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Abstract: We studied how rainfall spatial distribution affects the relationship between rainfall
spatiotemporal resolution and runoff prediction accuracy under real field conditions. We gathered
radar rainfall and discharge data for three rainfall events. These rainfall-runoff events were then
reproduced using a kinematic wave model. Modeling accuracy was estimated quantitatively using the
Nash–Sutcliffe model efficiency coefficient and peak discharge ratio. Normalized root-mean-square
error (nRMSE), skewness (Sk), and second scaled spatial moment of catchment rainfall (δ2) were
employed to quantify rainfall spatial distribution characteristics. By relating the accuracy of modeling
results to the rainfall spatial characteristics using various rainfall spatiotemporal resolutions, we found
that the modeling results converged to a value as the nRMSE, |Sk| and |1− δ2| decreased. That is,
rainfall spatial distributions affect the relationship between lower limit of rainfall spatiotemporal
resolution for runoff models and runoff prediction accuracy.

Keywords: rainfall resolution; rainfall distribution; rainfall-runoff; physically based model;
prediction accuracy

1. Introduction

Advances in measurement and computational techniques have enabled us to consider additional
physical processes for accurate flood forecasting. As knowledge regarding rainfall-runoff processes
has developed and the related technologies and models have continued to advance, significant
research efforts have focused on the accuracy and uncertainty of model input data because the
accuracy of rainfall-runoff modeling relies heavily on input data [1–3]. Among the many types
of input data, rainfall data is not only one of the most critical factors affecting the accuracy of
runoff prediction [4], but also one of the factors that produce the highest degree of uncertainty [5].
Therefore, many studies have been conducted to reduce the uncertainty originating from rainfall
data. For example, Fraga et al. [2] recently investigated the effects of rainfall data uncertainty on the
performance of hydrological models in a small basin (~10 km2).

A relatively new paradigm for rainfall measurement is currently under development. Rainfall
radar indirectly measures rainfall intensity and can produce raster-type rainfall data with various
spatial and temporal resolutions. Although such systems must be calibrated with data measured by
point rainfall gauges on the ground, radar can capture rainfall spatial variation much more accurately
than point rainfall gauges. Furthermore, raster rainfall information is desirable for physically-based
distributed rainfall-runoff models. Runoff simulations with high rainfall spatial resolution (RSR)
provide more accurate results than those with lower RSR [4,6,7].

In addition to the performance of rainfall measurement facilities and computational resources,
the spatial variability of hydrological factors can also affect flood forecasting accuracy. Ogden and
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Julien [8], and Shah et al. [9] studied the effects of rainfall spatial variability on rainfall-runoff

characteristics using physically-based runoff models. Recently, many studies on the effects of the spatial
and temporal variation of rainfall on the hydrological modeling results for relatively small urban
basins have been conducted [10–14]. These studies commonly reported that higher spatiotemporal
resolution rainfall data resulted in more accurate prediction results at small urban basins. One of the
reasons was that spatial and temporal rainfall aggregation could affect rainfall peak and intensity [11].
Kim and Kim [15] hypothesized that the minimum RSR for accurate runoff prediction depended on
spatiotemporal rainfall variation. However, their study was strictly limited to idealized basin and
rainfall conditions. The test basin was a small one-dimensional impervious plain with a constant
slope and uniform roughness. The tested rainfall distribution only varied linearly in space and was
invariant in time. However, variations in temporal resolution of rainfall data can affect modeling
results as much as variation in spatial resolution [10,13,14]. Furthermore, the basin scale, rainfall spatial
distribution, and intensity were unrealistic. Therefore, it is still questionable whether or not rainfall
spatial distribution has a significant effect on the RSR and rain temporal resolution (RTR) required for
accurate runoff prediction in natural environments. Under real conditions, various factors, such as
rainfall, topography, infiltration, and roughness, vary diversely in space and time unlike the ideal
conditions considered in previous studies.

Therefore, in this study, we investigated the effects of rainfall spatial distribution on the relationship
between rainfall spatiotemporal resolution and runoff prediction accuracy under real midsize watershed
conditions. In the following sections, we first describe the characteristics of the target basin and rainfall
events. Next, a brief description of a physically-based modeling technique and the results for various
rainfall spatiotemporal resolutions are presented. Finally, the effects of rainfall spatial distribution on
the relationship between rainfall spatiotemporal resolution and flood prediction accuracy are analyzed.

2. Methods

2.1. Study Area

The study area, the Mihocheon watershed, is located in the northern area of the Geumgang
watershed in the Republic of Korea (Figure 1). This watershed is characterized by the temperate climate
of the middle latitudes with four distinct seasons. The average annual rainfall is 1290 mm and more
than 60% of the average annual rainfall occurs during the rainy season in summer. The total area of
the watershed is 1855 km2, with a composition of 46% forest, 43% agricultural land, 6% urban area,
3% grass, and 2% bare land. There are four stage-discharge gauging stations operated by the Ministry
of Environment as shown in Figure 1. That is, we can assume that four sub-basins are embedded the
Mihocheon watershed as shown in Figure 1. In this study, the largest sub-basin area is referred to as
Hapgang (HG). The sub-basins bounded in red, green, and blue lines are referred to as Seokhwa (SH),
Bukil (BI), and Cheongju (CJ), respectively. The areas of the Hapgang, Seokhwa, Bukil, and Cheongju
basins are 1853 km2 1594 km2, 908 km2, and 168 km2, respectively.

Hydrological data for this watershed, such as precipitation, water level, and discharge, are
thoroughly measured and managed by the Korean government for the purposes of flood forecasting
and drought management. The four stage-discharge gauging stations are located at the downstream
ends of each basin as shown in Figure 1. The measured discharge values were converted from the
measured water stage values using the rating curves at the stage-discharge gauging stations every
10 min. These data are regularly verified by the Ministry of Environment using a hydrological quality
management system. Geographical features, such as digital elevation model (DEM) values, land use,
soil texture, and soil depth (Figure 2 and Table 1), are provided by the Ministry of Environment and
the National Academy of Agriculture Science in Korea.
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Figure 1. Mihocheon watershed. Black thick line: Hapgang (HG) basin, red line: Seokhwa (SH) basin, 

green line: Bukil (BI) basin, and blue line: Cheongju (CJ) basin. Triangles: stage-discharge gauging 

stations. *: Rainfall radar station. 

 

Figure 2. Geographic data of the Mihocheon watershed. (a) Digital elevation model (DEM) elevations, 

(b) land use, (c) soil texture, and (d) soil depth. The cell size is 250 × 250 m. 

  

Figure 1. Mihocheon watershed. Black thick line: Hapgang (HG) basin, red line: Seokhwa (SH) basin,
green line: Bukil (BI) basin, and blue line: Cheongju (CJ) basin. Triangles: stage-discharge gauging
stations. *: Rainfall radar station.
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Table 1. Roughness coefficients for land use, soil depth, and soil texture geographical features.

Land
Use

Classification Roughness
Coefficient

Impervious
Ratio

Soil
Depth

Classification Soil
Depth (cm)

Applied
Soil

Depth
(cm)

Water 0.030 1.000 Very shallow 0–20 10Urban/dry area 0.015 0.853

Bare land 0.020 0.442
Shallow 20–50 25Wetland 0.070 1.000

Grass 0.015 0.440 Moderately deep 50–100 75Forest 0.100 0.050

Rice paddy 0.035 0.391 Deep 100–150 125Field 0.035 0.391

Soil
Texture

Classification Porosity
(η)

Effective
Porosity

(θe)

Residual
Moisture
Content

(θr)

Wetting
Front Soil

Suction Head
(ψf) (cm)

Hydraulic
Conductivity

(K) (m/hr)

Loamy sand 0.437 0.417 0.02 4.95 11.78
Sandy loam 0.453 0.412 0.041 11.01 1.09

Loam 0.463 0.434 0.029 8.89 0.34
Clay loam 0.464 0.309 0.155 20.88 0.10
Silty loam 0.501 0.486 0.015 16.68 0.65

Silty clay loam 0.471 0.432 0.039 27.30 0.10

2.2. Storm Events and Radar Rainfall Data

The rainfall data used in this study were measured by a radar system at the Seodaesan Rainfall
Radar Station, which is located near the Mihocheon watershed (Figure 1). This radar system uses the
S-band and measures rainfall data with a 250 m grid size every 10 min. In addition to this radar station,
eight rainfall-gauging stations are in operation inside the watershed and the rainfall gauge data are
used to calibrate the radar rainfall data by the Ministry of Environment.

To examine the effects of rainfall spatial distribution on the relationship between rainfall
spatiotemporal resolution and runoff prediction accuracy, we selected three rainfall events that
occurred during the rainy season (Table 2). The mean areal rainfall for Event1 was approximately
185 mm for 3 days. This can be regarded as a heavy rainfall event. The mean areal rainfalls for Event2
and Event3 were approximately 30–45 mm over 2–3 days, representing mild rainfall events.

Table 2. Characteristics of rainfall events.

Storm Event Period Discharge
Gauging Station

Mean Areal
Rainfall (mm)

Max Rainfall
(mm)

Min Rainfall
(mm)

Event1 16–19 July 2017

Hapgang (HG) 178.3 286.2 21.9
Seokhwa (SH) 188.2 286.2 72.7

Bukil (BI) 174.7 279.4 78.1
Cheongju (CJ) 197.4 286.2 72.7

Event2 24–27 July 2017
Hapgang (HG) 45.6 128.8 6.5
Seokhwa (SH) 42.7 128.8 13.3

Bukil (BI) 42.8 128.8 13.3

Event3 28–31 July 2017
Hapgang (HG) 29.1 94.4 0.2
Seokhwa (SH) 33.3 94.4 2.9

Bukil (BI) 36.2 94.4 9.6

Because the radar station provided only Lr = 250 m data, we generated low spatial resolution
rainfall data by averaging the 250 m data. Considering that the average area of an element in the

Thiessen network in Figure 3d is about 231 km2 and
√

231 km2
≈ 15.2 km, the largest Lr was chosen

to be 16 km. Thus, the Lr of radar rainfall data used for rainfall-runoff modeling were Lr = 250 m,
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500 m, 1 km, 2 km, 4 km, 8 km, and 16 km. Figure 3 presents several examples of rainfall distributions
with various RSRs. During the prior test, we found that the shortest time to peak (Tp) of the tested
cases was about 4 h at Cheongju basin. Thus, the time resolution (Tr) of radar rainfall data used
for the runoff modeling were Tr = 10 min, 20 min, 30 min, and 60 min by considering the scale of
Tp. As noted above, the radar system provides only Tr = 10 min data, thus the rainfall data with
Tr > 10 min were generated by averaging the Tr = 10 min radar rainfall data. It needs to be noted that
the radar measured data were not merged with rainfall gauge measurements on ground. Only the
rainfall data measured by the radar station were used in this study.
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the Thiessen network.

2.3. Modeling Accuracy Estimation

To estimate the accuracy of the modeling results quantitatively, we employed the Nash–Sutcliffe
model efficiency coefficient (NSE, Nash and Sutcliffe [16]) and peak discharge ratio (PE) as follows:

NSE = 1−
∑
(Qe −Qc)

2∑(
Qe −Qe

)2 , (1)

PE =
Qp

c

Qp
e

, (2)

where Qe and Qc are the criterion and comparison discharges at the gauging stations, respectively.
The overbar ( ) and superscript p represent the average and peak values, respectively. According to the
classification of Moriasi et al. [17], performance of hydrologic models is very good in the range of NSE
= 1.0–0.8, good in the range of NSE = 0.8–0.6 and generally satisfactory in the range of NSE = 0.6–0.5.
The range of NSE = 1.0–0.0 is an acceptable level.
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2.4. Rainfall Spatial Variability Estimation

To characterize the differences between local and mean rainfall amounts quantitatively, normalized
root-mean-square error (nRMSE) was calculated as follows:

nRMSE =

√
1
n

∑n

i=1

(Pi − Pm

Pm

)2
, (3)

where Pi is the rainfall amount at a cell of the raster-type rainfall data, Pm is the mean areal rainfall
amount in the watershed, i is the cell index, and n is the total number of cells. The skewness (Sk)
representing the degree of asymmetry of the rainfall spatial distribution about Pm was calculated as
follows:

Sk =
1
n
∑n

i=1(Pi − Pm)
3[

1
n
∑n

i=1(Pi − Pm)
2
]3/2

, (4)

To quantify the dependence between spatial rainfall organization, basin morphology, and runoff

response, the second scaled spatial moments of the catchment rainfall [18] were calculated as follows:

δ2 =
1

g2 − g2
1

[
P2

Po
−

(P1

Po

)2]
, (5)

Pn = |A|−1
∫

A
rt(x, y)d(x, y)ndA, (6)

gn = |A|−1
∫

A
d(x, y)ndA, (7)

where d(x, y) is the distance between a position (x, y) and the basin outlet along the flow path, A is the
spatial domain of the watershed, Pn is the n-th spatial moment of the catchment rainfall, and rt(x, y) is
the mean value of the time integrated rainfall at a location (x, y). δ2 is the second scaled spatial moment
of the catchment rainfall. Values of δ2 close to 1.0 indicate a relatively uniform rainfall distribution.
Values of δ2 less than or greater than 1.0 indicate unimodal and multimodal rainfall distributions
along the flow path, respectively. For consistent expression using nRMSE and Sk, we discuss spatial
variability based on |1− δ2| instead of δ2.

2.5. Rainfall-RunoffModeling

For rainfall-runoff simulations, we utilized a grid-based rainfall-runoff model (GRM) based on a
kinematic wave model [19]. The GRM can simulate surface runoff, infiltration, and subsurface flow,
and consider control by hydraulic structures [20–23].

The GRM consists of a kinematic wave model for surface runoff on watersheds and river flows,
and a Green–Ampt model for infiltration. The continuity equations for the GRM for overland and
river flows are expressed as follows:

∂h
∂t

+
∂q
∂x

= r− f +
qr

∆y
, (8)

∂h
∂t

+
∂q
∂x

= r− f +
qr

∆y
, (9)

where t is the time and x is the horizontal axis. h is the flow depth and q is the discharge per unit width
(q = uh), where u is the flow velocity in the x direction. r is the rainfall intensity, f is the infiltration
rate, and qr is the return flow. Ac is the cross-sectional river flow area, and Q is the flow discharge of
the river. qL is the lateral overland inflow, qss is the subsurface flow into the channel, qb is the lateral
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inflow in the lower soil layer, and ∆y is the width of the control volume. The momentum equation for
the GRM is expressed as

S0 = S f , (10)

where S0 is the bottom slope and S f is the friction slope. Infiltration is calculated by the Green–Ampt
model as follows [24]:

F(t) = Kt + ∆θψ ln
(
1 +

F(t)
∆θψ

)
, (11)

f (t) = K
(

∆θψ
F(t)

+ 1
)
, (12)

where F(t) and f (t) are the cumulative infiltration and infiltration rate at time t, respectively.
∆θ (= (1− Se)θe) is the change in soil moisture content, where Se = (θ− θr)/(η− θr) is the effective
saturation, θ is the moisture content (θr ≤ θ ≤ η), θr(= η− θe) is the residual moisture content, η is
the porosity, and θe is the effective porosity. ψ is the wetting front soil head and K is the hydraulic
conductivity. The GRM assumes that the hydraulic gradient of subsurface flow is equal to the land
surface gradient within a control volume based on the results presented by Beven (1981). It calculates
the subsurface flow as follows:

qss = KDssin(Sa), (13)

where qss is the subsurface flow, Ds is the saturated soil depth, and Sa is the land surface slope.
For subsurface flow modeling, the GRM divides soil layers into upper and lower layers. After the
upper soil layer is saturated, percolation occurs in the lower soil layer and the percolation depth is
calculated as

p = KBv × ∆t, (14)

where p is the percolation depth during ∆t and KBv is the vertical hydraulic conductivity of the lower
soil layer. The lateral inflow in the lower soil layer is calculated as follows [25]:

qb = KBhDB sin(Sa), (15)

where KBh is the horizontal hydraulic conductivity in the soil layer and DB is the water depth in the
soil layer. Additional details regarding the physics and numerical scheme of the GRM are described in
the papers by Choi [19].

The computational grid size (∆x) and time step (∆t) for the GRM were always set to ∆x = 250 m and
∆t = 10 min because the computed discharges at the four gauging stations converged when ∆x = 250 m
and ∆t = 10 min. The rainfall-runoff modeling for the four sub-basins were simulated independently.
That is, we assumed that there were four separate basins. Thus, for example, when we computed
hydrographs at Seokhwa station, the downstream area of Seokhwa station was not considered and the
hydrographs at Bukil and Cheongju stations were not calibrated.

The model parameters for simulation were calibrated by using the model-independent parameter
estimation method for the runoff volume and peak discharge at the gauging stations with
Lr = ∆x = 250 m and Tr = ∆t = 10 min. It should be noted that the value of ∆x and ∆t for the
GRM are different from the values of Lr for RSR and Tr for RTR, respectively.

To investigate the effects of RSR and RTR on modeling accuracy, we simulated ten rainfall-runoff

events (Table 2) with seven different values of Lr (= 250 m to 16 km) and four different values of
Tr (= 10 min to 60 min). Thus, total number of the tested cases was 280. Figure 4 presents the part
of computed discharges among 280 cases, measured discharges and hyetographs measured by the
radar station for the tested rainfall events. Each hydrograph has seven different computed results
for the different RSRs and single Tr = 10 min. As shown in Figure 4 and Table 3, the computed
discharges with Lr = 250 m and Tr = 10 min show very good agreement with the measured data.
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It needs to be noted that all the input rainfall data used in the numerical simulation were the radar
data. The rainfall-gauging station data on ground were not used for the rainfall-runoff simulation.
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Table 3. Nash–Sutcliffe model efficiency coefficient (NSE) and peak discharge ratio (PE) for runoff

prediction with Lr = 250 m and Tr = 10 min.

Case Event1
(HG)

Event2
(HG)

Event3
(HG)

Event1
(SH)

Event2
(SH)

Event3
(SH)

Event1
(BI)

Event2
(BI)

Event3
(BI)

Event1
(CJ)

NSE 0.99 0.91 0.78 0.99 0.94 0.89 0.99 0.99 0.98 0.97
PE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

3. Results and Discussion

3.1. RSR and RTR Effects on Runoff Prediction Accuracy

As shown in Figure 4, even when the available smallest value of Lr and Tr were used,
some discrepancies between the measured and computed discharges were observed. These errors in
the computed results with the smallest Lr and Tr and could not be resolved by changing Lr and Tr

from 250 m and 10 min to other values, meaning there must be some error related to limitations of
the GRM and the accuracy of input data. Therefore, the computed discharges using Lr = 250 m and
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Tr = 10 min were used as the criterion (Qe) and the computed discharges with other combinations of
Lr and Tr values were used as the comparisons (Qc) for estimating the NSE and PE. All the estimated
NSE and PE for various spatial and temporal resolutions are presented in Figures 5 and 6.
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Figure 7 (Supplementary Materials) presents the NSE and PE of the computed discharges at the
stage-discharge gauging stations with a fixed Tr(= 10 min) and seven values of Lr (= 250 m ∼ 16 km)

for the tested events. To account for accuracy of the spatial rainfall distributions in model input of fine
and coarse resolutions relative to basin size, we used dimensionless form Lr/

√
As, where As is the

area of the sub-basins. As shown in this figure, higher RSR values (smaller Lr/
√

As values) resulted
in NSE and PE values closer to 1.0 compared to lower RSR values under real watershed conditions.
For similar purpose, Tr/Tp was employed to consider accuracy of the temporal rainfall variation in
model input. Consistently with Figure 7, Figure 8 (Supplementary Materials) shows the NSE and PE
of the computed discharges with various values of Tr and a fixed Lr(= 250 m) for the tested events,
where higher RTR values (smaller Tr/Tp values) resulted in NSE and PE values closer to 1.0 compared
to lower RTR values under real watershed conditions, as observed by [7,10–14,26–28]. These results
indicate that convergence by Lr and Tr values must be verified in the view of rainfall input in addition
to convergence by ∆x and ∆t in the view of numerical scheme for solving governing equations.
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3.2. Effects of Rainfall Spatial Distribution on the Relationship between RSR and Prediction Accuracy

Figure 7 reveals that different rainfall events can result in different NSE and PE values, even when
the same RSR is used for the same watershed. The NSE and PE of Event1 (HG) were different from the
NSE and PE of Event2 (HG) when the same Lr value was used for the same watershed. Because all
factors other than rainfall characteristics were the same, the only factor that could have affected the
NSE and PE values was the different rainfall characteristics of the individual rainfall events.

Figure 9 shows the relationship between rainfall spatial distribution characteristics (nRMSE, Sk,
and δ2) and sensitivity of modeling accuracy (NSE and PE) to RSR for the tested cases, where the
NSE and PE would be 1.0 when nRMSE, |Sk| and |1− δ2| approach to zero like ∗ symbols in Figure 9
(and Figure 10). As shown in Figure 10, the sensitivity to the input RSR generally decreased as the
rainfall spatial variabilities (nRMSE, |Sk|, and |1− δ2|) increased. Wide range of the variability of NSE
and PE indicates that prediction accuracy depends substantially on RSR of rainfall data. For this
study, the prediction accuracy was less dependent on the RSR when the nRMSE, |Sk|, and |1− δ2| were
small than when the nRMSE, |Sk|, and |1− δ2| were large. In other words, when the same value of
RSR was used, the prediction accuracy increased as nRMSE, |Sk| and |1− δ2| decreased. Therefore, it is
evident that rainfall spatial variability affects the required RSR level for accurate runoff prediction.
This indicates that computed results with large values of Lr can converge if the values of nRMSE, |Sk|,
and |1− δ2| are sufficiently small. However, one must utilize a sufficiently small value of Lr to ensure
that the computed results converge if the values of nRMSE, |Sk| and |1− δ2| are large.

3.3. Effects of Rainfall Spatial Distribution on the Relationship between RTR and Prediction Accuracy

Consistent features with the effects of rainfall spatial distribution on the relationship between
RSR and prediction accuracy were also observed from the relationship between RTR and prediction
accuracy. Figure 8 shows that different NSE and PE values resulted from different rainfall spatial
distributions, even when the same RTR was used for the same watershed. Thus, we can infer that the
rainfall spatial characteristics also affect the relationship between RTR and prediction accuracy. This is
because the only factor that affected the variations of the NSE and PE values at the same watershed in
Figure 8 was the different rainfall characteristics of the individual rainfall events.
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Figure 10 shows the relationship between rainfall spatial distribution characteristics (nRMSE, Sk,
and δ2) and sensitivity of modeling accuracy (NSE and PE) to RTR for the tested cases. As shown
in Figure 10, the sensitivity to the input RTR generally decreased as the rainfall spatial variabilities
(nRMSE, |Sk|, and |1− δ2|) increased. Because wide range of the variability of NSE and PE indicates
that prediction accuracy depends substantially on RTR of rainfall data, the prediction accuracy was
less dependent on the RTR when the nRMSE, |Sk|, and |1− δ2|were small than when the nRMSE, |Sk|,
and |1− δ2| were large. In other words, when the same value of RTR was used, the prediction accuracy
increased as nRMSE, |Sk|, and |1− δ2| decreased. Therefore, it is evident that rainfall spatial variability
affects the required RTR level for accurate runoff prediction, at least for the tested cases.

3.4. Application: Upper Limit for Lr of Radar Rainfall Data

Because NSE and PE converge as Lr decreases (Figures 4–6), we can determine an upper limit
for Lr (lower limit for RSR) to ensure the required runoff prediction accuracy by setting a threshold.
Table 4 shows the upper limits for Lr to ensure the required prediction accuracy based on Qp for the
Mihocheon watershed. For example, to ensure a forecasting accuracy of 90%–95% for Qp, an Lr value
of 2–4 km should be used if Tr = 10 min. If a coarser temporal resolution Tr = 30 min is chosen,
we cannot obtain higher than 95% accuracy for many cases as shown in Table 4 because the lower limit
of the present radar system is Lr = 250 m. Although we need further investigation with more many
cases, this approach will be helpful to find reliable Lr and Tr for the area.

Table 4. Upper limit of Lr for the required peak discharge prediction accuracy for the
Mihocheon watershed.

Storm
Event

Upper Limit of Lr (km)
for Required Accuracy with Tr = 10 and Tr = 30 (min)

90% Accuracy 95% Accuracy 97% Accuracy 99% Accuracy

Tr = 10 Tr = 30 Tr = 10 Tr = 30 Tr = 10 Tr = 30 Tr = 10 Tr = 30

Event1(HG) 16 16 8 8 8 8 4 2
Event2(HG) 4 0.25 4 - 2 - 1 -
Event3(HG) 8 8 4 0.25 4 - 1 -
Event1(SH) 16 16 8 8 8 8 4 4
Event2(SH) 4 2 4 - 2 - 2 -
Event3(SH) 4 2 4 - 2 - 2 -
Event1(BI) 16 16 16 16 16 4 16 -
Event2(BI) 4 0.5 2 - 2 - 1 -
Event3(BI) 8 4 4 2 4 - 1 -
Event1(CJ) 4 4 4 4 2 2 1 1
Minimum
Lr (km) 4 0.25 2 <0.25 2 <0.25 1 <0.25

It is interesting to test the accuracy of the flood forecasting performed by the flood control office
in the area. Currently, the flood control office mainly uses the Thiessen network presented in Figure 3d,
where the area of an element in the Thiessen network is approximately equal to the area of a radar cell
with Lr = 16 km. Therefore, we can roughly assume that the peak flood prediction accuracy for the
area operated by the flood control office using the Thiessen network would be less than 90% at most if
the other conditions were the same.

4. Conclusions

We studied the effects of rainfall spatial distribution on the relationship between rainfall
spatiotemporal resolution and runoff prediction accuracy under real watershed conditions. We collected
the rainfall and discharge data from rainfall events in the Mihocheon watershed. These events were
then reproduced using a kinematic wave model. Because the computed discharges converged
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when ∆x = Lr = 250 m and ∆t = Tr = 10 min, we assumed that the modeling results with
∆x = Lr = 250 m and ∆t = Tr = 10 min represented the criteria for accurate rainfall-runoff modeling.
Lastly, we investigated the effects of rainfall spatial distribution (nRMSE, Sk, and δ2) on the lower limit
of RSR and RTR for required runoff prediction accuracy. Several major findings are summarized below.

(1) The dependence on high spatial and temporal resolutions to achieve accurate prediction is
proportional to nRMSE, |Sk| and |1− δ2| in terms of quality. In other words, the computed results with
a large value of Lr and Tr will converge if nRMSE, |Sk|, and |1− δ2| are sufficiently small. On the other
hand, we need small value of Lr and Tr to ensure that the computed results will converge when nRMSE,
|Sk| and |1− δ2| are large. Therefore, we can conclude that rainfall spatial distribution has a significant
effect on the required RSR and RTR for accurate runoff prediction under midsize real field conditions.

(2) For rainfall-runoff simulation, convergence by Lr and Tr of rainfall input data must be checked
separately from the convergence by ∆x and ∆t for computational schemes of distributed rainfall-runoff

models. It is strictly required to check the convergence of computed results depending on ∆x and ∆t
for numerical schemes when we use grid-based numerical models. In addition, we need one more
procedure to check the convergence depending on rainfall input resolution to assure reliability of
rainfall-runoff modeling results.

(3) Even when the same RSR and RTR are used for the same watershed, different rainfall events with
different characteristics can result in different NSE and PE. Therefore, when using radar, we must not
only consider electrical or mechanical performance, but also rainfall spatial distribution (hydrological
aspects) to determine the rainfall radar resolution for accurate flood forecasting.

In addition, the results presented in this paper can be used to remove a physically originating
uncertainty in rainfall-runoff modeling. Although the results seem to introduce additional uncertainty
into lumped runoff models because such models cannot accurately consider rainfall spatial distributions,
the additional uncertainty is superior to ignorance.

Although we were able to find a clue for removing physically-originating uncertainty for
rainfall-runoff modeling, various unknown factors still remain. In particular, the proposed results in
this study are limited within one specific area. Thus we need further investigations based on sufficient
cases with different climate, size, geographical features and topography in order to quantify effects
of rainfall spatial distribution on relationship between rainfall resolution and prediction accuracy.
Additionally, a better definition of quantity of rainfall temporal distribution needs to be developed [11],
linking rainfall temporal variability to relationship between rainfall spatiotemporal resolution and
accuracy of rainfall-runoff prediction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/3/846/
s1, Excel.
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