholders, Thresh-R values are usually presented in terms
of the return period. Flow duration curves can be derived from grid-based statistical analysis of
multiple historical simulations [37,38] or from flow quantile regionalization of gauged data [39,40].

2.5. Performance Comparison and Multi-Approach Tools

The increasing number of proposed and implemented FF forecasting systems motivated recent
works based on comparative analysis to identify the most accurate approaches adopted. The critical
success index (CSI) is a common metric used for assessing the efficiency of an operational system on
detecting the occurrence of real FF events (hits) in studies developed over areas where a considerable
number of FFs are registered. CSI also takes into consideration the observed events that were not
detected (misses) and false alarms issued by:

CSI =
hits

hits + misses + false alarms
(1)

in which a CSI value of 1.0 means a perfect performance, while a value of 0.0 means a total lack of skill.
A set of selected operational FFEWS is presented with their core features in Table 1. The results

summarized in Table 2 from recently published comparison works illustrate how the best criterion for
detecting FF scenarios depends on the target domain. Overall, the increase in complexity associated
with the transition from a RC to a FC approach is justified by a significant gain in performance for
systems covering large domains [38,41]. Such results motivate the inclusion of hydrological models
into forecasting chains of FFEWSs under implementation [42]. However, the same pattern was not
observed in studies developed over more restricted scopes [22,43]. One explanation can be that systems
covering large domains may include several catchments that, despite being small, are not urbanized
and present smooth relief. Such catchments are more prone to floods originated from the runoff

concentration downstream of the rainfall location and are better represented by hydrologic models
due to their capability to identify floods not occurring at the exact same location as the causative
rainfall cell. Specific-domain systems, on the other hand, are usually implemented to cover regions
known to be extremely “flashy”, be it due to the presence of urban areas and/or mountains, and
the almost instantaneous process of rainfall-runoff transformation significantly reduces the role of
hydrological models in the forecasting chain. However, most of the comparative works do not take
into consideration RC methods based on empirical and probabilistic approaches, despite their potential
to perform FF forecasts [36]. Besides the performance, another critical element to be considered is the
usual lead time for FF detection associated with each approach. As reported by Lincoln [44], despite the
potential for less accurately representing the actual reports of FFs, a RC-SN system using uncorrected
radar rainfall estimates as the input was considered more helpful for river forecast centers operators
than its FC-based counterpart fed with gauge-corrected quantitative precipitation estimations (QPE)
due to the fact that the update time of the former was much shorter than the latter, thus increasing the
response time of decision-makers for responsive actions.
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Table 1. Summary of selected reported operational FFEWS systems sorted by criteria.

Reference Criteria Method System Coverage QPE Source QPF Source Resolution Forecast Window

[20,21,45] RC-SN EPIC-EFAS 1 Continental Europe N/A NWP 2 6 h/7 km 5 days
[23,46] RC-SN ERICHA-EFAS Continental Europe N/A Radar extrapolation 15 min/1 km 6 h

[47] RC-SC FFG-BSMEFFG 3 Multinational Middle East Satellite, radars CP-NWP 4 1 h/50 km2 6 h
[48] RC-SC FFG-HDRFFGS 5 Haiti, Dominican Republic Satellite CP-NWP 3 1 h/70 km2 36 h
[38] FC ERIC-EFAS Continental Europe N/A 6 NWP 2 6 h/1 km 5 days

[37,49] FC DHM-TF-FFMP 7 Single large basin (US) Radar mosaic Radar extrapolation 1 h/4 km 1 h
[39,40,50] FC AIGA 8 -Vigicrues Flash National (France) Radar mosaic N/A 15 min/1 km 6 h

[51] FC Flood-PROOFS 9 Regional (Liguria, Italy) Satellite Stat. down. NWP 10 30 min/1 km 3 days
1 The European Precipitation Index based on Climatology (EPIC) was replaced operationally by the European Runoff Index based on Climatology (ERIC) in the context of the European
Flood Awareness System (EFAS). 2 Numerical weather prediction (NWP). 3 Black Sea and Middle East FFG system (BSMEFFG). 4 Convection-permitting NWP (CP-NWP). 5 Haiti and
Dominican Republic FFG (HDRFFGS). 6 Soil moisture of ERIC is updated daily with NWP estimations. 7 Distributed Hydrologic Model-Threshold Frequency (DHM-TF) in the context of
the Flash Flood Monitoring and Prediction (FFMP) program. 8 Geographic information adaptation for flood warning (in French: Adaptation d’Information géographique pourl’Alerte en
crue—AIGA). 9 Flood-PRObabilistic Operational Forecasting System (Flood-PROOFS). 10 Statistical downscaling of an NWP product.

Table 2. Summary of results from selected comparative works of systems based on different flash flood identification criteria.

Reference Criteria Description Best CSI * Resolution Coverage Conclusion/Highlights

[52]

RC-SN Empirical rainfall thresholds 0.29–0.45

30 min/Lumped Three non-urban
catchments, Italy

Simple empirically-based thresholds presented the best
performance for catchments with limited datasets.
Others outperformed depending on available data.

RC-SC Online model simulation 0.20–0.57
RC-SC Bayesian utility function 0.14–0.56
RS-SC Risk entropy function 0.14–0.68

[41]
RC-SC LFFG 0.19–0.34

1 h/4 km Large monitored rural
basin, US (70 stations)

Clean overperformance of the FC approach when
compared to RC-SC (FFG) methods.RC-SC GFFG 0.20–0.22

FC DHM-TF 0.32–0.47

[38] RC-SN EPIC 0.34 6 h/1 km Continental Europe The cost-benefit of the FC approach was positive.
FC ERIC 0.49

[43] RC-SN ERICHA N/A 10 min/1 km
Mountainous periurban

region, Italy
No significant differences found in performance between

the two systems.FC Flood-PROOFS

[22] RC-SN Rainfall IDF curves N/A 10 min/1 km
Large poorly gauged

periurban basin, Spain
Both approaches were efficient for FF forecasting, but FC

is also efficient for non-FF forecasts.FC Online model simulation

* CSI values are presented in ranges when studies considered multiple scenarios. The best CSI value is underlined.
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With that perspective, interactive toolsets were proposed and implemented operationally to
communicate multiple metrics concurrently on clear graphic user interfaces to support decision-makers
(e.g., Hydrometeorological Risks in Mediterranean and Mountainous Areas (in French: Risques
Hydrométéorologiques en Territoires Montagnards et Méditerranéens—RHYTMME) [53], Flooded
Locations and Simulated Hydrographs (FLASH) [54]).

3. Insights into Meteorological Contributors to Flash Floods

The problem of identifying and explaining meteorological contributing conditions to FFs causing
extreme precipitation has long been explored. Extensive analysis of overall synoptic and mesoscale
atmospheric patterns [9], together with the consolidation of observed and modeled datasets, motivated
the development of studies focused on quantitatively identifying effective antecedent FF atmospheric
descriptors to support decision-makers and response teams (the FFSA approach).

Despite overall agreement that descriptors associated to air moisture (e.g., RH, PW, Td) and
atmospheric stability (e.g., K-index, CAPE) have the high predictive potential for extreme rainfall
events, and thus to pluvial FFs, there is still not a “silver bullet” combination of parameters that are
widely applicable. Rather, this seems to be a problem to which solutions are either scope-, resolution-
or data source-dependent. Recent works exploring observed rawinsonde data [55], atmospheric model
forecasts [56,57], and reanalysis [15,58] outputs reached different optimal sets of best descriptors.
These results make the use of techniques such as sensitivity analysis for feature selection (e.g., [56,57]),
which is almost a mandatory step for each activity related to FF forecasting due to the increasing volume
of data and candidates. However, metrics associated with PW, such as absolute [56], anomaly [55],
or spatial inhomogeneity [59] values, are consistently considered powerful predictors. These findings
highlight the importance of developing and enhancing methods to take into consideration such
meteorological factors into forecasting chains.

4. Remote Sensing Techniques

4.1. Precipitable Water (PW)

A monitoring approach of special interest for FF forecasting due to its short update time (around
15 min) is through the analysis of the travel time delays of communication signals from dense Global
Navigation Satellite System (GNSS) networks, such as the Global Positioning System (GPS).

This concept has long been explored [60] and has led to the implementation of near real-time
national monitoring systems by different countries, including the US, Germany, and China [61–63].
Those systems make use of their respective national networks to complement the existing international
positioning stations managed as part of the International GNSS Service. A remarkable active
research field targets the development of methods to integrate additional constellations of GNSS
satellites (e.g., GLONASS, BeiDou and Galileo) towards the improvement of data resolution and error
reduction [64,65]. However, it has to be clarified as to how the enhancements obtained from such
integration can be reflected as enhancements towards the early identification of local convective systems.

Recent lines of research explore the gains and prediction power of GPS-based PW monitoring
approaches for anticipating extreme precipitation through the proposal of threshold-based techniques
for issuing FF warnings [59,66] and through the use of trend analysis as a complement to radiosonde
observations [67]. Despite promising results that suggest that similar experiments should be developed
for further locations, there is a consensus that PW-related values alone are not sufficient to act as a
pluvial FF predictor [68].

4.2. Quantitative Precipitation Estimation (QPE)

Due to the high spatiotemporal variability of precipitation events usually associated with FFs,
several limitations emerge for the use of rain gauge data alone, mainly due to the low density of sensors
deployed at most of the sites [69]. In this context, the use of weather radar and satellite products have
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been recognized for the purpose of performing FF forecasts due to their capability to describe rainfall
fields of large areas.

Recent years have witnessed the consolidation of weather radar networks with national coverage
in different countries [70–73]. Those systems are totally or partially based on C- or S-band with Doppler
and dual-polarization technologies, usually generating observation products with temporal resolution
in the order of 5 to 10 min and spatial discretization of 0.25 to 1 km. Many operational FFEWSs with
extensive coverage of ungauged basins rely on mosaic QPE products derived from those radar systems,
such as the multi-sensor precipitation estimate (MPE), the high-resolution precipitation estimator
(HPE) [74,75], and the precipitation composites from the Operational Program on the Exchange of
Weather Radar Information (OPERA) [73]. However, some studies [76,77] indicate that radar products
should present a temporal resolution of 1 min to be considered suitable for urban modeling. From that
perspective, the increasing popularization of X-Band weather stations, with resolutions of up to
0.1 km/1 min, appears as the most promising advance for urban FF forecasting in the context of
monitoring systems over the upcoming years [78–80]. Recently presented study cases have assessed the
accuracy and positive impact of using dual-polarized X-band radar data as complements to the regional
large scale networks, mainly for dense urban areas [81–83], despite the known issues associated with
the high noise and susceptibility to signal attenuation that demands careful attention.

Continuous research activities have been developed to estimate the propagation of weather
radar-originated uncertainties, which are considered high for both mountainous [84] and urban
environments [85], on the issuing of FF warnings [32,86]. The process of merging rain gauge and
radar data in real-time is a continuously researched topic, and the choice of the approach used
operationally may be influenced by multiple environmental factors, such as rain gauge density, rainfall
event features, proximity to the radar station and temporal resolution of the products [87], and by
the level of complexity of the techniques [88]. Methods proven to enhance radar data operationally
at the hourly or sub-hourly scales required for FF forecasting include mean field bias (MFB) [89],
kriging with external drift (KED) [90], and Bayesian combination (BAY) [91]. However, as suggested
by Ochoa-Rodriguez et al. [88], due to the ever-growing volume of heterogeneous available data,
the research field would benefit from more studies exploring data-driven methods and integration of
multi-source, multi-resolution datasets.

Satellite-based observations can also be considered valuable for near real-time QPE due to their
usual global coverage. Rainfall rate estimations based on passive microwave (PMW) data tend to be
more accurate than their infrared (IR) -based counterparts but are generated with longer latency [92] and
thus may provide limited support for FF forecasting. With the continuous increase of data-availability,
multi-sourced products have emerged and been improved. The Global Hydro-Estimator (GHE) from
the National Oceanic and Atmospheric Administration (NOAA) is an example of a multi-constellation,
IR-based operational QPE product with 15–20 min latency time and spatial resolution in the order
of 4 km [93]. It is used as the input for the FFG systems installed on poorly monitored countries [6].
The deployment of new satellites equipped with sensors capable to detect a wider range of IR
spectral bands, such as the undergoing replacement of the Geostationary Operational Environmental
Satellites (GOES) by GOES-R series, have the potential to increase the spatial discretization of the
precipitation products by up to 2 km [94]. The precipitation estimation from remotely sensed
information using artificial neural networks with a cloud classification system (PERSIANN-CCS)
algorithm uses a multilayer feed-forward neural network to generate QPE from IR data [95]. It was
recently implemented operationally, producing rainfall products with 1 h/0.04◦ (~4 km) resolution and
1 h latency using PMW calibrations [96]. Despite evidencing the potential for using neural network
systems towards the generation of QPE products, recent evaluation works found that such products
can contain considerable underestimation of precipitation estimates and suggestion caution on their
current applicability for FF forecasting [97,98].
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4.3. Surface Soil Moisture (SSM)

When SSM is estimated taking into consideration precipitation as the sole water input,
the neglection of other potentially relevant processes such as irrigation may result in a decreased
performance of FF forecasting systems [99] into forecasting chains. This motivated the search for
approaches to assimilate SSM observations [100] and to assess their gains [101] towards runoff

predictions. Non-urban headwater catchments, where SSM plays a most significant role in the
generation of surface runoff, are usually insufficiently equipped with in situ soil monitoring equipment
capable of the needed real-time transmission. An alternative is the use of satellite data, which usually
have global coverage of the top layers of soil (up to 10 cm depth) and are made freely available by their
respective spatial agencies. Passive microwave-based remote sensing products have been developed
and assessed during the last decades with a proper agreement with local observations [102].

The last decade witnessed the launching of a considerable number of new satellite missions
capable of performing near-surface soil moisture measurements (e.g., Soil Moisture Ocean Salinity
(SMOS), Soil Moisture Active Passive (SMAP), Sentinel-1). Most of the currently active products
from independent satellite constellations are provided either with coarse spatial resolutions and short
revisiting time (in the order of 10 km/1 day) [103–105] or the opposite (e.g., 500 m/12-days [106]),
depending on the swath width of the respective sensor. For FF forecasting systems based on
hydrologic models, a shorter update time was found to play a more relevant role than finer
spatial discretization [107]; however, daily updates can still be considered a significant operational
constraint [101,108]. In this perspective, products based on the data blending of multiple satellites
missions, such as the Soil Moisture Operational Product System (SMOPS) [109], offer interesting
opportunities to improve the accuracy of FF forecasts, with their potential to provide sub-daily
resolution data, and their applicability for such purpose deserves to be assessed.

4.4. Drainage Network Monitoring and Controlling Systems

The data assimilation of the flow discharge observed in monitored drainage networks has the
potential of reducing the uncertainties of FF forecasting systems [110,111]. Due to the potential to
transport damaging objects at high velocity during extreme events, the use of non-intrusive ultrasonic
or radar sensors is preferred for flash flood-prone streams over their submersible counterparts [112].
Traditionally, only the higher magnitude channels are gauged by official agencies due to the high costs
associated with the acquisition and maintenance of precise equipment. Such sparse observations may
not provide valuable information for small-sized neighborhoods not served by a central discharge link
or for headwaters catchments prone to FFs.

Recent technological advances have led to the development of low-cost electronic systems capable
of transmitting significant volumes of information through the internet making use of now widely
available Wi-Fi connections, which made the deployment of several flow monitoring sensors more
feasible even for channels of lower magnitude. In this perspective, the emerging concept of the
Internet of Things (IoT) can be seen as an alternative to traditional supervisory control and data
acquisition (SCADA) systems due to the fact that representatives of the latter tend to be isolated
platforms characterized by lower levels of interoperability and scalability, while the former usually
makes use of the expanding wireless availability and open communication protocols to achieve higher
levels of flexibility. The IoT has been explored for the proposal and development of integrated systems
capable of supporting multiple flood-related sensed data sources, with case studies presented mainly
in the context of urban floods [113–115], some of them with the potential of performing autonomous
decisions towards the optimization of flood-mitigating structures [115,116] in real-time.

The increased popularization of densely monitored drainage networks can thus enhance the
efficiency of FF forecasting systems through the early identification of channels in overbank conditions
and of sewer systems operating above their capacity, but the migration of currently implemented
prototypes to effectively operational systems is yet to be assessed.
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5. Precipitation Modeling and Prediction

In most cases, QPF products are the main inputs for FF forecasting chains. Methods for obtaining
products with the high resolution required for FF forecasting are usually based on the downscaling
of coarser numerical weather prediction (NWP) models outputs, on the temporal extrapolation of
distributed remote sense observations (Figure 3), or on the integration of both approaches.
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5.1. Dynamical Downscaling

The first operational meteorological systems were limited to simulate synoptic-scale flows through
hydrostatic primitive equations, in which sub-grid convective phenomena are represented indirectly
using specific sets of parameters. Recent increases of overall computational power, data availability,
and understanding of physical atmospheric processes allowed the consolidation of the so-called
convection-permitting NWP (CP-NWP) models, which are based on hydrodynamic processes with a
spatial resolution of approximately 4 km or higher, enabling the explicit representation of mesoscale
events and local convection [117–120]. An illustrative selection of currently CP-NWP models in
operation is summarized in Table 3.

With the experience gained with operational CP-NWP systems, multiple works were developed
to assess their advantages. It has been observed that, despite increasing the overall performance when
compared to their background model products, some considerations need to be taken and addressed:
(1) The finer spatial scale of CP-NWP models results in higher uncertainties at the grid-scale due
to spatial noise, which demands the use of ensemble systems and assessment procedures that go
beyond the pixel-to-pixel comparison [121,122]; (2) CP-NWP products tend to be positively biased
when compared to products from synoptic-scale models, overestimating the magnitude of extreme
precipitation events [123–125], thus demanding data assimilation procedures; and (3) large-scale
convective events may be better represented by synoptic-scale models than by CP-NWP [124].
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The potential of overestimating extreme rainfall events was, unsurprisingly, reflected as an increase
in false alarms when the products of those models were applied to FF forecasting without intermediate
processing [126,127], which reasserts the need of bias correcting these products when hydrologic models
are involved in the FFEWS (RC-RC or FC approaches). Due to the complex physical basis of these
methods, uncertainties are usually expected to be quantified by ensemble products [128]. However,
the high computational cost demanded by the higher resolution models leads to a usually reduced
number of realizations being available. The work developed by Corazza et al. [129] illustrates how the
Poor Man’s Ensemble (PME) approach can be used to address this issue by considering ensembles
composed by deterministic products originated from multiple agencies and models. The authors
obtained estimated probabilities that were well correlated to observations, but a certain level of
underestimation detected was associated with the fact that members of both hydrostatic and CP-NWP
models were included in the ensemble. The assessment of applying the PME approach using only
CP-NWP model products is promising and yet to be developed.

Table 3. Selected CP-NWP operational quantitative precipitation forecast (QPF) products sorted by
spatial resolution.

Reference Model (Product) Agency Coverage Resolution Update Cycle

[117] WRF (HRRR) NOAA US 1 h/3 km 1 h
[118] AROME (France) Météo, France France 1 h/1.3 km 1 h
[120] COSMO (DE) DWD 1 Germany 15 min/2.8 km 3 h
[119] HRDPS MSC 2 Canada 1 h/2.5 km 1 h
[48] WRF CIMH 3 Hispaniola 1 h/4 km 6 h

[130] ALARO (Turkey) MGM 4 Turkey 1 h/4.5 km 6 h
1 German Weather Service (DWD); 2 Meteorological Services of Canada (MSC); 3 Caribbean Institute for Meteorology
and Hydrology (CIMH; 4 Turkish State Meteorological Service (MGM).

5.2. Statistical Downscaling

One of the main advantages of using a statistical downscaling approach is the extremely
low computational cost at the operational time when compared to dynamical downscaling.
Statistical downscaling approaches are based on performing regression analysis between coinciding
NWP-generated aerial estimations and gauge point observations. Methods successfully explored for
obtaining precipitation time series with hourly temporal resolution include filtered autoregression [131],
neural networks [132], and adaptable random forests [133].

Due to their statistical nature, the outputs obtained from such methods are usually directly
associated with the estimation of uncertainty of physically-based models [134,135]. Flood-PRObabilistic
Operational Forecasting System (Flood-PROOFS) [51] is an example of a flood forecast system that
includes the downscaling model RainFARM (acronym for Rainfall Filtered Autoregressive Model)to
obtain ensemble QPF of 30 min/1 km resolution from a deterministic NWP model of 7 km/3 h.
The estimated uncertainties were shown to acceptably represent the errors associated with the original
QPE product and illustrate the potential gains of applying statistical downscaling approaches to
perform FF forecasts. However, a remarkable drawback is the recurrent need for performing statistical
reanalysis every time a component of the source large-scale NWP system is changed, which limits their
adoption on operational forecasting chains.

5.3. Distributed Remote Sense Data Extrapolation

Extrapolating weather radar observations of precipitation in time is similar to the computer-vision
problem of predicting the next frames of a recorded video. It can be performed by extrapolating the
reflectivity values observed, which has output values that later need to be converted into precipitation
(radar echo extrapolation (REE)) or by directly producing QPF as output values out of the observed
reflectivity, thus implicitly embedding the so-called Z–R relationship.
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Motion tracking functions based on optical flow techniques have long been explored for REE.
Examples of operating systems include the use of variational echo tracking [136,137] and combinations
of the traditional Horn and Schunck approach with the Lucas–Kanade method [138].

The consolidation of extensive weather radar datasets allowed the development of data-driven
techniques based on analog-based approaches, with promising results being obtained for locations
with high orographic influence in the formation of precipitation [7,139]. Methods based on deep
learning, mainly exploring the capabilities of convolutional neural networks (CNNs), have started
to be explored in the last 5 years [140] and were proposed as benchmarks for precipitation nowcast
methods [141]. The integration of long short-term memory (LSTM) neural network approaches with
the satellite-based precipitation estimation algorithm PERSIANN-CCS was also shown to outperform
optical flow-based and NWP models, mainly for capturing the patterns of convective precipitation
systems [8]. However, as this is a still-emerging field, some relatively basic issues associated with the
implementation of deep learning algorithms for the task of frame prediction, such as which assessment
metric is the best to be used [142], are still under discussion in the community.

5.4. Multi-Model

The assessment that data extrapolation methods tend to overperform NWP models for lead times
of up to 2 or 3 h (and that NWP models are more reliable for longer horizons) [143,144] motivated the
exploration techniques for integrating both types of precipitation prediction products.

In the United Kingdom (UK), a dual-system approach has been adopted. By default,
the stratiform-focused Nimrod [145], based on Lagrangian persistence extrapolation of radar data,
is continuously executed and evaluated. When convective patterns are identified, the Generating
Advanced Nowcasts for Deployment in Operational Land-based Flood forecasts (GANDOLF) [146]
system, which is based on object tracking considering NWM estimated advection, is activated. Such a
strategy is justified by the best individual scenario-specific performances of each model [147,148].

Recently proposed approaches with an operational adoption include Integrated Nowcasting
through Comprehensive Analysis (INCA) [149–151], in which the weighting between two deterministic
nowcast/forecast models is constant and dependent on the lead time. In INCA, only radar extrapolation
is considered from 0 to 2 h lead time; from 3 to 6 h, both the radar extrapolation and the NWP-based
products are considered, with linearly increasing of importance (weighting) of the latter with respect
to the former; for 7 h onwards, only the NWP-based product is considered.

The Short-Term Ensemble Prediction System (STEPS) [152] is a probabilistic blending approach,
in which uncertainties from multiple scales and sources are considered in a fractal cascade for the
generation of a dynamically weighted ensemble product. The uncertainty level of each component is
calculated taking into consideration the climatological analysis of the forecasted value. The method
was adopted operationally in the UK and Australia in 2008 [153] and was successfully assessed for
urban hydrology [154,155].

Works exploring new blending techniques are undergoing, with the proposition of approaches
based on volume-correction [156] and harmony search adaptive weighting [157], for example. However,
the applicability of such methods for operational FF forecasting systems requires further assessment.

6. Hydrologic-Hydraulic Modeling and Forecasting

6.1. Runoff Simulation

Mostly for non-urban, ungauged and/or data-scarce catchments, lumped models were the first
to be explored and adopted operationally due to their simplicity, low level of data requirement and
computational demand. Sacramento soil moisture accounting (SAC-SMA), for example, was widely
used in the early versions of FFG systems in the US and is still used as part of large-domain systems
with online simulations [48,54].
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In the last decade, distributed rainfall-runoff and routing models were adopted operationally.
Multiple river forecasting centers in the US replaced their SAC-SMA-based models with Hydrology
Laboratory Research Distributed Hydrologic Model (HL-RDHM)-based counterparts. In Europe,
the LISFLOOD model is used in the operational FC-based approach ERIC, which is adopted as
part of EFAS [158]. Those systems operate on spatial scales in the order of 1 km to match the QPE
and QPF forcings involved in the forecasting chains. However, the high number of parameters
demanded by a physically-based approach may become a constraint due to the need for extensive,
often unavailable, descriptive datasets or challenging calibration procedures that may result in
high levels of uncertainty [159]. HL-RDHM, for example, is reported to require the calibration of
15 parameters per grid cell [160].

New models have been proposed using more hybrid conceptual-physical-based approaches
to obtain more parsimonious representations of the hydrological processes. Such models intensely
rely on topographic features to reduce the number of parameters used to describe the runoff and
routing processes [161] and have shown to be also suitable for sub-kilometer simulations of flash flood
events [162]. Operationally applied examples include the Continuum [163] and the Coupled Routing
and Excess Storage (CREST) [164] models, part of the Flood-PROOFS [43] and FLASH [54] systems
that require the calibration of 6 and 10 parameters per grid cell, respectively.

Arid and semi-arid regions are characterized by having more dynamic rainfall-runoff responses
due to the lack of vegetation coverage and organic matter, which makes the runoff generation more
dependent on the varying SSM conditions. In such regions, data assimilation of SSM can be particularly
beneficial when compared to humid environments [165]. The performance of the recently presented
hybrid conceptual-physical models over these specific conditions of parameter variability is yet to
be assessed.

In urban areas, floods are usually initiated when the drainage systems operate above their capacity.
Hydrological models can be coupled with hydraulic models so that the runoff estimated as the output
by the former is used as the input flow by the latter [166]. The Storm Water Management Model
(SWMM) [167], MIKE URBAN [168] and Infoworks CS are examples of established frameworks with
one-dimensional (1D) components for representing hydraulic systems such as sewer networks and
the presence of low-impact-development (LID) structures. The use of 1D drainage models alone
are considered not suitable for representing the overflow phenomenon, but they can be used to
estimate the locations of their occurrence through the identification of manholes in the overflow state,
for example [169].

Hydraulic sewer models can operate at spatiotemporal resolutions in the order of centimeters/
sub-minutes, which results in the need for high data availability and computational resources for online
simulations. Few locations have proper and available documentation of the installed sub-surface
drainage systems for an accurate model development, and the use of synthetic sewer networks derived
from digital elevation models (DEMs) and structural analysis have been proposed [170] and were able
to acceptably estimate the location of the underground pipes, but proper dimensioning of the diameters
of the conduits is still a challenging question that may limit the applicability of such approaches for
modeling extreme precipitation events [171].

Regardless of the purpose, the quantification of uncertainty associated with the model output
is exceptionally being valued, which is usually achieved through the use of ensemble forecasting
chains. In the context of FF forecasting, attention has been given to assess the uncertainty related
to the use of precipitation nowcasts [172,173] and to scenario-specific error patterns associated with
seasonality [174].

Due to the assumption that floods happen after water accumulates in the serving drainage
channel, channel discharge flow modeling may not properly represent complex scenarios in which local
surface ponding is observed, and flooding conditions are not necessarily associated with a channel state.
Additionally, the absence of associated inundation mapping data of systems based on flow-communication
only may limit the responsive steps that succeed in the forecasting phase of FFEWSs.
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6.2. Flood Inundation Simulation

Accurate flood inundation maps are extremely valuable products as they have the potential to
direct response efforts during emergency scenarios, particularly for dense urban areas.

Physically-based models used for the surface flow may be classified considering the spatial
dimensionality supported. Two-dimensional (2D) models represent only the surface flows,
thus abstracting the behavior of potentially existing drainage systems and relying on the high-quality
representation of the surface through high-resolution elevation and land cover classification maps.
In order to include the influence of well-described sewer networks, coupling approaches are
continuously explored to integrate 1D hydraulic models. In 1D–2D modeling, the two-dimensional
surface water spread is linked to the linear pipe and channel flows through connection points, such as
manholes and culverts. Surface structures such as streets can also be represented as channels with linear
water flows so that overland components can be simplified as 1D formulas, leading to the so-called
1D–1D coupling approaches [169]. In this context, LISFLOOD-FP [175] is a remarkable example of a
widely adopted 2D model that has been assessed in urban environments at high-resolution simulations
for scenarios of drainage systems overflow [176].

FF-related inundations are characterized by their high dynamicity and complexity, which demands
proper representation of momentum conservation. However, solving the full 2D-forms of the
Saint–Venant equation (SVE), mainly for the high spatial resolutions required in urban environments,
tend to become so computationally expensive that real-time online simulations are considered
unfeasible [169]. Several methods have been successfully explored to reduce the total simulation time
of surface flow models with acceptable accuracy loss based on meta-modeling (or model surrogating).
Physically-simplified surrogated models are based on the suppression of acceleration components
of the SVE and thus are only suited for floods driven by slow flows [177,178]. The few data-driven
surrogate inundation models proposed so far with adequate performance for representing spatial
resolution in the order of meters were based on feed-forward neural networks and present promising
results [179,180]. So far, those models have only used the simulated output maps of water depth as the
training target, thus the dynamic components (such as flow velocity) associated to the flood inundation
simulation have only been considered implicitly as part of the black-box training process. Their explicit
consideration should be explored as a way to increase the replicability of high inertial flows, a typical
feature for FFs.

The cellular automata (CA) concept explores simplified, parallelizable grid-based operations for
solving field-propagation problems. In the last decade, it has been applied both for simulating sewer
network flow [181] and for rapid flood inundation modeling using the Manning equation [182,183]
or simplified topographic-driven water spread [184] as part of the routing process. Recent works
have been developed to propose 1D–2D coupling approaches for a more realistic representation of
the drainage system [185] and to improve parallelization capabilities on complex networks [186] with
remarkable gains in computational time. However, the CA-based methods are still unable to replicate
inundation events characterized by high inertia due to the usual neglection of momentum conservation,
which can limit their applicability towards FF forecasting.

Considering that most of the physically-based inundation models assume that flood happens due
to the overflows of a drainage system, which is not a necessary condition for urban environments, a new
approach based on the surface water spread of instantaneous runoff generation at impervious regions
was recently proposed [12]. Despite presenting promising results, the performance of the model has
not been explored for scenarios of a spatial resolution higher than 50 m and its computational costs are
yet to be addressed for its potential online applicability in FFEWSs.

Advances in the adoption of LiDAR technology for DEM production [187] motivated recent
studies evaluating the adoption of high-resolution surface representation for urban flood inundation
simulations. The positive impact of using 10 cm resolution topographic data over their respective
1 m resolution counterpart to properly represent relevant features such as curbs was assessed, but the
computational cost associated with such a detailed representation may be considered a limitation
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for real-time operational purposes [188,189]. The use of such a hyper-resolution dataset may require
special processing so that relevant “hidden” water passways are properly represented in the DEM.
For such, structure-from-motion (SfM) techniques, which are based on photogrammetric and computer
vision interpretation of overlapping photos, have showed promising results as supplementary sources
of information for LiDAR [190] and for regular ground-based field surveys [191].

There is an interest in accounting for and communicating uncertainties of flood inundation
maps [192]. However, the computational cost associated with the forecast runs of multiple model
realizations results in unfeasible real-time operational applicability of the traditional ensemble approach.
As suggested by Teng et al. [178], Gaussian processes and polynomial chaos emulation are appealing
approaches to be explored in this context; however, to the best of the authors’ knowledge, no work has
been developed on such a topic.

6.3. Query-Based Approaches

A family of approaches focused on making use of the high-quality simulation products obtained
from full physical models without facing their expensive computational requirements in real-time is
based on pre-simulating (offline) flood events caused by several different “what-if” feasible precipitation
forcing scenarios. Pairs of input/output values used/obtained are stored in some sort of database schema
so that, during operational time, the predicted flooding conditions (outputs) can be retrieved almost
instantly from observed/forecasted conditions by a similarity search with the indexed inputs (querying)
in the assumption of constant cause/consequence relationships (Figure 4). In this context, multiple
combinations of methods used to represent, store, index, and query procedures have been explored.

Water 2020, 12, x FOR PEER REVIEW 17 of 30 

 

For such, structure-from-motion (SfM) techniques, which are based on photogrammetric and 
computer vision interpretation of overlapping photos, have showed promising results as 
supplementary sources of information for LiDAR [190] and for regular ground-based field surveys 
[191]. 

There is an interest in accounting for and communicating uncertainties of flood inundation maps 
[192]. However, the computational cost associated with the forecast runs of multiple model 
realizations results in unfeasible real-time operational applicability of the traditional ensemble 
approach. As suggested by Teng et al. [178], Gaussian processes and polynomial chaos emulation are 
appealing approaches to be explored in this context; however, to the best of the authors’ knowledge, 
no work has been developed on such a topic. 

6.3. Query-Based Approaches 

A family of approaches focused on making use of the high-quality simulation products obtained 
from full physical models without facing their expensive computational requirements in real-time is 
based on pre-simulating (offline) flood events caused by several different “what-if” feasible 
precipitation forcing scenarios. Pairs of input/output values used/obtained are stored in some sort of 
database schema so that, during operational time, the predicted flooding conditions (outputs) can be 
retrieved almost instantly from observed/forecasted conditions by a similarity search with the 
indexed inputs (querying) in the assumption of constant cause/consequence relationships (Figure 4). 
In this context, multiple combinations of methods used to represent, store, index, and query 
procedures have been explored. 

 
Figure 4. Comparison diagram of hypothetical online-run and query-based systems, both driven by 
SSM and QPF values. 

One example of such an approach was presented by Song et al. [11]. The authors used the 
observed water depth at two locations of a channel crossing an urban area to correlate, using a 2D 
matrix, the Thresh-R needed to increase the water level in the systems up to a flood-triggering 
threshold value. The Thresh-R was then mapped backward, based on pre-simulated scenarios, into 
its minimum total generation precipitation intensity (Pmin). Pmin was finally compared with QPF 
values for warning issuing purposes. 

Other works use a combination of self-organizing maps and recurrent neural networks to 
identify the most recurrent flood inundation map features simulated, thus reducing the total number 

Figure 4. Comparison diagram of hypothetical online-run and query-based systems, both driven by
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One example of such an approach was presented by Song et al. [11]. The authors used the observed
water depth at two locations of a channel crossing an urban area to correlate, using a 2D matrix,
the Thresh-R needed to increase the water level in the systems up to a flood-triggering threshold value.
The Thresh-R was then mapped backward, based on pre-simulated scenarios, into its minimum total
generation precipitation intensity (Pmin). Pmin was finally compared with QPF values for warning
issuing purposes.
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Other works use a combination of self-organizing maps and recurrent neural networks to identify
the most recurrent flood inundation map features simulated, thus reducing the total number of maps
stored. Optimistic results were obtained for resolutions of 3 h/75 m [193] and 1 h/5 m [194] and included
the modeling of a dense sewer network.

In a query-based approach, the limited number of pre-simulated scenarios does not cover all
possible observable combinations of input, thus the adoption of approximation or interpolation
procedures are needed. The quantification of the uncertainties derived from such an interpolation is a
problem yet to be addressed.

7. Discussion and Summary

Forecasting pluvial flash floods with sufficient accuracy and lead time to support effective response
actions is a challenging hydrometeorological problem that involves multiple scientific and technological
fields. This work presents a non-exhaustive overview of some of the main documented operational
flash flood early warning systems, of advances observed in the related topics during the last years,
and of opportunities for further development.

Different criteria can be used for the prediction of a flash flood scenario. Existing operational
systems may take into account meteorological patterns known to precede extreme precipitation events
and apply rainfall or runoff threshold comparisons over forecasted values to identify upcoming flood
events. The choice of the “best” criteria to be adopted is mainly driven by the area covered by the
forecasting team and by the available resources.

For systems with national coverage in which weather radar precipitation mosaic products are
available, runoff-threshold exceedance usually performs the best as the decision criterion. In this
context, distributed hydrological models based on mixed conceptual-physical representations of the
rainfall-runoff/routing processes are being preferred to their physically-based counterparts due to
the reduced number of parameters to be calibrated. When radar coverage is insufficient, systems are
being set up using satellite-derived rainfall data derived from infrared radiation measurements and
using rainfall-threshold exceedance with the consideration of antecedent soil moisture conditions as
warning criteria.

When a system is designed for a region or a catchment known to be dominated by flash floods,
there is little evidence to justify the inclusion of a rainfall-runoff/routing model in a forecasting chain.
In this context, decisions made based solely on the exceedance of a regionalized rainfall threshold may
present sufficient accuracy and appropriate timely response. Raw rainfall threshold exceedance has also
been shown to be a particularly efficient criterion for issuing early warnings for urban environments but,
in that case, the critical values are location-specific and require proper documentation at neighborhood
level of past events to be defined.

Some enhancements on deployed monitoring capabilities with the potential to enhance flash flood
forecasting activities deserve to be highlighted:

• The recent expansion of global navigation satellite systems (GNSSs) allowed the development of
promising multi-constellation approaches for retrieving more accurate real-time estimations of
precipitable water vapor, a meteorological factor determinant on the occurrence of convective
storms. However, it is not clear yet how this improvement can be reflected in our capability to
anticipate precipitation events that can result in flash floods, and the research field would benefit
from study cases developed in several parts of the globe to access such regional gains.

• The blending of the observations performed by recently launched satellite missions directed to
monitor surface soil moisture allows products such as NOAA’s SMOPS to be produced with
an update time of 6 h or less, a remarkable gain to be explored towards the estimation of
antecedent soil moisture conditions when compared to the usual constraining daily revisit interval
characteristic of individual missions.

• Recently presented study cases making use of dual-polarized X-band radar stations over urban
areas assessed the use of such higher-resolution, short-range equipment as a positive contribution
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to the already established C- and S-band wide range networks. Further deployments are seen as
an essential step towards accurate flash flood monitoring in urban areas, and the use of radar
extrapolation techniques for precipitation nowcasting at such a finer scale is the expected direction
of further research.

• The concept of the Internet of Things, based on the reduction of the production cost of autonomous
sensors capable of communicating in real-time through widely available wireless networks, has the
potential to increase our deployed capability to monitor small urban channels and drainage pipes.
Such dense measurement may enhance hydrological forecasts through data assimilation, but few
locations have sensor networks of such type already installed and few are under study.

The main input product and the primary source of uncertainties for most of the scenarios is still the
forecasted extreme precipitation products. During the last decade, we have observed the consolidation
and broad operational adoption of numerical weather models with spatiotemporal resolution high
enough to explicitly represent local convection. However, such higher resolution is attained with
increased computational cost and spatial noise. The use of multi-model approaches, such as the Poor
Man’s Ensemble, applied to a set composed only by convection-permitting numeric weather models
should be further considered for generating uncertainty estimations since more products of this type
are expected to be made available operationally in the near future.

However, for precipitation nowcast the extrapolation of remotely-sensed rainfall fields is still
considered the most accurate family of approaches. Here, novel deep learning-based techniques
have been proposed as options to the traditional Lagrangian methods with promising results but,
as a novel research field, some core questions are still under discussion, including which training and
validating metrics should be used by the community and the size of training datasets needed for
proper application of such techniques.

Flood inundation forecasts are precious products for decision-makers, but their consideration
during flash floods is usually neglected due to the usually high computational time associated with
the execution of traditional physically-based hydraulic models. Approaches based on data-driven
surrogate modeling using machine learning, on query-based and on cellular automata have being
proposed for the timely generation or retrieval of inundation maps. Despite being successfully
presented in study cases with spatiotemporal resolution suitable for urban environments, further
assessment is needed to validate the capability of such methods to represent the influence of high
momentum flows, a characteristic of flash floods.

8. Conclusions

In the last decade, the field of flash flood forecasting has benefitted from a significant increase
in overall data availability due to continuous improvements in the coverage and in spatio-temporal
resolutions of monitoring and modeling systems. However, the data of such recently deployed systems
is, in many cases, limited in terms of archived volume and length for proper calibration and for
the adoption of data-driven modeling, a limitation that is less restrictive on older, coarser, and still
well-maintained systems. The perspective presented in this work suggests that the exploration of
techniques for blending multiresolution, multisource data in real-time is a major trend to benefit both
the operational and research community.

The continuous deployment of early warning systems resulted in scenarios in which multiple
forecasting techniques, sometimes even based on different criteria, were being executed in parallel
towards the prediction of the same observed flash flood events. Such approaches facilitated the
intercomparison of the performances of different methods under operational environments, and the
findings suggest that systems covering large domains tend to deliver better performance when
hydrological models are part of the forecast chain, while systems designed for restrict domains
considered particularly flashy may present comparable efficiency by only relying on rainfall-exceedance
criteria. This observation is based on a very restricted number of published comparative papers, which
also illustrates the main limitation of this work, i.e., the limited number of existing FFEWSs properly
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and publically documented. From that perspective, the authors highlight the importance of comparing
and documenting multiple different forecasting approaches on the implementation of FFEWSs.
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Nomenclatures

AIGA Geographic information adaptation for flood warning
BAY Bayesian combination
BSMEFFG Black Sea and Middle East FFG system
CA Cellular Automata
CAPE Convective Available Potential Energy
CNN Convolutional Neural Network
CP-NWP Convection Permitting Numerical Weather Prediction
CREST Coupled Routing and Excess Storage
CSI Critical Success Index
DEM Digital Elevation Models
EFAS European Flood Awareness System
EPIC European Precipitation Index based on simulated Climatology
ERIC European Runoff Index based on Climatology
ERICHA European Rainfall-InduCed Hazard Assessment system
FC Flow Comparison
FF Flash Flood
FFEWS Flash Flood Early Warning System
FFG Flash Flood Guidance
FFMP Flash Flood Monitoring and Prediction
FFSA Flash Flood Susceptibility Assessment
FLASH Flooded Locations and Simulated Hydrographs
GFFG Gridded Flash Flood Guidance
GFWS Guadalhorce basin Flood Warning System
GHE Global Hydro-Estimator
GNSS Global Navigation Satellite System
GPS Global Position System
HDRFFGS Haiti and Dominican Republic FFG
HPE High-Resolution Precipitation Estimator
INCA Integrated Nowcasting through Comprehensive Analysis
IR Infrared
KED Kriging with External Drift
LFFG Lumped Flash Flood Guidance
LSTM Long Short-Term Memory
MFB Mean Field Bias
MPE Multi-Sensor Precipitation Estimate
NOAA National Oceanic and Atmospheric Administration
HL-RDHM Hydrology Laboratory Research Distributed Hydrologic Model
IDF Intensity Duration Frequency
IoT Internet-of-Things
NWP Numerical Weather Prediction
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PERSIANN-CCS
Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks with a Cloud Classification System

PMW Passive Microwave
PW Precipitable Water
QPE Quantitative Precipitation Estimation
QPF Quantitative Precipitation Forecast
RC-SN Rainfall Comparison - Surface conditions Neglected
RC-SC Rainfall Comparison - Surface conditions Considered
REE Radar Echo Extrapolation
RH Relative Humidity
RHYTMME Hydrometeorological Risks in Mediterranean and Mountainous Areas
SAC-SMA Sacramento Soil Moisture Accounting
SCADA Supervisory Control and Data Acquisition
SfM Structure from Motion
SMOPS Soil Moisture Operational Product System
SSM Surface Soil Moisture
STEPS Short-Term Ensemble Prediction System
SVE Saint–Venant Equation
SWMM Storm Water Management Model
Td Dew Point Temperature
Thresh-R Flood-initiating runoff threshold value
UK United Kingdom
US United States
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