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Abstract: Studies about the hydrodynamic behavior in the lower Amazon River remain scarce,
despite their relevance and complexity, and the Water Residence Time (Rt) of this Amazonian
estuary remains poorly unknown. Therefore, the present study aims to numerically simulate three
seasonal Rt scenarios based on a calibrated hydrodynamic numerical model (SisbaHiA) applied
to a representative stretch of the lower Amazon River. The following methodological steps were
performed: (a) establishing experimental water flow in natural channels; (b) statistically test numerical
predictions (tidal range cycles for different hydrologic periods); and (c) simulating velocity fields
and water discharge associated with Rt numerical outputs of the hydrodynamic model varied from
14 ≤ Rt ≤ 22 days among different seasonal periods. This change has shown the significant influence
of hydrologic period and geomorphological features on Rt. Rt, in its turn, has shown significant
spatial heterogeneity, depending on location and stretch of the channels. Comparative analyses
between simulated and experimental parameters evidenced statistical correlations higher than 0.9.
We conclude that the generated Rt scenarios were consistent with other similar studies in the literature.
Therefore, they depicted the applicability of the hydrodynamics to the conservation of the Amazonian
aquatic ecosystem, as well as its relevance for biochemical and pollutant dispersion studies, which
still remain scarce in the literature.

Keywords: hydrodynamics; fluvial geomorphology; Amazonian estuary; dilution capacity;
renovation rate; self-depuration; North Channel; Santana Channel; Amapá

1. Introduction

The Amazon basin is the biggest and most important tropical watershed in the world. It presents
a vast plane encompassing a complex system of rivers, channels, lagoons and islands that heiconstantly
change due to sedimentation processes and to the transportation of dissolved and particulate matter.
Estimates have shown that this basin discharges ≈ 20% of fresh water into the oceans; its plume extends
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up to 1.39 × 106 km2 inwards of the North Atlantic Ocean. Moreover, it also accounts for transporting
nutrients, organic matter and approximately 1.2 × 109 tons of suspended sediments into the ocean [1].

The coastal area of Amapá State/Brazil is 750 km long; it is considered the most preserved and the
least densely populated coastal area in the country. Amapá State coast is subdivided into two sectors:
estuarine coast (Amazonian) and oceanic coast (Atlantic). The coastal zone is mainly covered by muddy
sediments that, in their turn, are divided into four areas: erosion, accumulation (including the formation
and migration of sandy banks and islands, and coastline progradation), muddy addition and ephemeral
deposition. Coastline seasonal and annual changes result from strong meso and macro-tidal currents
conditions, coastal hydrological balance, fluvial erosion and sedimentation processes. Accumulation
prevails (65%) over erosion (35%) in the oceanic coastal sector. However, erosion and accumulation
rates estuarine coastal sector reach 55% and 45%, respectively [2].

The Lower Amazon River is defined as tidal river due to its interaction with the meso-macro
tidal environments influenced by the Atlantic Ocean. This river forms a highly complex and energetic
system that does not allow saline intrusion in its channels and in large extensions of its mouth, due to
its huge water discharge capacity [3,4]. Such interaction plays a relevant role in the river’s ecosystems
and influences water flow direction through hundreds of kilometers upstream of the Amazon River.
These processes make this river essential to control and transport sediments and nutrients into the
ocean and influence water mass exchanges in the land-water-atmosphere interface [5–9]. Moreover,
they basically depend on the water cycle, which presents influence over the hydrodynamic behavior of
the whole Amazonian estuary [10,11].

Knowing about Amazon River’s hydrodynamic behavior is essential because its ecological-
environmental importance, and helps to understand about matter and energy transport processes,
as well as the main physical mechanisms that occur in the natural channels within the water
column [10–13]. Studies on these processes are determining to quantify nutrients flux and to make
them available, as well as to quantify greenhouse gas emissions [10,14], oxygen balance [15], breathing
mechanisms and the primary production [12,13]. Moreover, they subsidize research on the degradation
of terrestrial-origin organic matter [16]. For instance, the interactions among organic matter, turbulence
processes, primary production performed by algae (adapted to these turbid environments) [17],
and sediment deposition and resuspension processes [18] influences light and food availability in these
Amazonian ecosystems.

But the estuary’s geographical dimensions turn the Amazonian estuarine complex into a
hard-scientific treatment. Hydrodynamic parameters of interest, such as water residence time
(Rt), are often connected to complex experimental methodologies applied to qualify water discharge;
however, these parameters can significantly change throughout semidiurnal tidal cycles (12.5 h).
Accordingly, recent studies carried out in lower Amazon River provided new experimental data
that have added to consolidated data in the literature, mainly those from strategical water stations.
Hydrologic information gathered in Óbidos (located 900 km away from the mouth of the Amazon
River) is a good example of data provided by the aforementioned studies. Hydrologic information for
Óbidos shows distinct features, but it does not reflect the complex hydrodynamic phenomena observed
in the lower Amazon River [15], especially at the stretch set in front of Macapá City-Amapá State.

The mean water discharge in Óbidos hydrometric station accounts for 80% of the total water flow
in the Amazonian basin. Therefore, 20% of this total is often not taken into consideration for river
mouth flow. These differences result from the rainfall contribution to 13% of the total downstream the
basin and Tapajós, Rio Xingu, Jari rivers, among other smaller rivers [16,19]. Thus, the water discharge
away from the river mouth significantly are different from the behavior observed in rivers close to the
ocean or in the stretch in front of Macapá City-AP, which is the last stretch considered to be a full fluvial.
This difference also derives from obvious contributions from those aforementioned downstream rivers,
as well as from the tidal propagation influenced by Atlantic Ocean to the upstream river (Óbidos) [20].

The North Channel (CNM) is located North Marajó Island (Coast of Amapá State) and Santana
Channel (CSA) is close to Macapá and Santana cities (Figure 1). These two channels stand out in the
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current study; together, they hold approximately 40% of the total water flow in the lower Amazon
River and transport great water masses into the ocean [21]. Moreover, they play an essential role in
any Rt analysis applied to this estuarine sector.
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2.2. Climatic Data 
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Figure 1. Study site: Santana Channel (CSA) and North Channel (CNM) bathymetry (depth)in meters
below sea level. (a) Amapá State location in Brazil;(b) State of Amapá and study site; (c) detailed study
site. Geographic coordinate system: Sirgas2000.

Santana channel and a significant stretch of the North Amazon River channel were the regions
selected for the present study. Both regions are located close to Macapá City. These regions are of
prominent ecological-environmental interest, since their challenges demand knowledge about the
extremely complex hydrodynamics in these environments [10,13,22], which are influenced by high
water discharges that depend on the meso-tidal phases [23].

Based on estimates, water exchange rate (Rt) between an estuary and the open sea can play a
relevant role in controlling processes composing the internal ecological aspects of the lower Amazonian
basin estuary; therefore, this parameter is of notable ecological-environmental interest [24]. Furthermore,
the estuarine ecosystem in the Amazon River is also controlled by different and complex physical,
chemical and biological processes that take place in the water column.
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Rt can be a good primary hydrodynamic indicator; it is linked to nutrient or agents’ exchange
(passive to the discharge), dilution, mix, and transportation [25]. This parameter is also closely related
to other ecosystem features, among them: dilution, self-depuration and biogeochemical processes
(Carbon, Sulfur, Nitrogen, Phosphor, Oxygen, among others) in charge of controlling variations in the
quality of water bodies. These features are essential to maintain superior aquatic lives and the quality
of the water nurturing and controlling the local microbiota [25–31].

The primary, but essential, information about Hyporheic Zones (HZs) is another example about
the need of knowledge on Rt. Although these zones are little assessed in large basins, such as the
Amazonian basin, they depend on variations in flow direction and in the water charge volume in
the waterbody. The dynamics of these aquatic ecosystems is often influenced by the biogeochemical
processes and nutrient cycles in HZs. These aquatic ecosystems depend on diffusive and dispersive
processes associated with local hydrodynamics [32–35].

However, nowadays, experimental water mass exchange balance quantifications (including
the plume behavior of the Amazon River in the Atlantic Ocean) are limited [11] because they are
often associated with necessary and demanding water discharge measurements taken in the field.
These limitations get even worse in some stretches of the Amazon River where volume control
and monitoring—during different seasonal hydrologic and tidal phases—do not have reference
hydrodynamic data, such as bathymetric data (depth), roughness, or data from tide stations [36].

The geomorphological complexity and connectivity among small and mid-sized channels, lagoons
and the main rivers are other factors to be taken into consideration [10,23,37]. These water bodies
significantly contribute to worsening the logistical difficulties and Rt quantifications of the complex
Amazonian estuarine. Therefore, the afore mentioned limitations have been imposed on theoretical
studies; researchers aim at understanding the functioning of outflow-dynamics mechanisms observed
in this region.

Thus, alternative Rt quantification methods and the simulation of hydrodynamic behaviors can,
and must be used in regions presenting high complexity, such as the Amazonian basin. Modeling
systems and numerical simulations are excellent options to overcome experimental methodological
limitations, because they allow approaching the complexity of these ecosystems, based on the necessary
quality and accuracy [38].

The program Base System for Environmental Hydrodynamics (Sistema Base Hidrodinâmico e
Ambiental-SisBaHiA) was used in the present investigation; it is a promising and appropriate tool to
approach shallow water hydrodynamics in Amazonian estuarine environments [39,40]. This approach
enables relating hydrodynamic behaviors and patterns to ecological-environmental processes. Rt studies
give a vital contribution to tropical aquatic biodiversity conservation. Besides, they are references to
other topics of interest, such as ecological, sanitation and environmental engineering.

The following experimental hydrodynamic parameters and the application of numerical tools
such as water discharge determination, tidal range variation monitoring (water blade) and bathymetric
data collection (topobathymetric maps and physical roughness of the channels were taken into account.
Numerical data generated in the numerical tool (SisBaHiA) were properly tested through adequate
statistical methods in order to assess numerical outputs generated from simulated hydrodynamic
scenarios, with emphasis on Rt.

A reasonable amount of information about the physical forcing of the Amazonian estuarine
system in lower Amazon River (tidal variations and river flow) was also investigated through modern
experimental acoustic techniques (Acoustic Doppler Current Profiler—ADCP). These techniques were
subsequently integrated into numerical and statistical analyses to predict tides and to determine Rt.

Overall, the present research aimed to fulfill a relevant scientific gap in the herein addressed
subject by providing analyses of great ecological-environmental interest, including the potential urban
anthropic impacts on the assessed stretch of the Amazon River. For instance, sewage is discharged
(in natura) into Macapá and Santana’s stretches of the river. These two cities account for the worst
basic sanitation ranking in Brazil, when they are compared to other cities with less than 100 thousand
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inhabitants [41–43]. The conflict of interest between pollution issues and the need for conserving
Amazonian aquatic ecosystems justifies the current study and the Rt quantification [44,45].

Hydrodynamics behavior simulation through the application of a numerical model added to
studies previously carried out in the region, was a way to test the following research hypotheses:
(a) there is coherence and reliability between the experimental and simulated outflows, whose maximal
statistical errors is less than 10%, (b) Rt variation lies within a time interval close to the ones observed
in large natural water bodies, ranging between 10 days ≤ Rt ≤ 100 days.

Based on these hypotheses, this research aimed to simulate three Rt scenarios through
experimentally calibrated numerical models by (a) assessing Rt under the influence of rainy, intermediate
and dry seasonal hydrologic periods on the Amazon River basin, (b) using the outflow dependence of
channels based on their spatial variation within the focal computer domain by taking into consideration
the physical aspects of the coastal Amazonian ecosystems, (c) interpreting the Rt behavior through the
geomorphology of large channels and the seasonal hydrology (bathymetry, water discharge, and velocity).

2. Materials and Methods

The present study followed three main steps: (a) experimental campaign to determine water
flow in Santana (CSA) and North Amazon River channels, close to Macapá (CNM) in March 2019;
(b) statistical analysis to test the tidal range behavior observed and simulated for the Santana Docks
Company (Companhia das Docas de Santana-CDSA); and (c) computer simulation of hydrodynamics
observed in March, May, August and November (flow, tidal elevation and, current velocity), and of
water residence time (Rt) in May, August and November 2019.

2.1. Characterizationof Study Site

The research was carried out in a significant area of the North Amazon River Channel, which hosts
the Santana Channel. Both channels are located in the coastal-estuarine zone of Amapá State/Brazil,
Legal Amazon [2]. The selected estuarine stretch lies between Vila Nova River and Jandiá Channel (it
is approximately 40 km long, and heads Southeast-Northwest Amapá’s estuarine coast). The CNM
and CSA were the hydrodynamic and geographic references for the present study; they are located
between Santana Island and Santana County (Figure 1).

The site where both channels are inserted in is 350 km long; it is flat, very low and unstable, as well
as suffers strong influence of fluvial (North Channel of the Amazon River) and coastal (flood tide)
processes that lead to erosion and deposition. These processes are responsible for the development of
flooded plains at the mouth of the channel. There are numerous paleochannels in this stretch, which
are evolutionary witness of a fluvial-lake plain. According to [46], the geomorphological types of
lowland estuaries are relatively shallow and are rarely deeper than 30 m, with a high width/depth
ratio and a cross-sectional area that increases the estuary below. Sometimes this growth is exponential
and V-shaped.

This estuarine coastal zone is divided into three sectors: high, medium and low [2]. The high
estuarine coastal sector is characterized as a stretch of Macapá Bay; the plain in this bay is often
interrupted by tertiary formations (sediments from Barreiras Group) that look like cliffs. Abandoned
meanders, residual lakes and “undertows” are observed in the coastal plain. The term ‘undertow’
is related to coastal wetlands, which consist of lagoons and lakes (influenced or not by the tide)
exclusively seen in urban areas of Macapá and Santana counties, influenced or not by the tide, besides
the presence of mangroves, in the edge of Macapá Bay [2].

This region also presents outstanding ecological-environmental importance because it is under
constant anthropic stress caused by its proximity to Santana City and Macapá (the State capital).
According to estimates from 2019 by the Brazilian Institute of Geography and Statistics (Instituto
Brasileiro de Geografia e Estatistica-IBGE), these cities house 121,364 and 503,327 inhabitants,
respectively; moreover, they are urban zones that present very low indices of basic sanitation
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and high urbanization-disorder degree. According to the 2019 sanitation ranking of the Trata Brazil
Institute (Instituto TrataBrasil), Macapá City ranks 95 among the 100 biggest analyzed counties [41–43].

Santana County is the location of the Santana Docks Company (Companhia das Docas de
Santana—CDSA), which is a strategic harbor for commodities’ dispatch (Manganese, wood, eucalyptus
and cellulose) in Amapá State. This harbor constantly receives and dispatches cargo coming from,
and going to, other Amazonian regions; therefore, it is a mandatory navigation route within North
Amazon River Channel (Figure 1) [45].

Macapá and Santana counties are located 250 km away from North Atlantic Ocean. Only the
purely fluvial behavior of the Amazon River is taken into consideration in this region [47]; in other
words, it does not suffer with saline influence due to intrusion, but it keeps its hydrodynamic behavior
due to typical estuarine tidal variations. The observations from experimental campaigns and data
from CDSA’s tide station have shown that local tide in this region has energy enough to rise the water
blade by approximately 3m and to twist the outflow direction in the channels.

2.2. Climatic Data

Due to the climatic characteristics of the study region, with high rainfall, high temperatures
(never lower than 18 ◦C) and a very sharp dry season (August to November), the classification climate
according to Köppen’s methodology is Am (Monsoon climate) [48]; in this region it is possible to split
the climatic variation into two main periods: the Amazonian rainy period, which takes place in the
first half of the year (from Jan–Aug), with higher intensity between March and May; and the lesser
rainy Amazonian period (Sep–Dec), which is more intense in the second half of the year, between
September and November [49–51].

Similar to rainfall, variations in wind intensity are seasonal. Wind velocity is lower in the rainiest
period and the opposite is observed in the lesser rainy period (higher intensity). Meteorological data
in the current study (rainfall and wind intensity) are shown in the graphs depicted in Figure 2a,b,
whose historical series was based on an 8-year time interval (2010–2018). Data were collected at
Macapá’s meteorological station (MACAPA-AP-OMM: 82098), which is located close to Fazendinha
Environmental Protection Area. Data were provided by the Meteorological Database for Education and
Research (Banco de Dados Meteorológicos para Ensino e Pesquisa-BDMEP) of the National Institute of
Meteorology of Brazil (Instituto Nacional de Meteorologia-INMET).

2.3. Experimental Campaign to Determine WaterDischarge Using ADCP: Santana-CSA Channel and North
Amazon River Channel-CNM

The CSA and CNM channels were strategically selected to assess the natural outflow behavior
of two large waterbodies affected by the same boundary conditions observed in opened channels;
although their geometric and geomorphological features were different. The experimental campaigns
were carried out in CSA (18 March 2019) and CNM of the Amazon River (19 March 2019). This was an
essential stage, because there are no detailed data about water discharge in CSA to evidence a complete
tidal cycle (12.5 h). Thus, unique experimental information necessary for model calibration and the
simulation of hydrodynamic scenarios were herein generated. However, outflow measurements taken
in CNM were added to a series of outflow data from similar studies previously conducted in this
region [52] and Óbidos’ water station.

Both campaigns took approximately 13 h (tidal semi-daytime cycle) and were carried out through
the Doppler acoustic method (Acoustic Doppler Current Profiler—ADCP) utilizing the model River
Surveyor M9 of SonTek from Laboratory of Chemistry, Sanitation and Modeling Environmental
Systems (LQSMSA/UNIFAP). The ADCP was installed at the side of a 22-m ship. Its transductors were
immersed 1.0m down the water surface and connected to a notebook that was used to send commands
and to control the data collection process and also GPS compass calibration in the analysis session.
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The collection of data about flow in the CSA was carried out between the quadrature and
syzygy periods, on the 18th of March 2019 from 6:00 am to 6:30 pm—this time interval covered a
complete semi-daytime tidal cycle. In total, 133 crossings were performed in the cross-sectional section,
whose mean extension was close to 650 m—each crossing took approximately 5 minutes (Figure 1).
The referred estuarine stretch was chosen based on the following selection criteria: navigation safety;
adequate depth; lack of sand or rock banks, or of Islands presenting outflow physical features adequate
to reliable hydrodynamic measurements through ADCP.

The collection of data about flow in the CNM was conducted on the 19th of March 2019 from 6:45
am to 6:50 pm based on the same criteria applied to the CSA. The measurement process in the CNM
only counted on 12 crossings through the cross-sectional section because the CNM is approximately 12
km wide (Figure 1); therefore, each crossing takes approximately 1 hour.

2.4. Hydrodynamic Simulation Process Development—Water Residence Time (Rt)

The program SisBaHiA was used to carried out the hydrodynamic simulations, the tidal prediction
analyses and the seasonal Rt estimates (May, August and November) for the CSA and CNM.
This software used the three-dimensional (3D) or the optimized 2DH (two-dimensional horizontal
computational model vertically integrated) model of hydrodynamic circulation applied to natural
waterbodies, as well as Eurelian and Lagrangian models (water residence time) applied to transportation
phenomena [39]. However, due to the aims of the present study, the 2DH model (Equations (1)–(3))
were as used to represent the hydrodynamic behavior; the Lagrangian model (Equation (4)) was
adopted to simulate Rt.
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∂ζ
∂t

+
∂UH
Ux

+
∂VH
∂y

=
∑

q (3)

Wherein, U ( in both equations) is defined as the velocity in axis x (m/s); V is the velocity in axis
y (m/s); ζ represents the free surface elevation (m); H is the water-column depth (m); ρo is the mean
water density (kg/m3); ρr is a reference water density (kg/m3); g is gravity acceleration (m/s2); τij is the
turbulent stress tensor, and (i, j) represent the indexes in the horizontal (x; y) plane; τS

i and τB
i are the

wind stress on the water surface and the bottom friction stress, respectively (kg/ms2); 2ΦsenθU and
2ΦθsenV represents the Coriolis accelerations, Φ is the angular velocity of earth rotation (rad/s); θ is
the angle of latitude, and

∑
q represent the flux balance of rainfall, infiltration, and evaporation; and Sij

represent the radiation stresses effect [39,53].
The model considers the uncompressible outflow, such as that of shallow waters; i.e., density

within a moving flow-control volume is considered constant. This definition is necessary to make it
possible performing the numerical calculations for the current analysis.

Based on the traditional concept, Rt is calculated through the ratio between compartment volume
(m3) and the residual water flow (m3/s) through the compartment. However, there is great spatial
complexity and heterogeneity in the stretches of the natural channels, such as that in the present
research, once the several flow conditions in the space, in a certain instant in time, as well as throughout
time are predictably known. Thus, this heterogeneity is seen as a function of water residence time in the
model; it can spatially vary due to flow conditions characteristic of different water hydrometeorological
forcing throughout time [39].

Transporting constituents in the Lagrangian model was performed on the SisBaHiA, which
are represented by a number of immaterial particles transported by currents counted through the
hydrodynamic model. The position of any particle in the following instant (Pn+1) is determined by a
second-order expansion in Taylor’s series based on the known previous position (Pn). The governing
equation for particles tracking is expressed as (Equation (4)):

Pn+1 = Pn + ∆t
dPn

dt
+

∆t2

2!
d2Pn

dt2 + O3 (4)

In the model it is assumed that the velocity field promotes the transport of particles that corresponds
to the velocities calculated by hydrodynamics. After calculating the position of the particle, the effects
of the diffusive velocity field can be included, by means of random deviation from its position.
This calculation of the random deviation is performed according to the spatial derivatives of the
turbulent diffusivities [39].

In the SisBaHiA, two groups of boundary conditions are possible through closed boundary nodes
for imposing water discharges values and open boundary nodes for free surface elevations values [54].
In the open boundary a water surface elevation series was imposed to represent the waves. In this
context, the model was parameterized with the six main tidal components (M2, S2, N2, K1, O1 and M4),
which were imposed in nodes of the mesh of the open boundary (Figure 3). In the closed boundary
water discharged from the Amazon River was imposed (collected in Óbidos station and experimental
data in CNM) and two of its main tributaries (Xingu and Tapajós rivers). In the lateral and bottom
boundaries impermeable and no slip conditions were imposed. As the initial condition, constant
values for elevation and velocity were used [52,53].
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Initial contour data for the simulations were collected and inserted in the model (flow, tidal range,
wind velocity intensity and direction; bathymetry, roughness, and rainfall). Flow-related data were
inserted in it based on the measurement campaign carried out in the CSA and CNM between18–19
March 2019 and on other similar research conducted in the region available in the literature [52,55].
Moreover, ANA data were collected in Óbidos’ station (code 00155001). Data about rainfall, wind
direction and intensity were collected in Macapá’s meteorological station, which were provided
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bytheMeteorological Database for Education and Research(Banco de Dados Meteorológicos para
Ensino e Pesquisa—BDMEP)of the National Institute of Meteorology of Brazil(Instituto Nacional de
Meteorologia—INMET).

2.4.1. Computational Mesh

Computer domain mesh covers an area of approximately 3 × 107 km2. In total, 2,238 elements
were distributed in this area, thus totaling 10,627 nodes. This region is the biggest computer domain,
it is located West, between Araguari River (AP) and South in Almeirim (PA). It was delimited to include
the CNA and CSA stretches in the present research. So, the hydrodynamic simulation and Rt outputs
were analyzed (Figure 3).

Bathymetric data (depth) were collected from the Brazilian Nautical Charts of the Brazilian
Navy (Diretoria de Hidrografia da Marinha (DHN)/Centro de Hidrografia da Marinha (CHM)) [56].
These data were inserted in the computer domain of the study site, which counted on approximately
17 thousand points distributed to define the depth profile between the Araguari river and Almerim
city (Figure 3). After these data were inserted in the bathymetric model, they were “leveled” to the
same altitude to correct the tidal fluctuation behavior of each sub-region of the computational domain.
The corrected levels were subsequently subjected to the Kriging-type interpolation process in the Surfer
software, version 9 (Golden Software, LCC). The 30/30 spacing was adopted to find the most accurate
interpolated depths possible for the model. This same method was applied to the spatial distribution
of rough attributes in the computer domain shown in Figure 3 [57].

Tide generation in the boundary of the model’s spatial domain is an important phase of the
hydrodynamic model’s parametrization process, which used the most relevant harmonic constant
for the study site (M2, S2, N2, K1, O1, and M4). These constants were selected due to their relative
influence on tidal wave generation in the mouth of the Amazon River; mainly in harmonic M2, which
represented up to 70% of the tidal physical behavior influence on the region [58–60].

2.4.2. Model Calibration and Evaluation Process for the Water Residence Time Analysis (Rt)

The strategy used to calibrate the hydrodynamic model was to match the simulated results
and field measurements as closely as possible within acceptable ranges by adjusting the parameters
requiring calibration [61]. There is in the specialized literature a variety of analyses able to be applied
in calibration processes [62,63].

For evaluating the model robustness, we have considered a comparison between observed and
modeled time series of water level-height of stations within the computational domain. In this
understanding, [63] reported that a satisfactory comparison with field data serves as verification for
the model properly simulates all the forcing combined.

As before mentioned, in the calibration, we performed the model with six of the main harmonic
constituents (here, M2, S2, N2, K1, O1, and M4) at the open boundary. The value of the constituents
was imposed in the nodes of the open boundary using adjustment of coefficients (in amplitude and
phase) for each harmonic constituent. A similar methodology was used in [35,63,64].

The harmonic analysis was performed on the time series of the model simulated for water surface
elevation. In Figure 6, for example, the series of predicted and computed water levels for the analyzed
period were compared. The predicted and modeled tidal data show the correct and satisfactory
representation of results explained by the coefficients of correlation set between the observed and
simulated results (r2 > 75%) (Tables 1 and 2).

The strong influence of bottom roughness on the wave propagation in the CSA and CNM channels
was not detected, due to the large variability of the depth. Furthermore, a correction of the bathymetry
located in the open boundary was carried out to obtain the best reproduction of the data of currents
measured in the field. The numerical parameter used in the eddy viscosity model was 0.25, and the
width of the Gaussian filter for direction x and y was of 0.5 (parameters in the momentum equations
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(Equations (1) and (2)). The SisBaHiA adopted turbulence model consists of filtering techniques in a
way similar that the large-eddy simulations approach of Gaussian filtering functions.

Table 1. Correlation between observed and predicted statistical parameters (2017 and 2018).

Method
Period Pearson * Nash-Sutcliffe (NSE) R2 d

March 2017 0.99 0.97 0.97 0.99
November 2017 0.99 0.97 0.97 0.99

May 2018 0.97 0.94 0.95 0.99
August 2018 0.99 0.97 0.98 0.99

Mean 0.99 0.96 0.97 0.99

* p < 0.01.

Table 2. Statistical analysis of data predicted x simulated by the model for 2019.

Method

Period Pearson * Nash-Sutcliffe (NSE) R2 d

March 0.95 0.90 0.90 0.97
May 0.96 0.90 0.91 0.98

August 0.95 0.90 0.90 0.97
November 0.96 0.91 0.92 0.98

Mean 0.96 0.9 0.91 0.98

* p < 0.01.

However, tide elevation data from 2016 collected in CDSA were used in the analysis, once that is
done the maintenance of the quality and consistency of numerical outputs are optimized. Such analysis
aimed at reproducing the same tidal harmonic components in the study site to be projected on another
period (2019) at the lowest error possible. The series was considered consistent with the tidal projections
set for 2017; 2018 after the procedure and the analysis of statistical results was performed in the
prediction stage. Similarly, it was also possible comparing modeled data from the referred periods to
predictions made to 2019. This procedure was done by observing their respective statistical significance.

2.5. Statistical Analysis

Statistical analysis was used as a security tool to assess the results of tidal predictions generated
in SisBaHiA, by comparing them to tidal behavior recorded in March and November 2017 and in
May and August 2018. The statistical analysis applied to the modeled results from May, August and
November of 2019 was compared to tidal predictions for 2019. The flow behavior in the tidal cycles
experimentally observed in the field was checked. This procedure was followed by new comparisons
to results simulated by the model for March 2019.

Classical tests were adopted to quantify the efficiency of mathematical models: Nash–Sutcliffe
Efficiency (NSE) (Equation (5)), Person’s correlation, r2 and Index of Agreement (d) (Equation (6)).
These tests were selected given their different practical applications in hydrodynamic modeling
for water studies, i.e., to test the accuracy and capacity of the models to represent the physical
reality [65–68].

ENS = 1−

∑n
i=1(Oi − Pi)

2∑n
i=1

(
Oi −O

)2 (5)

d = 1−
∑
|P−O|2∑(∣∣∣P−O
∣∣∣+∣∣∣O−O

∣∣∣)2 (6)

Wherein, Oi and O represent the observed tide elevations; Pi and P values represent values
predicted by the model. Model efficiency results can range between 1 and −∞ in Equation (4)
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(Nash–Sutcliffe’s Efficiency), wherein 1 indicates the model that perfectly represents the observed
data. Values higher than 0.75 indicate the model capable of well representing what was experimentally
observed [69].

Similar to the NSE efficiency test, the Index of Agreement test (d) compares data generated by
the model (P) to the observed data (O): if d = 1, the model is considered perfectly coherent; if d = 0,
the model shows lack of ability to represent the reality of the observed data set. The minimal acceptable
value for “d” would be 0.75.

3. Results

3.1. Overall Results Recorded for the Experimental Data: Santana and North-Macapá Channels

Results of field campaigns carried out in Santana (CSA) and North-Macapá (CNM) channels are
represented by semidiurnal flow curves (Figure 4a,b). The maximum ebb and flood outflow values
recorded for CSA in the field were of 22,729 m3/s and−13,381 m3/s, respectively. Once the climatic event
that took place when the measurements were taken, some data captured by ADCP in the CNM were
not properly continuously stored. Thus, it was necessary to interpolate the last measurement series.
However, it was possible observing that the maximal outflow value was at the order of 254,944 m3/s;
this value was −149,653 m3/s at flood (Figure 4b).
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19th of March 2019.

Figure 4a,b suggests that the behavior of the CSA and CNM flow curves is directly influenced by
the tide coming from the Atlantic Ocean. The reversion period (flood) was significantly shorter in both
channels between 3 h and 20 minutes and 3 h and 40 minutes than in the ebb outflow period, between
8 h and 20 minutes and 8 h and 40 minutes.

The two measurements selected for each one of the channels show details of the punctual velocity
variation behavior and of the bathymetric profile in the measurement section conducted in the CSA



Water 2020, 12, 660 13 of 29

and CNM, taking into account the ebb outflow and flood peaks. Data were extracted from the River
Surveyor software and depicted in Figure 5a,b (CSA) and Figure 5c,d (CNM).
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The greatest velocity intensities in CSA (Figure 5a,b) were closer to the center of the channel than
to its edges (it was highlighted by the contrast between light and dark colors) in the section where
measurements were taken with ADPC during the ebb outflow and flood periods. Velocity in some
points during CSA’s tide flow (22,729 m3/s) can reach 2 m/s, whereas velocity range was limited to the
maximal value of −1 m/s during the flow (−13,381m3/s).

Velocity significantly changed in CNM in comparison to CSA. It is possible observing that
velocities were higher in the sides of the river (by taking into account the natural ebb outflow direction)
than in the center of the channel—it presented maximal punctual values up to 2 m/s (ebb outflow) and
1.5 m/s (flood). It is important pointing out the significant spatial asymmetry in outflow rates during
water discharge measurements taken in CNM. Such asymmetry has caused significant velocity and
flow variation throughout the sub-sections during the experimental measures.

The bathymetric profile of the study site showed that depth variations throughout the CNM’s
measurement stretch highlighted at least three “sub-channels” or “secondary channels” (Figure 5c,d).
Depth in the first sub-channel (from the left to the right side of the channel) reached ≈ 29–35 m,
whereas the central part of the channel had ≈ 20 m and the right side of it could reach 25 m. However,
by analyzing data collected through measurements taken with ADCP, it was possible finding depths
up to ≈ 38 m. However, CSA showed two sub-channels and smaller variations in the depth than in
CNM, because its measurement section was smaller.
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3.2. Statistical Analysis and Model’s Response to Tidal Predictions

The hydrodynamic model was calibrated with the aid of harmonic constants generated by the
analysis of data from the CDSA station in 2016. This stage is extremely dependent on monitored data
from the station in charge of measuring tide level in Santana. Comparisons between tidal output data
predicted by the model—compared to data provided by the CDSA tide station—were carried out to
assess the consistency of prediction data generated in SisBaHiA for 2019. This process was applied in
March and November 2017, and in May and October 2018.

Results were forced to reference level (zero); the graphic comparison between predicted and
observed tidal variations in the CDSA tide station are presented in Figure 6a–d (orange curves point
out the model’s prediction and blue dots indicate observational data of the same period).
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Based on the predicted and observed results shown in the graphs (Figure 6a,b) and in Table 1, it is
possible observing that the model satisfactorily predicted the behavior of CDSA station’s tidal phases
for the specified periods (2017/2018, respectively).

Table 1 shows that tide behaviors predicted by the model in 2017 and 2018 are quite satisfactory and
all statistical tests recorded values higher than 0.95. Thus, the statistical analyses allowed considering
that these values are good enough to be the reference in comparison to other modeled results (tidal
predictions) recorded for March, May, August and November 2019. These results are shown in Table 2.
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As shown in Table 2, values recorded for all applied statistical methods also presented values
higher than 0.95; therefore, the comparison between simulated data and the model’s predictions in
SisBaHiA well represent the hydrodynamic behavior of the study site—it can also be safely applied to
calculate Rt.

3.3. Hydrodynamic Behavior Analysis: Experimental (ADCP) and Simulated (SiBaHiA)

The present topic concerns the analysis of data simulated and compared to flow data (Figure 7a,b)
measured in CSA and CNM (Tables 2 and 3). Data generated in SisBaHiA produced full hours values
(07:00; 08:00, etc.), whereas data measured in the field were recorded in fractioned hours (07:22; 08:35, etc.).
Thus, a correction of the real hour approximation for the comparisons to the simulated hours was applied.
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Table 3. Comparative table between CSA data simulated and measured in the field.

Method/Parameter Ebb Flow
(m3/s)

Flood Flow
(m3/s)

EbbVelocity
(m/s)

Flood Velocity
(M/S)

Real-ADCP 22,729 −13,381 0.98 0.55
Simulated 22,412 −12,360 1.13 0.59

Relative Error (%) 1.4% 7.6% 15% 7%

Figure 7a,b shows that the adjustment of r2 values to flow were higher than 0.95 in both channels.
Moreover, the statistical analysis of tidal variation between 18 March and 19 March 2019 predictions
carried out in SisBaHiA have also indicated values higher than 0.9 in the other statistical parameters:
Person’s correlation, “d” and NSE.

Tables 3 and 4 describe ebb and flood flows and velocity values in comparison to values simulated
and measured in the field (in Santana and North-Macapá channels) by taking into consideration the
semidiurnal cycle.

Table 4. Comparative table between CNM data simulated and measured in the field.

Method/Parameter Ebb Flow
(m3/s)

Flood Flow
(m3/s)

Ebb Velocity
(m/s)

Flood Velocity
(m/s)

Real-ADCP 254,944 −149,653 0.98 0.72
Simulated 249,935 −143,916 1.4 0.75
Difference

(%)-Relative Error 1.96% 4.02% 16.7% 4.17 %

Relative errors between flows observed through ADCP measurements hada straight reflex on
velocity values recorded in the field. However, as shown in Figure 5a, the greatest velocity magnitudes
are observed in the center of the channel, whereas the smallest ones were observed in the sides of it.
This behavior was expected and captured by the hydrodynamic model. The comparison between
these values in CNM was carried out based on the same procedures adopted for CSA; however, the
need for adjustments was lower because measurements taken in CNM took place within a longer time
interval. Velocity and flow result analyses applied to data collected through the model or the ADPC
measurements are shown in Table 4.

Figure 8a,b shows the CNM and CSA velocity behavior in the field during high-tide and low-tide
periods on the 18th of March, 2019. Velocity’s in the low tides tend to be higher than in the high tides.

Figure 9a–c shows the ebb flow and flood flow behavior during the quadrature and syzygy periods
in May (rainy period), August (transition period) and November (lesser rainy period) 2019. Table 5
presents the maximum values of ebb flow and flood flow rate observed in the relate simulated months.

Table 5. Maximum ebb flow and flood flow values in m3/s for CSA and CNM’s simulated months.

Month Ebb Flow (CSA)
(m3/s)

Flood Flow (CSA)
(m3/s)

Ebb Flow (CNM)
(m3/s)

Flood Flow (CNM)
(m3/s)

May 24,013 (17 May) * −14,555 (17 May) * 265,230 (18 May) * −151,340 (18 May) *
August 22,951 (2 August) * −15,763 (30 August) * 260,814 (2 August) * −172,362 (30 August) *

November 18,785 (30 November) * −20,206 (26 November) * 219,363 (25 November) * −229,326 (26 November) *

* Day of the month.
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3.4. Water Residence Time (Rt) Simulated with the SisBaHia

Rt average in CNM recorded in May 2019 was approximately 16 days long (Figure 10); it changed
within confidence interval ranging from 14.5 to 17 days. The analysis section was didactically divided
into three “sub-channels” throughout the experimental and simulated measurement sections, which
showed the likelihood of the right margin of the channelto record the shortest residence time (between
14 and 16 days) in comparison to the center of the channel (sub-channel of the medium). The center
of the channel tended to record values higher than 16 days. Values in CSA also stayed higher than
16 days, and this outcome indicates a lower water renovation rate in this stretch. The mean flow
value was observed in the period facing the highest rainfall in comparison to August (transition) and



Water 2020, 12, 660 19 of 29

November (dry period) (Figure 2a). On the other hand, wind velocity intensity in this period was
lower than in August and November (Figure 2b).
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August was the transition period between the rainy (May) and the lesser rainy periods (November)
in the study site. Figure 11 shows that August showed a small Rt increase from 14.6 to 17.7 days.
However, despite the little variation in Rt between May and August, the mean ebb flow in August was
110,113 m3/s (14.7 % lower than the average recorded in May) in CNM and 8745 m3/s (19.2% lower
than in May) in CSA. Such reduction resulted from the natural seasonal rainfall reduction typical of the
Amazon basin (Figure 2a), which, consequently, diminished the ebb flow and, indirectly, increased Rt.

The highest Rt in May was concentrated in CSA and along the left side of CNM; its variation was
close to 8 days. Furthermore, the central region and the right side of CNM presented relatively lower
Rt values ranging from 15 to 16 days.

November is the dry period in lower Amazon River region, when one can observe the lowest
monthly rainfall means (Figure 2a). But it is also the month recording the highest wind intensity
(Figure 2b). The hydrodynamic model responded with mean ebb flow of ≈ 63,829 m3/s in CNM and
of ≈ 4823 m3/s in CSA in this period. Thus, CNM and CSA values were ≈ 55% lower than in May;
consequently, November presented even higher Rt values, as expected. So, the Rt values ranged from
15.5 to 22.4 days (Figure 12).
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4. Discussions

Results of statistical comparisons among the observed, predicted and simulated data referring to
water level variations in the CDSA station in May, August and November 2019 were excellent (Tables 1



Water 2020, 12, 660 21 of 29

and 2). These results allowed concluding that the simulated water mass exchange in the study site
was coherent with a plausible behavioral pattern. They presented approximately the same order of
magnitude when they were compared to similar studies about the application of modeling processes
in estuarine systems under tidal influence [64,66–70].

Results in the current study have also shown that the geomorphological features of the channels
(variation and evenness in the channels’ depth and width) have caused asymmetries in velocity and in
flow distribution either in CNM or CSA, as also observed in the field. However, these asymmetries
were experimentally more perceptible during the longer crossings in CNM, when it was necessary
almost one hour to cross the cross-sectional section of the natural outflow, as well as during the
significant spatial and time variations (which seemed to be non-linear) in outflow hydrodynamic
features, namely: change in tidal pattern (ebb-flood) and spatial changes in velocity direction along
astretch and during the tidal cycle. This outcome suggests the clear secondary currents and circulations
in the longitudinal and lateral directions of the outflow.

This typical behavior was also observed by [22] in Araguari River estuary, close to the mouth
of the Amazon River. Another important result was also observed in the present study; it indicated
similar behavior, namely: tide influence observed by [6] in Yangtze River, China, where tidal intensity
changed the water flow patterns in the estuaries and produced bidirectional currents, as experimentally
observed in the estuary of the Amazon River (Figure 9a–c) and in the model’s results (Figure 8a,b).
Thus, based on the current results, when the experimental CSA and CNM flow curves were compared
to similar behaviors described in other studies, it was possible stating that the numerical simulations
well-represented the mean natural hydrodynamic behaviors (Figure 7a,b).

Regarding the water discharge measurements experimentally observed in CNM [50], it was
possible seeing that ebb values have the same magnitude order, or order close to 176,681 m3/s,
and 134,102 m3/s in the flood period at the lesser rainy period (October). On the other hand, this
behavior was 255,625 m3/s in the ebb flow and −170,808 m3/s in the flood period at the rainiest period
(March), respectively.

Thus, similar to the flow observed in CNM, it was also possible making a good adjustment
between simulated water discharge values and values measured in the field (Figure 7a) in CSA. Similar
behavior was observed in November (dry season) by [55], when the referred author recorded an
experimental flow value of ≈ 18,385 m3/s in the ebb period and of ≈ −16,360 m3/s at the flood period.
On the other hand, although simulations have presented tide value variations and water discharge
close to the observed experimental data, current velocity has shown a trend to values higher than
the experimental ones—indicated by ADCP in the field (CNM and CSA). Estimates have shown that
such differences resulted from differences in the bathymetric features inserted in the model (based
on navigation charts by the Brazilian Navy). In other words, the bathymetric methodology used by
the Brazilian Navy to generate navigation charts used in the model can lead to different results in the
assessment of CNM and CSA made through ADCP due to the interpolation process.

However, based on the chart of sea currents generated by the Brazilian Navy for this region, it
is important to highlight that velocity variations at low and high tides were closer to the simulated
results (Figure 8a,b) [71]. Figure 8a shows the slack tide behavior observed at high tide, when one can
see that the magnitude of the current is smaller—values were close to zero; whereas, the currents were
more intense at low tide, reaching values higher than 2 m/s.

Current behavior, tide elevation and water discharge results (May, August and November) of
simulations ran in the model showed the bases for Rt studies and simulation in the study site. As
expected, and observed in similar studies in the literature, Rt is a physical parameter directly dependent
on, and sensitive to, the physical features of waterbodies and of their seasonal variations. Therefore, it
has been used as important primary indicator in studies related to the quality of the water [25–28,72–78].

Rt values found in the simulations set for CSA and CNM have presented significant seasonal and
spatial changes, which ranged at values a little higher than 14 days and a little lower than 25 days.



Water 2020, 12, 660 22 of 29

Rt in CNM, for example, ranged between 14 days ≤ Rt ≤ 22 days, and showed different behavior and
spatial variations throughout the computer domain (Figures 10–12).

In this case, it was possible assuming that the spatial variation in Rt happened due to the
bathymetric differences that have influenced the variation in water mass volume (distribution), which
was unevenly distributed in the spatial domain. These differences were observed in ADCP data, as well
as in navigation charts inserted in the model (Figure 1); they evidenced “sub-channels” in the CNM
monitoring sections, such as the sub-channels located at the left and right sides of CNM, which have
presented different water volume.

As previously mentioned, Rt spatial variations can be associated with biogeochemical processes
that depend on seasonal variations in the tidal cycle of the Amazonian estuary [12,13,15,23], on complex
interactions between channels’ geomorphology and roughness and, mainly, on interactions and
exchanges of different water masses in different simulated control volumes and in the computer
domain volumes [79].

Physical gradients controlling the water masses entering, leaving or accumulating in each unit
volume are interesting highlights in these interactions -they show the dependence between currents
and tidal phases (Figures 10–12). These tidal phases get more intense as the flood period and the
maximal annual water pulse approach [10,22,23]. On the other hand, some of these factors have
not been taken into account in the water balance of great water bodies, such as the estuary of the
Amazon River, once there is a series of the experimental barriers and high complexity of hydrodynamic
modeling processes. However, actually, as these hydrodynamic parameters are inserted in the analysis,
they add more complexity to the numerical analyses, mainly, to Rt estimates.

Rt values in the rainy (May 2019) and transition (August 2019) periods in CSA and Santana Island
surroundings (Figure 10) remained close to 17 days (Figures 10–12). This value was higher than 20
days in the lesser rainy period (November 2019); i.e., the volume of exchangeable water in the rainy
months tends to be effectively higher, and the water mass is apparently more distributed in the spatial
domain. The greater likelihood of maintaining the concentration of passive agents in the water in time
(nutrients, chlorophyll, pollutant, among others) is an important ecological consequence of it [74].

It is possible seeing lower Rt values by comparing the hydrodynamic behavior of CNM and
CSA to other lentic systems (great lakes and slow rivers). This outcome results from the fact that,
despite its huge water volumes, this ecosystem is highly capable of renewing its water masses due
to its corresponding and proportion flows. The high river flow in CNM, for instance, presents an
average higher than 1.0 × 105m3/s, velocity’s higher than 0.5 m/s and maximal velocity up to 2.0
m/s in this stretch of the Amazon River. These features point towards a lower likelihood of passive
or cumulative agents’ permanence in the outflow (nutrients, or less pollutants); it would also allow
greater ability to avoid eutrophication processes (algae blooming), even in case of severe environmental
degradation [75,80,81]. In other words, the longer the water remains in the control volume, the greater
the likelihood of passive flow agents remaining in the body of water. However, depending on the
passive agent in the flow, this characteristic can be positive, for example, nutrients to feed the aquatic
biota, or negative, to disperse pollutants [18,22,23,35,43–45].

Water renovation processes in lentic eutrophic estuaries can last weeks or months; in these cases,
the water masses would present a higher likelihood to consume more dissolved oxygen [76]. However,
such high oxygen consumption has not been observed in similar studies carried out in Macapá and
Santana regions [43,82]. Thus, a more detailed local analysis could suggest the occurrence of two
processes unfavorable to dissolved oxygen depletion, both linked to Rt: (a) pollutant load is not
significant in comparison to the exchange capacity or to water dilution volume, which has almost no
significant influence on degradation levels; (b) oxygen consumption rates would be much lower than
self-depuration rates due to atmospheric reaeration (turbulence), which is bond to Rt. There is a third
assumption, according to which, water biogeochemical features (the presence of high or low organic
load in the water column) could favor certain kinetic processes (HZ, for example) and avoid more
critical dissolved-oxygen consumption (sediment, for example).
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However, Rt determination has been frequently focused on estuarine systems located close to
the river mouth to assess saline plume and pollutant dynamics. This parameter is little assessed in
strictly fluvial systems (or only in the presence of drinking water) [83]. For instance, a study carried
out in an estuarine system of Santos Basin (SP), showed the presence of saline plume. The referred
author simulated Rt behavior [84] and estimated a value close to 30 days; therefore, when Rt value was
compared to results in the present research, such value was relatively close to that of the estuarine
system in Santos Basin at the dry period (November); of the period presenting lower rainfall and of
the period when there was greater oceanic tide influence over upstream Amazonian estuary. In other
words, saltwater is potentially more influential in the estuary at this period [10].

But, even by taking into account that Rt values relatively lower in CNM and CSA, in comparison
to eutrophic estuaries and lentic bodies addressed in the literature, this value seems to be even higher
than the expected for waterbodies presenting high river discharge. Assumingly, this finding regards
the fact that water flow direction reverse in large dimension rivers tends to induce greater water mass
permanence in the control volume than similar rivers, at smaller scale—without tidal influence [79].

Therefore, understanding Rt spatial and seasonal in lower Amazon River helps improving
knowledge about the physical mechanisms of these aquatic ecosystems, being essential for the analysis
about the exchange dynamics applied to nutrients and particulate, and even dissolved materials in the
Hyporheic Zones (HZ) (C, N, P). The HZ zones are directly affected by variations in the physical features
of the water quality, which has straight control over water reactions and biogeochemistry [32–34,85–88].
Although the literature presents the relevance of Rt and hydrodynamics for many waterbodies
by highlighting their roles in HZs and the biogeochemical cycles of aquatic ecosystems, there are
considerable gaps in knowledge about how these factors vary in the estuary of the Amazon River.

These gaps have been mentioned in other approaches concerning the Amazon River, the
atmosphere and the Atlantic Ocean [10,11,22,23]. Because Rt depends on annual and seasonal
water pulse and shows variations in the semidiurnal tides, it becomes even more relevant to assess
how Rt influences the behavior of passive agents in the outflow, in other processes in water masses
and, consequently, in the quality of these water masses in these Amazonian estuarine ecosystems [23].

Although the present contribution helps better understanding the mechanisms involved in Rt
quantification, new scientific efforts must be made to provide information about the functioning of
these aquatic ecosystems in the Amazonian estuarine complex. It is still necessary to deepen the
subject, asthe ecological relevance of its aquatic biodiversity richness are still potentially unknown [18],
because studies carried out in HZs in lower Amazon River are very rare, but these processes still
continue and are naturally dependent on Rt.

Despite the experimental and numerical barriers found in the present research, it is essential
taking the first step towards assessing how Rt influences biogeochemical processes dependent on
its own interactions in tropical aquatic ecosystems. In this case, it is essential understanding Rt’s
variations in space and time based on the complex characteristics of these channels [20–23,35].

Thus, the physical basis addressed in the present study about Rt, although yet little explored in
the overall literature, shows its potential to future complex analyses on the hydrodynamics of the
Lower Amazon River [13,47,89]. This is a necessary approach for coastal studies carried out in this
region. To the best of our knowledge, studies presenting such in-depth analysis about Rt in the estuary
of the Amazon River were never conducted before.

5. Conclusions

The hydrodynamic scenarios generated with SisBaHiA have shown that hydrologic and spatial
variations have significant influence on river water renovation rates (Rt). Below, find the most relevant
conclusions observed in the current study:

1. The simulated scenarios have confirmed the hypothesis that Rt presents values within a relatively
restrict interval in the assessed period, between 14 days ≤ Rt ≤ 22 days. Therefore, time variations
in water level predicted in the hydrodynamic model of the SisBaHiA software were adequate and
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satisfactorily calibrated. So, it was possible estimating variations in the Rt parameter in at least
three seasonal water scenarios—Rt values were higher at the rainy period.

2. A second hypothesis was also confirmed. There are Rt spatial variations even in stretches
representative of the computer domain. These variations are more homogeneous in the Santana
Channel (CSA), and this outcome suggests that the channel is more regular geomorphology
(CSA has lower aspect ratio (width/depth) than CNM). It seems to be a determining factor for
such hydrodynamic behavior in the channel. And this factor tends to be more homogeneous in
this channel (CSA) than in the North Channel (CNM), since the latter it is wider and has more
complex geometries.

3. Thus, Rt at the rainy and transition periods was more heterogeneous than in the dry period.
Besides, it tends to be more heterogeneous on the left side of CNM. This feature made Rt less
favorable for self-depuration phenomena in environments more impacted, for instance, by the
urbanized systems of Macapá and Santana than the right side of the channels, which did not
show any environmental impact. This outcome results from morphological features of these
channels (shallower waters on the banks than in the center of the channel), which tend to disfavor
the potential dilution and self-depuration of waste disposed in natura close to Macapá and
Santana’s coast.

4. In statistical terms, the observational behavior shown by tidal variations was correlated to
variations in outcomes predicted in the SisBaHiA in 2016, 2017 and 2018. Thus, there was
consistence between observed and simulated results (r > 0.95), which indicates very good
reliability level of the hydrodynamic model to predict variations in 2019 tidal ranges (CDSA).

5. Water discharge measurements and bathymetric profile in the defined sections aimed at accurately
quantifying variations in the channels’ velocity intensity, whose maximal values reached up to
2 m/s in the rainy period, mainly during the ebb tide. The correlations between the experimental
water discharge behavior and results presented by model’s outputs (18 March 2019 and 19 March
2019) were really quite satisfactory (r > 0.95)—it is an unprecedented contribution to studies on
the estuary of lower Amazon River.

6. The herein presented methodology can be extrapolated to other similar studies, including other coastal
areas of the Amazon estuary, with emphasis on water bodies’ self-depuration ability, on the dilution
capacity of passive agents in water and, consequently, on the behavioral analysis of the biogeochemical
dynamics of quality of water parameters and the overall pollutants’ dispersion in water.

Among the main relevant applications of Rt estimates, one finds the generation of basic data
about nutrient transportation mechanisms in water columns of these unknown Amazonian ecosystems,
which work as important subsidies to decision-making in water resource management and the recovery
of degraded estuarine aquatic ecosystems. The analysis of final sewage disposal in natura applied
to water bodies close to Macapá and Santana, or of ballast water disposal, in Santanas’ harbor zone,
for instance, is a great challenge to the application of the Rt parameter.
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