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Abstract: Forward osmosis (FO) has been recently regarded as a promising water treatment technology
due to its lower energy consumption and lower membrane fouling propensity compared to the reverse
osmosis (RO). The absence of suitable draw solute constraints the wide-range application of the FO.
Hydrogels are three-dimensional hydrophilic polymer networks that can absorb a huge amount of
water. Particularly, stimuli-responsive polymer hydrogels can undergo a reversible volume change
or solution-gel phase transition in response to external environmental stimuli, including temperature,
light, pressure, solvent composition, and pH. These intrinsic properties indicate the lowest regeneration
cost of draw solutes compared to the thermal method and other membrane processes. This review aims
to introduce the research progress on hydrogels as draw solutes, clarify the existing problems and point
out the further research direction.
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1. Introduction

Water scarcity has become a global issue because of accelerating population growth and environmental
pollution [1]. Wastewater treatment and seawater desalination are the promising means of increasing the
available supply of fresh water [2,3]. Membrane technology is one of the most important and versatile
methods currently available for environmental quality control [4], since the investment, operation,
management, and maintenance costs of membrane treatment is significantly lower than that of
traditional thermal methods. For example, the energy consumed to produce a cubic meter of clean water
via reverse osmosis (RO) is below one-seventh of that of the multi-stage flash (MSF) and multi-effect
distillation (MED) desalination [5]. Currently, RO has been the most popular industrialization method
for its high selectivity, superior stability, easy operation, and scalability among these methods. However,
RO uses high external pressure to drive water flow across a semipermeable membrane, and the external
pressure promotes the contact between pollutants and membrane surface, accelerating membrane
fouling [6]. Forward osmosis (FO) as an emerging membrane technology has received great attention
around the world in the past few years [7–13]. FO utilizes the osmotic pressure gradient between a
feed and a draw solute as the driving force rather than the external pressure to facilitate the water
permeation through the semipermeable membrane, as shown in Figure 1. Therefore, FO requires less
energy and demonstrates lower fouling and scaling with a higher rate of fouling reversibility [14]. FO
has been reported to have the potential for extensive applications, including waste-water treatment [15],
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desalination [16], energy production [17], biomedical applications [18], and food processing [19].
However, both FO membranes and suitable draw solutes are essential to the further development of
high-performance FO processes [20].
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Figure 1. Schematic representation of the reverse osmosis process (a) and forward osmosis process (b).

Rapid progress in the fabrication of the FO membranes has been seen in the last decade. However,
viable FO applications are limited to specific cases which do not require regeneration of the diluted
draw solutions, e.g., fertilizers [21] and saccharides [22]. Lack of suitable draw solutes has become the
major impediment to the widespread commercialization of the FO process.

2. Critical Parameters Related to Hydrogels as Draw Solutes in FO Process

2.1. Factors Affects the Water Flux

2.1.1. Osmotic Pressure

Osmotic pressure gradient between feed solution and draw solution is the driving force in FO
desalination. An ideal solution´s osmotic pressure, as given by the Van’t Hoff equation, as shown in
Equation (1) [23]:

π = icRT (1)

where i is the dimensionless Van’t Hoff factor, c is the molar concentration of the solute (mol/L), R is
the universal gas constant, and T is the thermodynamic (absolute) temperature (K).

Considering the concentration of draw solution is highly concentrated, the following equation
can be used to estimate the osmotic pressure, as shown in Equation (2) [24]:

π = ϕcRT = (1 + Bc + Cc2 + Dc3 + . . . . . .)MRT (2)

where ϕ is the osmotic pressure coefficient related with the solute number density. B, C, and D are the
osmotic coefficients that can be determined experimentally by fitting experimental osmotic pressure
data. It is clear that the osmotic pressure depends on solute concentration, the number of species formed
by dissociation in the solution, solute´s molecular weight, and the solution temperature. This means
that high solubility of draw solute induces high osmotic pressure and, therefore, can achieve high
water flux. A solute with small molecular weight combined with high water solubility can generate
higher osmotic pressure (on an equal mass basis) and, therefore, can lead to higher water fluxes.

2.1.2. Concentration Polarization

Concentration polarization (CP) arises due to the occurrence of concentration difference at the
membrane-solution interface arising from the selective transfer of species through the FO membrane [25].
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CP can be classified as internal concentration polarization (ICP), which exists at the membrane support
layer, and external concentration polarization ((ECP), which occurs within the membrane active layer
surface, as shown in Figure 2.
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Figure 2. An asymmetric dense membrane with the porous support layer facing the feed solution (a) and
draw solution (b). The profile illustrates concentration polarization, respectively. CECP: concentrative
external concentration polarization, CICP: concentrative internal concentration polarization, DECP:
dilutive external concentration polarization and DICP dilutive internal concentration polarization,
∆πm: the osmotic pressure difference between concentrative feed (C2) and dilutive draw solution
(C4) on both outer sides of the forward osmosis membrane, ∆πbulk the osmotic pressure difference
between feed (C1)and draw solution (C5), ∆πeff: the effective osmotic pressure difference between
further concentrative feed (C3) and dilutive draw solution (C4) on both sides of the active layer, C (1–5):
the concentration of solution in different positions.

Concentrative ECP (CECP) takes place when the dense active layer faces the draw solution
due to the diffusion of water from the side of the feed to that of the draw solution, resulting in the
accumulation of draw solute in the active layer face, whereas dilutive ECP (DECP) occurs when the
dense active layer faces the draw solution due to the diffusion of water from the side of feed to that of
the draw solution [26].

ICP results from the inability of the solute to penetrate the dense selective layer of the membrane
easily. Concentrative ICP (CICP) occurs where the feed solution facing the porous membrane support
layer causes the feed solution to concentrate, whereas dilutive ICP (DICP) occurs when the porous
layer faces the draw solution in FO desalination. The transport of water from the feed to the draw
solution causes the feed solution to dilute [27].

Therefore, the osmotic pressure difference across the active layer is much lower than the bulk
osmotic pressure difference, which results in a much lower water flux than expected. The reason is
attributed to the two types of concentration polarization (CP) phenomena, including external CP (ECP)
and internal CP (ICP), as discussed below. Research has shown that the major factor contributing to
the decline in the water permeation rate in FO desalination is the ICP [28].

2.2. Reverse Solute Diffusion

A small amount of draw solute will permeate across the membrane from the draw solution to the
feed solution owing to the difference in solute concentrations. Reverse solute diffusion is behind the
ICP phenomenon in FO desalination. Reverse draw solute diffusion can cause severe ICP. The loss of
an expensive draw solute would increase the operation cost, and even additional treatment of the feed
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concentrate would be required before its discharge to the environment if the draw solute is harmful to
the environment [29].

2.3. Regeneration of Draw Solutes

Diluted draw solutes must be separated from freshwater. Many regeneration processes have
been suggested for FO, including pressure-driven membrane, thermal separation, precipitation,
electro-dialysis, stimuli-response, and combined processes [30].

2.4. Operation Cost

The operating cost contains three parts, including the cost of draw solutes and FO membrane, FO
process, and the regeneration of draw solutes. The recovery of draw solutes takes a significant energy
cost in FO technology implementation, especially for nonintelligent responsive draw solutes, such as
the theoretical minimum energy consumption during regeneration via crystallization and RO was
higher than that of standalone RO for seawater desalination at the same water recovery [31]. Therefore,
easy regeneration is very important for the practical application. Besides, the batch mode in the FO
process and regeneration of draw solutes not only increases the operation cost but also reduces the
apparent water flux. Therefore, realizing continuous water production is another method to decrease
the operating cost.

3. Major Problems Associated with Hydrogels as Draw Solutes in FO Process

Desirable draw solutes are supposed to possess high osmotic pressure, be nontoxic, exhibit low
reverse flux, and be easily and rapidly regenerated without significant loss of the draw agent [32].
Intelligent hydrogels not only can produce high-swelling pressure when specifically designed but
can also be regenerated by external stimuli, such as temperature [33] and pH [34]. Moreover, they
have low reverse diffusion rates because hydrogels are insoluble in water. Thus, various hydrogels
were studied as draw solutes in the FO process over the past few years [35]. However, there are
several issues that still need to be addressed, including the low water flux, high external concentration
polarization, difficulties in regeneration, and in-continuous operation. This review aims to introduce
the research progress of hydrogels as draw solutes, clarify the existing problems, and point out the
further research direction.

4. Recent Development of Hydrogels as Draw Solutes in FO Process

Various hydrogels were studied as draw solutes in the FO process over the past few years, as shown
in Table 1. Various methods were applied to enhance the water flux, reduce external concentration
polarization, realize low-cost regeneration of draw solutes, and continuous operation. Therefore, the
research progress on various hydrogels as draw solutes will be introduced with regard to these aspects.

4.1. Enhancing Water Flux by Changing Monomer Composition of Hydrogels

Since the osmotic pressure is regarded with the dissociation degree and hydration ability, Li et al. were
first to study the effect of charge density on osmotic pressure, as shown in Figure 3. Ionic hydrogels produced
higher water flux than that of non-ionic hydrogels. However, the water recovery rate demonstrates an
opposite trend. For example, the water recovery rate of poly (sodium acrylate) (PSA) under elevated
temperature (50 ◦C) was only 3% [36]. While poly (N-isopropylacrylamide) (PNIPAm) possesses
a unique thermo-responsive characteristic to shrink with the water release when heated above a
lower critical solution temperature (LCST) [37,38], co-polymerization of monomeric electrolyte with
NIPAm was an obvious compromise. The lower critical solution temperature (LCST) is the critical
temperature below which the components of a mixture are miscible for all compositions. Charged
moieties and strong hydration both limit the water-recovery performance. Subsequently, Dai et al.
investigated non-ionic thermo-responsive microgels as draw agents for FO desalination and elucidated
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their behavior in FO by analyzing the total Hansen solubility parameter (δt). The small difference in δt

suggested the monomer has a strong affinity to water. The best apparent water flux (6.1 L/m2 h (LMH))
was shown for NIPAm95-AM5 prepared by co-polymerization of N-isopropylacrylamide (NIPAm) and
acrylamide (AAm) with a mass ratio of 95:5 [39].
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Since polyelectrolyte hydrogels produce high osmotic pressure, various thermo-responsive
poly(ionic liquid) (PIL) hydrogels were also studied as smart draw agents for the FO desalination. Kim et al.
synthesized a series of thermo-responsive copolymers P(MTxEOy) via free radical polymerization by using
(2-(methactyloyloxy) ethyl) trimethylammonium chloride (MTAC) MTAC and 2-(2-methoxyethoxy)
ethyl methacrylate (MEO) as monomers [40]. Water flux and recovery of 0.1 g/mL P(MT20EO80)
reached to 5.45 LMH and 99.80%, respectively. Kim et al. also prepared a series of oligomeric poly
(tetrabuylphosphonium styrenesulfonates)s (PSSP) with LCST of 60 °C. The water flux of PSSP was
slightly lower than that of monomeric SSP in the FO system, and a negligible reverse solute flux was
observed in PSSPs, indicating that the oligomers were more suitable as draw solutes in the FO system
than monomers [41]. Thermo-responsive poly (ionic liquid) TVBP-C6 hydrogels, which were prepared
with the copolymer of (tributyl-4-vinylbenzylphosphonium)-based alkyl sulfonate counterion using a
mixture of poly(propylene glycol) (PPG) and poly(ethylene glycol) (PEG) as crosslinkers, were also
evaluated as intelligent draw agents for the FO desalination [42]. All of the above results indicate
that the water flux of polyelectrolyte hydrogels as draw solutes shows a dramatic decrease with the
reduction of ionic composition and the reduced response with increasing ionic content and the mutual
interference between different polymer network structures [36]. Wang et al. effectively solved the reduced
response problem by constructing interpenetrating network hydrogel (HPIPN) [43].

Since the counter ions are known to provide a positive osmotic pressure, monomer with different
dissociation constants (pKa) can significantly affect the FO performance of hydrogels [36]. Hartanto et al.
systematically investigated the effect of functional acidic co-monomers with different pKa on the FO
performance of NIPAm-based thermo-responsive microgels [44]. Their results suggested that the equilibrium
swelling time (EST) varies inversely with the ionization degree of co-monomer and its hydrophilicity, which
is associated with the increase in the diffusion coefficient. However, volume phase transition temperatures
(VPTT) and apparent water flux demonstrate the opposite behavior. For example, the shortest equilibrium
time of 40 min was observed in MCG-NP-AMPS (microgel-NIPAm-2-acrylamino-2-methylpropane sulfonic
acid), whereas the apparent flux of MCG-NP-AMPS was close to zero due to its weak response to the
temperature change. Therefore, a low water recovery rate still has to be addressed.
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Furthermore, Hartanto et al. studied the influence of the chemical structure of the cationic monomer
on the FO performance of microgels [45]. Microgels are the hydrogels with micron size. Microgels with
aliphatic cationic comonomers showed higher water flux than those with aromatic cationic comonomers,
and the opposite behavior was observed in the dehydration process. The reasons can be attributed to the
difference in the Hansen solubility parameters and the dissociation constants (pKa) of cationic comonomers.

Mungray et al. investigated fast-swelling superabsorbent polymer hydrogels as draw agents in the
FO process for bovine serum albumin (BSA) enrichment. The hydrogels were synthesized by grafting
acrylic acid (AA) and N-isopropyl acrylamide (NIPAm) monomers on a carboxymethyl cellulose (CMC)
chain to improve swelling kinetics [46]. It was shown that a lower mass of hydrogels with a larger
contact area is beneficial for obtaining higher swelling ratios, which are more suitable for the BSA
enrichment, whereas hydrogels with a lower contact area and higher mass could obtain high water
recovery rates in FO processes such as desalination or wastewater treatment.

4.2. Enhancing Water Flux by Reducing External Concentration Polarization

4.2.1. Reducing External Concentration Polarization by Introducing Composite Materials

Wang et al. prepared a 3D continuous hydrogel-polyurethane interpenetrating network hydrogel
(HPIPN) [47] and incorporated hydrophilic microfibers into the polymer hydrogel to enhance water
transport [48]. The water flux of hydrogel was significantly increased. For example, the water flux of
HPIPN composites (17.9 LMH) is about eight times that of hydrogel powders (2.2 LMH) [48].

4.2.2. Reducing External Concentration Polarization by Reducing Hydrogel Size

According to gel dynamics theory, gel response time is inversely proportional to the square of the
hydrogel size and proportional to the gel diffusion coefficient [49]. Therefore, the smaller the hydrogel
size, the faster the swelling rate. Furthermore, the small size of hydrogel can increase the contact area
between the FO membrane and gel.

Wang et al. for the first time investigated the effect of hydrogel size and size distribution on the
performance of FO desalination [50]. Water flux was shown to increase with reducing hydrogel size due
to increased contact area between the draw agents and the membrane surface. Moreover, the contribution
of hydrogel-membrane contact areas to the water flux prevails over the contribution of hydrogel
particle-hydrogel particle contact areas (Figure 4). Dai et al. synthesized submicron-sized copolymer
microgels of NIPAm and acrylic acid by surfactant-free emulsion polymerization [51]. The microgel-based
FO process allowed a high initial water flux reaching 23.8 LMH, whereas water recovery reached 72.4%.
However, the water flux decreased to near zero after 5 h. Dai et al. subsequently synthesized cationic
copolymer microgels with aliphatic and aromatic comonomers as draw agents. Cationic copolymer
microgel containing 2-N,N′-(diethylamino) ethyl methacrylate (MCG-NP-DEAEMA) demonstrated the
best overall performance; the initial water flux and water recovery were shown to be 45.6 LMH and
44.8%, respectively. MCG-NP-DEAEMA also displayed the shortest equilibrium swelling time that, in
turn, reveals significant improvement in the apparent flux of 5.5 LMH compared with other cationic
and anionic copolymer microgels [45]. However, synthesized microgels require further purification by
dialysis before the start of the FO process, increasing the fabrication cost. As such, microgels have limited
applications as draw solutes.
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4.3. Various Methods to Realize the Regeneration of Draw Solutes

4.3.1. Enhancing Dewatering Rate by Changing the Network Structure of Hydrogel

Although the water flux can be enhanced by changing the monomer composition of hydrogels,
introducing ionic groups into the hydrogel results in a compromise between its thermo-responsive
property and deswelling rate. Moreover, higher LSCT values and denser skin layers cause the water
molecules to travel out of the hydrogel networks, mostly in vapor form rather than liquid form, suggesting
that the regeneration mechanism is, in essence, heat conduction [52]. Therefore, the ability to rapidly
recover liquid water from hydrogel particles is crucial for the viability of the FO process. Researchers
settled the problem mainly by enhancing heat transfer efficiency and enhancing water transport.

Wang et al. synthesized composite polymer hydrogels with light-absorbing materials, such as
carbon particles (C) [53] and graphene sheets (rGO) [54]. The water recovery rate of PSA-NIPAM-C under
sunlight with the radiation intensity of 1.0 KWm−2 for 60 min can reach 100%, whereas 227% enhancement
in water flux was observed for PSA-NIPAM-1.2 wt% rGO relative to that of pure PSA-NIPAM. However,
the conventional heating methods can result in a significantly higher temperature gradient, and hence,
most of the recovered water is in a vapor state. Considering the magnetic field is virtually unaffected
by the external isolating layers and does not depend on thermal conductivity, the research group
subsequently synthesized nanocomposite polymer hydrogels with γ-Fe2O3 (Figure 5). Liquid water
recovery of 53% was achieved under magnetic heating, as opposed to only 7% value obtained via
conventional heating [52].

So far, most of the NIPAm-based thermally responsive hydrogels were prepared by random
polymerization. Research results show that comonomers make a significant impact on the volume
phase transition temperature (VPTT) of the hydrogel and its discontinuous transitions. The reason
can be ascribed to the mutual interference within the polymer network structure, the large molecular
weight distribution, and uncertain molecular structure [55,56]. For example, Li et al. for the first
time investigated PNIPAm-co-PSA as a draw solute [36]. The water flux of PNIPAm-co-PSA was
enhanced with the increase of SA content; however, thermally responsive dewatering behavior of
PNIPAm-co-PSA tends to vanish.
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Interestingly, two independently crosslinked polymers with extensive physical entanglements
constitute an interpenetrating network (IPN) hydrogels. In the IPN, the individual chemistry of PNIPA
chains is not affected in contrast to the ambiance [57]. Hu et al. for the first time investigated semi-
interpenetrating (semi-IPN) network hydrogels (such as PNIPAm-IPN-PSA and PNIPAm-IPN-PVA) as
draw solutes in the FO process (Figure 6). These semi-IPN hydrogels displayed super thermally responsive
behavior compared with NIPAm-SA copolymer hydrogels. The dehydration rate of PNIPAm-co-PSA
can reach about 100% at 40 ◦C [43].
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Block copolymers, which differ from random copolymers, retain their characteristic multiple
components and demonstrate structural micro-phase separation [58]. Particularly, block polymers prepared
by ring-opening polymerization have specific molecular structures and uniform molecular weight
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distributions, as such, having continuous phase transition temperatures [50]. Mungray et al. designed
thermally responsive triblock copolymer hydrogels for brackish water desalination; PEG-PLA-PEG
hydrogels are composed of hydrophobic poly (DL-lactic acid-co-glycolic acid) (PLGA) segments and
hydrophilic poly(ethylene glycol) (PEG) segments. Hydrophilic PEG segments can form hydrogen
bonds with water molecules associated at lower temperatures, favoring the formation of an aqueous
solution [59]. At higher temperatures, hydrophobic forces of PLGA prevail over hydrogen bonds,
causing a solution-gel transition. Moreover, introducing graphene oxide, which is a two-dimensional
carbon material with a large number of hydrophilic oxygenated functional groups, enhances miscibility
with the polymer matrix, allowing more hydrophilic composites to be formed.

4.3.2. Enhancing Deswelling Rate of Hydrogel by Applying Different External Stimuli

Apart from thermally responsive polymer hydrogels heated by the thermal method or magnetic
field, a series of electrically responsive hyaluronic acid/polyvinyl alcohol (HA/PVA) polymer hydrogels
were also studied as draw solutes by Zhang et al. (Figure 7) [60]. Compared with other published
studies which have also used polymer hydrogels as draw agents in the FO process, reverse diffusion of
the draw agent was avoided, and the complexity of the operation was minimized. Unfortunately, the
initial water flux was lower than 2 LMH, even if DI water was the feed solution. Besides, there was
a problem of the water electrolysis, because the applied voltage exceeded 1.23 V [61]. Subsequently,
the research group proposed the introduction of ionic monomers to increase swelling pressure and
conductivity. Various electrically responsive hydrogels were also investigated as draw solutes, such as
2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and 2-(Dimethylamino) ethyl methacrylate
(DMAEMA) as monomers. The initial flux for A0.55D0.45 reached 2.09 LMH when even 2000 ppm NaCl
solution was used as the feed solution [62].
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Dai et al. developed gas-responsive cationic microgels as draw solutes for FO desalination, in which
swelling and deswelling were driven by sweeping CO2 and N2, such as 2-N,N′-(diethylamino) ethyl
methacrylate (DEAEMA) and 2-N,N′-(dimethylamino) ethyl methacrylate (DMAEMA) microgels [63].
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Table 1. Summary of various types of hydrogels as draw solutes in the forward osmosis (FO) process.

Draw Solution De-Watering Method FO Performance
Ref.

Initial Flux (L/m2h) Water Recovery

PAM

Heating at 50 ◦C

0.36 (1st h) <10%

[36]PNIPAm 0.30 (1st h) 54%–75%
PSA 0.96 (1st h) <5%

PSA-NIPAm 0.55 (1st h) 17%

NP

Centrifuged at 40 ◦C and 10,000 rpm for 10 min

5.1 83.3%

[39]NP95-AAm5 24.7 78.7%
NP95-HEMA5 7.8 88.9%
NP95-PEGA5 6.4 89.1%

P(MT20EO80) Heating at 70 ◦C followed by
microfiltration process - 99.7% [40]

PSSP5 Heating at 60 ◦C - 99.5% [41]

TVBP-C6-5/5 Heating at 60 ◦C < 0.9 <90% [42]

SI-0.2PSA
Heating at 40 ◦C for 10 min

0.18 (1st h)
- [43]SI-0.5PVA 0.18 (1st h)

SI-0.2PVA 0.12 (1st h)

MCG-NP

Centrifuged at 40 ◦C and 10,000 rpm for 10 min

7.5 (1st min) 72.1%

[44]

MCG-NP-MAA 10.9 (1st min) 76.7%
MCG-NP-AA 16.7 (1st min) 55.8%
MCG-NP-MA 39.1 (1st min) 39.1%
MCG-NP-IA 44.8 (1st min) 47.2%

MCG-NP-AMPS 42.9 (1st min) 0%

MCG-NP-DMAEMA

Centrifuged at 40 ◦C and 10,000 rpm for 10 min

33.5 (1st min) 34.1%

[45]MCG-NP-DEAEMA 45.6 (1st min) 44.8%
MCG-NP-VP 17.3 (1st min) 51.9%
MCG-NP-VI 28.9 (1st min) 47.9%

CMC-g-PNaA-co-PNIPAM - - 70% [46]

PNIPAm-PSA-PUF
(mass ration, 8:1) Under sunlight simulator (2 kw/m2) 14.8 100% [47]

TPU-PN5S5
Under sunlight simulator (1 kw/m2)

1.81 (10st min) - [48]
TPU-PN5S5 2.77 (10st min)

5PSA-C-150
100–200 um - 1.02 -

[49]
PSA-C-150

100–200 um - 1.06 -

PSA-5C-150
100–200 um - 1.06 -

PSA-NIPAm (2–25 um)
N2 gas pressure of 600 kPa for 15 min

- <7% (swelling ratio 10)
[50]PSA-NIPAm (190–350 um) - <5% (swelling ratio 10)

PSA-NIPAm (500–1000 um) - -

MCG-NP100-AA0 - 2 (10st min) - [51]
MCG-NP50-AA50 - 4 (10st min) -

PSA-NIPAM-16 wt%γ-Fe2O3 Magnetic AC field (148 kOe and 372 kHz) <2.5 (1.0st h) 66% [52]

PSA-C
Under the sunlight simulator (1 kw m−2)

1.32 (0.5st h) 70.4%
[53]PNIPAM-C 0.44 (0.5st h) 100%

PSA- NIPAM-C 0.77 (0.5st h) 100%

PSA-1.2 wt% rGO
Under the sunlight simulator (1 kW m−2) for 1h

3.1 (1.0st h) 42% [54]
PSA-NIPAM-1.2 wt% rGO 0.9 (1.0st h) 45%

PEG-PLGA-PEG
13,000 rpm for 10 min

- 98%
[59]PEG-PLGA-PEG/GO-0.09 wt% - 98%

PEG-PLGA-PEG/G-0.09 wt% - 98%

HA-PVA-5
Electric field (9 v)

1.2
[60]HA-PVA-7 0.91

HA-PVA-9 0.9

AMPS/DMAEMA (0.55/0.45) Electric field (15 v) for 60 min 2.09 (1st h) 67.45% [62]
AMPS/DMAEMA (0.53/0.47) 1.63 (1st h) 39.36%

DEAEMA-PEGDA (1 wt%) Puring N2
56 (10st min) 55% [63]

DMAEMA-PEGDA (1 wt%) 41 (10st min) 44%

Fe3O4@P(NIPAM-co-AMPS) 65 ◦C and magnetic field (250 mT) 0.26 (20st min) [64]

PNIPAm-PSA (mass ration, 1:1) Solar energy of 0.5 kW m−2 for 1 h 0.25 (20st min) 7.8% ± 1.5% [65]

SL-2
Heating at 60 ◦C f or 120 min

0.191 (1st h)
[66]BL-2 0.236 (1st h) 72%

ML-1 0.292 (1st h)

Note: st stands for first.
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To reduce the energy consumption for draw solute recovery after FO, magnetic poly (N-
isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropane sulfonate) (referred to as Fe3O4@
P(NIPAM-co-AMPS)) nanogels were studied as draw solutes [64], while the draw solute was hard to be
regenerated completely under the external magnetic stimuli for a week at 65°C. Further ultrafiltration
was still needed to recover the residual.

4.4. Designing Continuous Semibatch FO Process to Enhance the Apparent Water Flux

So far, the adsorption and de-adsorption process of hydrogel as the draw agent in the FO process
occurred mostly in a batch mode. It not only increases the operating costs but also reduces the apparent
water flux. Wang et al. for the first time proposed the bi-functional polymer hydrogel layers as FO
draw agents for continuous production of the fresh water by using solar energy. There was no need to
remove the draw agent from the membrane module, making it possible to continuously produce liquid
fresh water [65]. However, the dewatering layer simply accumulates on the drawing layer. Besides,
the reverse osmotic drive force from the second nonionic layer to the first ionic layer hindered the
water molecules’ diffusion, resulting in the reduction of water flux. Subsequently, Chen et al. prepared
a multi-layer temperature-responsive hydrogel based on poly(N-isopropylacrylamide-co-sodium
acrylate) (P(NIPAAm-co-SA) [66]. The concentration of sodium acrylate decreased away from the FO
membrane in the drawing layer, and the releasing layer was pure PNIPAm. The design can effectively
decrease reverse osmotic pressure, resulting in the increase of water flux. Besides, the dehydrated
layer was directly synthesized on the substrate of the drawing layer by free-radical polymerization of
NIPAAm, forming a whole hydrogel (Figure 8). Research showed that the drawing layer determines
the swelling capability and the releasing layer determines swelling kinetics due to the restriction in
the expansion of the drawing layer. However, the upward bending of the hydrogel would affect its
effective contact area with the membrane surface, since the releasing layer swelled at a lower rate
compared to that of the drawing layer. Besides, the resistance of water molecules to the diffusion from
the drawing layer to the releasing layer is unavoidable, and the effects of the gel swelling and FO
membrane, which are not pre-infiltrated on the water flux, remain to study.
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5. Some Important Issues

Although hydrogels have been investigated as draw agents for nine years, there are still some
confusing issues that remain to be explained, such as the true driving force, high initial water flux
but low apparent water flux, whether absolute clean water can be produced, and no draw solute
reverse diffusion.
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5.1. What on Earth Is It That Makes Hydrogel Produce Water Flux as the Draw Solute in the FO Process?

A series of hydrogels were evaluated as draw solutes for the FO process. However, the true
driving force of hydrogels for producing water flux is unclear. There has been a discussion regarding
the difference between swelling pressure and osmotic pressure [67,68].

Osmotic pressure is the minimum pressure to prevent the inward flow of water across a
semipermeable membrane [69]. Osmotic pressure is a colligative property of a solution, depending on
the dissociation number of solute molecules. Jacobus Van’t Hoff was the first person who proposed the
equation interpreting the relationship of osmotic pressure, dissociation number of solute molecules,
and thermodynamic temperature [69].

The osmotic pressure π of an ideal solution with low concentration can be calculated according to
the Morse equation (Equation (1)) derived from the Van’t Hoff formula.

While a hydrogel is insoluble in water, the Morse equation cannot interpret the drive force of
the hydrogel as draw solute in the FO process. Hydrogel osmotic pressure can be derived from the
Flory-Huggins theory (Equations (3) and (4)) [70].

π =
−RT
V1

[
Φ + In(1−Φ) + λΦ2

]
+ VRT

1
2

(
Φ
Φ0

)
−

(
Φ
Φ0

) 1
3
+ RT

(
Ngel −Nsol

)
(3)

π = π1 + π2 + π3 (4)

where R is the gas constant; T is the absolute temperature; V1 is the molar volume of solvent; λ is
the mutual effect parameter of polymer and water; Φ0 and Φ are the volume before swell and after
swell, respectively, Ngel and Nsol are the sum concentration of gel and solution, respectively, and V
is the percentage of the gel network number of chains per volume when Φ0 is equal to Φ. In brief,
the osmotic pressure accounts for the interaction of water and polymer (π1), elasticity force of the gel
structure (π2), and the ion concentration difference inside and outside of the polymer networks (π3).

Tauer et al. suggested that hydrogel swelling pressure, ∆pswell, similar to the osmotic pressure,
contributes to the equilibration of chemical potential between the outside and inside of the swollen gel
and, respectively (Equation (5)) [71]. Here, νm,sa is the molar volume of the swelling agent in the gel.
µ1o and µ1sg are the chemical potential of the swelling agent outside and inside the swollen gel when
reaching at the swelling equilibration.

∆pswell =
1

νm,sa

(
µ1o − µ1sg

)
(5)

Wang et al. believed that swelling pressure was the true driving force for hydrogel draw solutes
that originates from polymer-water mixing, elastic reaction force of the network, and osmotic pressure
of ionizable groups (Equation (6)) [68].∏

tot
=

∏
mix

+
∏

el
+

∏
ion

(6)

where IItot is the swelling pressure of the gel, and IImix, IIel, and IIion are the mixing, elastic, and ionic
contributions, respectively.

It is clear that the hydrogel osmotic pressure is in accordance with the swelling pressure defined
by Wang et al. However, the hydrogel osmotic pressure corresponds to the difference of the water
chemical potential between the inner and outer volumes of the hydrogel, which can be confirmed by
the definition of the swelling pressure (Equation (5)), whereas the drive force for the forward osmosis
process is the difference in osmotic pressures of the feed solution and that from the outer volume of the
hydrogel. Therefore, swelling pressure is not the driving force of the hydrogel for FO. The true driving
force comes from the hydration and ionization of the outer-side volume of the hydrogel.
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5.2. Why the Initial Water Flux of Hydrogel as Draw Solute Is Considered High Whereas the Total Water Flux
Is Close to Zero in the 24-h FO process?

To better explain this phenomenon, the swelling process, factors influencing swelling capability,
and swelling dynamic will be discussed in detail.

5.2.1. The Swelling Procedure and the Principle of Water Absorption by Hydrogel

When dry polymer contacts with water, some amount of water is first absorbed by capillary
absorption and physical diffusion, so that the hydrogel presents the initial slow expansion state.
Subsequently, strong hydrophilic groups enhance the affinity to water by hydrogen bonds and the
solvation effect, such as the amino group, carboxyl group, hydroxyl group, and especially, for polymers
containing ionic groups. A large number of the same charges and counterions can be produced by
ionization. However, the counterions cannot migrate freely outside of the gel in order to maintain
electrical neutrality, which results in the enhancement of osmotic pressure, driving more water
molecules into the polymer network. With the expansion of the network, the elastic contraction force
caused by the crosslinking between molecular chains increases the limits of the infinite expansion of
the network. Finally, the hydrogel achieves swelling equilibrium [72,73]. In this process, the osmotic
pressure is the driving force for the expansion of swelling, and the network elastic force is the driving
force for the contraction of a gel. Particularly, neither the capillary effect nor the hydration effect of
hydrophilic groups can explain the main reason for why the water absorption by hydrogel materials
can reach hundreds, even thousands, times their own weight. The amount of water absorbed by the
capillary effect and hydrophilic group hydration effect differs by two to three orders of magnitude
from that absorbed by the hydrogel materials. The main drive force for hydrogel swelling is the ion
osmotic pressure. The principle of water absorption by the hydrogel can be illustrated by the Flory
theory of ionic networks [74].

Q5/3 =

( i
2VuS1/2

)2 +
1
2 − χ1

V1

/ Ve

V0
(7)

where Q is the maximum swelling ratio, i is the electronic charge of the polymer structure per polymer
unit, Vu is the polymer repeating unit volume, i/Vu is the charge concentration of the charge fixed in
resin, S is the ionic strength of solution, ν1 is the molar volume of solvent in a real network, χ1 is the
interaction parameter of the polymer with solvent, (1/2-χ1)/V1 represents the affinity between water
and the polymer electrolyte network, Ve represents the effective number of chains, V0 represents the
volume of the polymer before swelling, and Ve/Vo represents the crosslinking degree.

The equation (Equation (7)) shows that the water absorption power mainly depends on the
osmotic pressure, the affinity of the polymer to water, and the crosslinking density of the network.

5.2.2. Factors influencing Swelling Dynamic of Hydrogels

According to the swelling dynamic theory, the response rate of the hydrogel is proportional to the
square of the size of the hydrogel and inversely proportional to the diffusion coefficient, as shown in
Equation (8). Therefore, the response rate of the hydrogel can be improved by decreasing the hydrogel
size and increasing the diffusion coefficient (D) [75].

T = L2/D = L2/(E/ f ) (8)

T is the response time of a gel, D is the diffusion coefficient of a gel, and L is the characteristic size
of a gel.
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5.2.3. Explaining the High Initial Water Flux but Low Apparent Water Flux

According to the swelling procedure of the hydrogel, the outer-side of the hydrogel can produce
high osmotic pressure by ionization and hydration effects, resulting in the high initial water flux [74].
The water was absorbed by the hydrogel due to the difference of chemical potential. However, the
dilution rate is higher than the absorption rate due to the considerably high resistance and external
concentration polarization (ECP), and hence, the driving force was further reduced [76]. Especially, the
external osmotic pressure reached at minimum when the hydrogels achieve the swelling equilibrium.
In addition, a dense skin layer is formed in the external layer of the bi-functional polymer hydrogel,
which restrains the outward diffusion of water molecules during the hydrogel-collapse process at the
temperatures above the LCST during the deswelling process [77]. Therefore, a low apparent water flux
was produced.

5.3. Hydrogels Draw Solutes Have the Advantages of Intrinsically Zero Draw Solute Reverse Diffusion and
There Is No Need to Further Polish the Released Water. Is it Actually True?

The hydrogels functioned with sodium acrylate or sodium sulfonate can release sodium ions
to the produced water due to the ionization. Therefore, absolute zero draw solute reverse diffusion
is impossible [55]. Moreover, the inner volume of the swelling hydrogel is full of sodium ion; then,
the recovered water is not purely squeezed out from the hydrogel under a high external pressure
combined with thermal influence. Further purification may be needed.

6. Challenges and Prospects for the Future

Desirable hydrogels as draw solutes are supposed to possess a high swelling rate, high deswelling
rate with low cost, and high mechanical strength. Besides, the FO unit can be operated in continuous
mode. Various methods have been applied to enhance the performance of hydrogels as draw solutes
in the FO process. However, the apparent water flux is still low. The swelling rate and dewatering rate
can also be enhanced by the following methods.

Since slow swelling of dried hydrogels is due to the slow diffusion of water into the glassy matrix
of the dried hydrogels, introducing connected pores adding capillary action is conductive to the water
diffusion [78,79]. Porous hydrogels can be prepared by a variety of methods, such as the porosigen
technique [80], phase separation technique [81], crosslinking of individual hydrogel particles [82], and
gas-blowing technique [83]. Besides, surface crosslinking can increase the modulus of the gel, while
the friction coefficient between the polymer chain segment and solvent is basically unchanged, so the
diffusion coefficient of the gel (D) also can be increased, according to the swelling dynamic of the
hydrogel. Besides, surface crosslinking can effectively solve “case hardening” during the dewatering
process [84]. Fabricating hydrogels with heterogeneous internal microstructures instead of homogeneous
ones contributes to the formation of water release channels within the skin layer by chemically grafting
linear hydrophilic side chains onto the hydrogel networks [78].

Although thermally responsiveness of the hydrogel is favorable for its regeneration in the FO
process, the dewatering efficiency is still low [36]. Therefore, improving the dewatering efficiency is
the key to enhancing the apparent water flux. A combination of external pressure and thermal can
effectively improve the dewatering efficiency, but high mechanical strength is needed [36]. Shape
memory polymers (SMPs) are capable of being fixed into a temporary shape upon programming and,
subsequently, able to recover their original shape under appropriate external stimuli, such as heat [85].
The recover stress can reach 1.8 Mpa, and even more. Therefore, introducing a reversible bidirectional
shape memory polymer (rbSME) to a thermally responsive hydrogel may be a good alternative to
solve the dewatering problem.

Furthermore, we can design a semi-interpenetrating (semi-IPN) network of thermo-sensitive
and conductive hybrid hydrogels to enhance dewatering efficiency [86]. The interpenetrating binary
network structure provides hybrid hydrogels with continuous transporting pathways for electrons,
highly porous microstructures, and strong interactions between two hydrogel networks, thus endowing
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the hybrid hydrogels with a unique combination of high electrical conductivity, high thermo-sensitivity,
and greatly enhanced mechanical properties.

Further work is needed as none of the above-mentioned draw solutes is perfect. Designing
draw solutes aims at a comprehensive balance between low energy consumption and easy fabrication.
Tackling these challenges requires multidisciplinary efforts and knowledge in chemistry, materials
science, and process engineering.
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Abbreviations

PAM poly(acrylamide)
PNIPAm poly(N-isopropylacrylamide)
PSA poly(sodium acrylate)
PSA-NIPAm poly(sodium acrylate)-N-isopropylacrylamide
NP N-isopropylacrylamide

NP95-AAm5
thermo-responsive copolymer microgels (the mass ratio of N-isopropylacrylamide
and acrylamide is 95:5)

NP95-HEMA5
thermo-responsive copolymer microgels (the mass ratio of N-isopropylacrylamide
and 2-hydroxyethyl methacrylate is 95:5)

NP95-PEGA5
thermo-responsive copolymer microgels (the mass ratio of N-isopropylacrylamide
and poly (ethylene glycol) methyl ether acrylate is 95:5)

P(MT20EO80)
the copolymer of (2-(methactyloyloxy) ethyl) trimethylammonium chloride (MT) and
2-(2-methoxyethoxy) ethyl methacrylate (EO) (the mass ratio is 20:80)

PSSP5 poly(tetrabuylphosphonium styrenesulfonates)5

TVBP-C6-5/5
tributyl-4-vinylbenzylphosphonium (TVBP)-C6-5/5 based poly(ionic liquid)
hydrogels where six represents the number of carbon atoms in the alkane sulfonate
counterion and 5/5 represents the molar ratio of PPG to PEG

MCG-NP microgels-N-isopropylacrylamide
MCG-NP-MAA microgels-N-isopropylacrylamide-methacrylic acid
MCG-NP-AA microgels-N-isopropylacrylamide-acrylic acid
MCG-NP-MA microgels-N-isopropylacrylamide-maleic acid
MCG-NP-IA microgels-N-isopropylacrylamide-itaconic acid
MCG-NP-AMPS microgels-N-isopropylacrylamide-2-acrylamido-2-methyl-1-propanesulfonic acid
MCG-NP-DMAEMA microgels-N-isopropylacrylamide-2-acrylamido-2-methyl-1-propanesulfonic acid
MCG-NP-DEAEMA microgels-N-isopropylacrylamide-2-(diethylamino) ethyl methacrylate
MCG-NP-VP microgels-N-isopropylacrylamide-4-vinylpyridine
MCG-NP-VI microgels-N-isopropylacrylamide-1-vinylimidazole

CMC-g-PNaA-co-PNIPAM
carboxymethyl cellulose-graft-poly (sodium
acrylate)-copolymerization-N-isopropylacrylamide

PSA-C poly(sodium acrylate)-carbon
PNIPAM-C poly(N-isopropylacrylamide)-carbon
PSA- NIPAM-C poly(sodium acrylate)-N-isopropylacrylamide-carbon
PSA-1.2 wt% rGO poly(sodium acrylate)-1.2wt% reduced graphene oxide

PSA-NIPAM-1.2 wt% rGO
Composite polymer hydrogel synthesized by adding 1.2wt% reduced graphene oxide,
sodium acrylate and N-isopropylacrylamide

PSA-NIPAM-16 wt% γ-Fe2O3
Composite polymer hydrogel synthesized by adding 16wt% γ-iron(III) oxide
nanoparticles, sodium acrylate and N-isopropylacrylamide
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PNIPAm-PSA-PUF poly(N-isopropylacrylamide)-poly(sodium acrylate)-polyurethane
TPU-PN5S5 thermoplastic polyurethane-N-isopropylacrylamide-sodium acrylate
SI-0.2PSA semi-IPN-0.2 poly(sodium acrylate)
SI-0.5PVA semi-IPN-0.5 polyvinyl alcohol
PEG-PLGA-PEG poly(ethylene glycol-[DL-lactic acid-co-glycolic acid]-b-ethylene glycol)
PEG-PLGA-PEG/GO poly(ethylene glycol-[DL-lactic acid-co-glycolic acid]-b-ethylene glycol)/Graphene oxide

PEG-PLGA-PEG/G
poly(ethylene glycol-[DL-lactic acid-co-glycolic acid]-b-ethylene glycol)/Graphene
5PSA-C-150

PSA-C poly(sodium acrylate)-carbon
MCG-NP-AA microgel-N-isopropylacrylamide-acid acrylate
HA-PVA Hyaluronic acid-Poly(vinyl alcohol)

AMPS/DMAEMA
2-Acrylamido-2-methyl-1-propanesulfonic acid /2-N,N′-(Dimethylamino)ethyl
methacrylate

DEAEMA-PEGDA 2-N,N′-(diethylamino)ethyl methacrylate-poly (ethylene glycol diacrylate)
DMAEMA-PEGDA 2-N,N′-(dimethylamino) ethyl methacrylate (DMAEMA)-poly (ethylene glycol diacrylate)

Fe3O4@P(NIPAM-co-AMPS)
Fe3O4@P(N-isopropylacrylamide-copolymerization-sodium
2-acrylamido-2-methylpropane sulfonate)

SL single-layer
BL bi-layer
ML multi-layer
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