
water

Article

Studying Unimodal, Bimodal, PDI and Bimodal-PDI
Variants of Multiple Soil Water Retention Models: II.
Evaluation of Parametric Pedotransfer Functions
Against Direct Fits

Amir Haghverdi 1,*, Hasan Sabri Öztürk 2 and Wolfgang Durner 3

1 Environmental Sciences Department, University of California Riverside, Riverside, CA 92521, USA
2 Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, Ankara 06110,

Turkey; H.Sabri.Ozturk@agri.ankara.edu.tr
3 Institute of Geoecology, Technical University of Braunschweig, Langer Kamp 19c, 38106 Braunschweig,

Germany; w.durner@tu-braunschweig.de
* Correspondence: amirh@ucr.edu; Tel.: +1-951-827-4774

Received: 21 January 2020; Accepted: 19 March 2020; Published: 22 March 2020
����������
�������

Abstract: A high-resolution soil water retention data set (81 repacked soil samples with 7729
observations) measured by the HYPROP system was used to develop and evaluate the performance
of regression parametric pedotransfer functions (PTFs). A total of sixteen soil hydraulic models were
evaluated including five unimodal water retention expressions of Brooks and Corey (BC model),
Fredlund and Xing (FX model), Kosugi (K model), van Genuchten with four free parameters (VG
model) and van Genuchten with five free parameters (VGm model). In addition, eleven bimodal,
Peters–Durner–Iden (PDI) and bimodal-PDI variants of the original expressions were studied. Six
modeling scenarios (S1 to S6) were examined with different combinations of the following input
predictors: soil texture (percentages of sand, silt and clay), soil bulk density, organic matter content,
percent of stable aggregates and saturated water content (θs). Although a majority of the model
parameters showed low correlations with basic soil properties, most of the parametric PTFs provided
reasonable water content estimations. The VGm parametric PTF with an RMSE of 0.034 cm3 cm−3 was
the best PTF when all input predictors were considered. When averaged across modeling scenarios,
the PDI variant of the K model with an RMSE of 0.045 cm3 cm−3 showed the highest performance.
The best performance of all models occurred at S6 when θs was considered as an additional input
predictor. The second-best performance for 11 out of the 16 models belonged to S1 with soil textural
components as the only inputs. Our results do not recommend the development of parametric PTFs
using bimodal variants because of their poor performance, which is attributed to their high number
of free parameters.
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1. Introduction

The term pedotransfer function (PTF) was first proposed by Bouma and van Lanen [1] to describe
regression models formulating relationships between soil properties. Following their proposition,
a majority of the published research in this area has focused on estimating soil hydraulic properties,
mainly on individual water retention points and the soil water retention curve (SWRC). In many
practical applications, PTF-estimated soil hydraulic properties, from readily available basic properties,
are used to bridge the gap when adequately measured data are not available. The application of PTFs
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is particularly important for the larger scales water flow and solute transport modeling studies for
which direct measurement of soil hydraulic properties is impractical.

Point pedotransfer functions (Group 1 PTFs, [2]) are developed to estimate the soil water content
at one or several predefined soil tensions (typically field capacity and permanent wilting point).
Parametric PTFs (Group 2 PTFs, [2]) are the most widely used models for continuous estimation of
the soil water content over a wide range of soil tensions. Parametric PTFs estimate parameters of a
soil water retention equation, which is subsequently used to predict the SWRC. Haghverdi et al. [3]
introduced an alternative non-parametric approach where instead of estimating parameters of soil
hydraulic equations for a target soil, the k-nearest neighbor technique is used to find the k most similar
soils in the PTF development dataset. The SWRC of the target soil is then predicted as the weighted
average of the fitted curves for the k similar soils. Additionally, the pseudo-continuous PTF (PC-PTF,
Haghverdi et al., [4,5]) is another alternative approach that uses pF (logarithmic transformation of the
soil tension) as an extra input attribute. This extra input allows continuous prediction of the water
content by an appropriate data mining method without using any soil water retention equations.

The performance of the parametric PTFs is typically evaluated using data sets with a limited number
of soil water retention data per sample, measured via the traditional standard equilibrium approach
(i.e., the sandbox apparatus, the sand/kaolin box and the pressure plate extractor). An alternative
option for measuring soil water retention in the laboratory is the extended evaporation method
(Schindler et al., [6,7]) via the HYPROP system (Hydraulic Property Analyzer, METER Group, Inc.,
Pullman, WA, USA). The HYPROP system adequately determines the hydraulic properties of the most
soils [8,9]. It generates high-resolution data in the wet and intermediate parts of the WRCs, which
provides a much better data set than the traditional standard equilibrium approach to determine the
accuracy and reliability of the parametric PTFs.

According to Wösten et al. [10], the key factor for developing more accurate and reliable PTFs is to
enhance the accuracy of the soil hydraulic properties measurements. A standardized method, however,
that guarantees high-quality measurement of soil hydraulic properties has been noticeably lacking [11].
The evidence suggests that the HYPROP system could become the benchmark technique for the
laboratory measurement of the soil hydraulic properties and the development of the next generation
PTFs. This is suggested given the high-resolution water retention and hydraulic conductivity data
generated by the instrument, its relatively fast measurement cycle and its adaptation by researchers
from different parts of the world [12–17]. In a recent study, Haghverdi et al. [18] showed that artificial
neural network-based PC-PTF successfully predicts the SWRC using high-resolution data collected via
the HYPROP system.

Various water retention models have been developed over the years to parametrize the SWRC.
However, a majority of parametric PTFs [19–23] have been developed using unimodal soil hydraulic
equations and, in particular, the van Genuchten soil hydraulic model [24] while alternative models
have been rarely explored [11]. The first part of this study [25] focuses on the direct-fit of soil water
retention data to a wide range of SWRC models using a data set with high-resolution water retention
data mainly obtained via the HYPROP system. This paper aims at evaluating the performance of the
respective parametric PTFs and summarizes the overall result. Overall, the results of the companion
study showed that the alternative variants provided better fits than the original unimodal models
did [25]. A critical unanswered question, however, is whether these alternative variants hold their high
performance when model parameters are estimated via parametric PTFs. The accuracy of parametric
PTFs is impacted by two sources of error interacting in a complicated manner. The first error occurs
when estimating the parameters of the selected soil water retention model using basic soil properties.
The second error occurs when determining the SWRC by the chosen model. Consequently, it is
crucial to evaluate the direct-fit performance of the soil water retention models and compare it to the
performance of the respective parametric PTFs, the main objective of this study.
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2. Materials and Methods

Figure 1 provides an overview of the data collection and analysis steps followed in this study.
A detailed explanation of all these steps is provided in the following sections.Water 2020, 12, x FOR PEER REVIEW 3 of 28 
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Figure 1. Schematic illustrations of the data collection, pedotransfer function (PTF) development
and SWRC estimation workflow used in this study. SHM: soil hydraulic models, SWRC: soil water
retention curve.

2.1. Data Collection and Laboratory Analyses

Table 1 summarizes the properties of the data set used in this study consisting of 81 soil samples
(7729 measured water retention points) collected mainly from the areas surrounding Ankara, Turkey
in 2010. The samples were collected from surface soil layer, approximately 0–30 cm of depth, when the
soil water content was below the field capacity. The sampling locations were chosen from long term
fallow lands and non-agricultural lands to eliminate the effect of agricultural management practices
on soil structure and in turn on soil hydraulic properties [5]. The textural distribution of the samples
is shown in Figure 2. The soil physical properties were measured in the soil physics laboratory at
Ankara University in Turkey. The soil organic matter content (SOM) was estimated using measured
soil organic carbon content via the modified method of Walkley and Black [26]. The hydrometer
method [27] was used to measure soil texture (percentages of sand, silt and clay). The wet sieving
apparatus (Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) was used to determine
the percentage of the stable aggregates (SA). The apparatus works based on the principle that when
aggregates with different levels of stability are submerged into the water, the unstable aggregates
break down more easily. The analysis was done by wet sieving of 1–2 mm air-dried aggregates (using
sieves with 60 Mesh screen) as described by Kemper and Rosenau [28]. The undisturbed samples
were used to determine the bulk density, BD [29]. More details about this dataset are outlined in
Haghverdi et al. [5,18]. The water retention data of the repacked samples were measured using the
HYPROP system at the Technical University of Braunschweig in Germany. The companion paper [25]
provides detailed information about the HYPROP system and the measurement campaign.

Table 1. Characteristics of the soils used in this study.

Basic Soil Properties HYPROP Measured Data

Sand
(%)

Silt
(%)

Clay
(%)

BD
(Mg m−3)

SOM
(%)

SA
(%)

pF
(-)

SWC
(cm3 cm−3)

θs
(m3 cm−3)

Mean 35.20 30.67 34.13 1.23 1.18 30.72 1.77 0.47 0.59
SD 17.38 8.68 15.05 0.18 0.59 18.91 0.78 0.12 0.07

Max. 83.60 57.60 62.20 1.66 3.07 75.40 3.91 0.69 0.69
Min. 5.90 5.20 9.40 0.91 0.01 1.50 −2.00 0.05 0.40

BD: soil bulk density; SOM: soil organic matter content; SA: percentage of stable aggregates; SWC: volumetric soil
water content measured by the HYPROP system; θs: saturated water content determined by the HYPROP system;
pF: the logarithmic transformation of the soil tension in cm of water; SD: standard deviation.
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2.2. SWRC Parametrization

A total of sixteen water retention models were selected, including five original unimodal
expressions, four Peters–Durner–Iden (PDI; [30,31]) unimodal variants, three bimodal variants [32,33]
and four bimodal-PDI variants (Table 2). The original unimodal expressions included models developed
by Brooks and Corey (BC model; [34]), Fredlund and Xing (FX model; [35]), Kosugi (K model; [36]), van
Genuchten constrained with four free parameters (VG model; [24]) and van Genuchten unconstrained
with five free parameters (VGm model; [24]).

Table 2. The water retention models and their parameters estimated using parametric PTFs in this study.

Model 1 Parameters Source

BC α, λ, θr, θs [34]

FX α, n, hr, θs, m
[8,30–33,35]FX-PDI α, n, θr, θs, m

FX-b-PDI α1, n1, θr, θs, α2, n2, w2, m1, m2

K hm, σ, θr, θs

[9,30–33,36]K-PDI hm, σ, θr, θs
K-b hm1, σ1, θr, θs, hm2, σ2, w2

K-b-PDI hm1, σ1, θr, θs, hm2, σ2, w2

VG α, n, θr, θs

[8,24,30–33]

VG-PDI α, n, θr, θs
VG-b α1, n1, θr, θs, α2, n2, w2

VG-b-PDI α1, n1, θr, θs, α2, n2, w2
VGm α, n, θr, θs, m

VGm-PDI α, n, θr, θs, m
VGm-b α1, n1, θr, θs, m1, α2, n2, m2, w2

VGm-b-PDI α1, n1, θr, θs, m1, α2, n2, m2, w2
1 BC: Brooks and Corey [34], FX: Fredlund and Xing [35], K: Kosugi [36], VG and VGm: van Genuchten [24]
constrained and unconstrained unimodal soil water retention models. PDI and b denote Peters–Durner–Iden [30,31]
and bimodal variants of the models, respectively.

The bimodal variants formulate the SWRC as the weighted sums of two curves, conceptually
representing the textural and structural pore domains of the heterogeneous pore systems. They can
provide a better fit to the measured soil water retention data since they have a greater number of free
fitting parameters than unimodal expressions. The PDI-variant addresses the undefined dry-end water
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content issue of the most unimodal expressions by ensuring zero water content at the oven dryness.
The PDI and Bimodal-PDI variants were considered for all unimodal expressions except for the BC
model. The bimodal variants were considered for the K, the VG and the VGm models. HYPROP-FIT
software was used to fit the soil hydraulic models to the measured water retention data. All models
are explained in detail, and equations are provided in Appendix A.

2.3. Developing Parametric Pedotransfer Functions

Table 3 illustrates six modeling scenarios (hereafter referred to as S1, S2, S3, S4, S5 and S6)
examined in this study representing different combinations of PTFs’ input predictors. The first three
scenarios include the soil properties that are typically used to derive SWRC PTFs including soil texture
(i.e., sand, silt and clay percentages), BD and SOM. In the remaining scenarios, the saturated water
content (θs) and SA were considered as additional inputs.

Table 3. Combinations of input attributes used and the regression terms considered to develop
parametric pedotransfer functions.

Scenario Input Parameters 1 Regression Terms Considered

S1 Silt, Clay Silt, Clay, Silt2, Clay2, Clay × Silt

S2 Silt, Clay, BD BD, Clay, Silt, BD2, Silt2, Clay2, BD × Clay, BD
× Silt, Clay × Silt

S3 Silt, Clay, SOM Clay, Silt, SOM, Silt2, Clay2, SOM2, Clay ×
Silt, Clay × SOM, Silt × SOM

S4 Silt, Clay, SA Clay, Silt, SA, Silt2, Clay2, SA2, Clay × Silt,
Clay × SA, Silt × SA

S5 Silt, Clay, SA, BD, SOM

BD, Clay, Silt, SOM, SDA, BD2, Silt2, Clay2,
SOM2, SA2, BD × Clay, BD × Silt, BD × SOM,
BD × SA, Clay × Silt, Clay × SOM, Clay × SA,

Silt × SOM, Silt × SA, SOM × SA

S6 Silt, Clay, SA, BD, SOM, θs

BD, θs, Clay, Silt, OM, SA, BD2, θs2, Silt2,
Clay2, SOM2, SA2, BD × θs, BD × Clay, BD ×
Silt, BD × SOM, BD × SA, θs × Clay, θs × Silt,
θs × OM, θs × SA, Clay × Silt, Clay × SOM,
Clay × SA, Silt × SOM, Silt × SA, SOM × SA

1 BD: bulk density; SA: percentage of stable aggregates; SOM: soil organic matter content.

Prior to developing PTFs, a preliminary correlation analysis was conducted to check for normality
(Shapiro–Wilk W statistic), detect linear relationships between all variables and examine the data
structure. The preliminary analysis revealed that logarithmic transformation was necessary for several
parameters from different models (response variables), resulting in a greater correlation with input
predictors and a more normal distribution. We used a multiple linear regression with interactions and
quadratic terms included. A stepwise regression technique was implemented to screen the variables.
Various significance levels were examined to enter and retain the variables in the model, and based
on the results, 0.15 level was chosen as a suitable criterion to screen the variables for most of the
models. The 0.15 level, however, was adjusted whenever no input variables were selected by the
stepwise technique. Multiple regression diagnostics were then considered to finalize the list of variables
including the first and second moment specification test to check the equal residual variance, the
Shapiro–Wilk W statistic to check the normality of the residuals and the condition index to check the
collinearity between the variables. To validate the developed equations, the data set was randomly
divided into eight, almost equal-sized, subsets (the size of each subset was roughly ten samples). Seven
subsets were used to develop the equations, and the remaining subset was utilized to test the PTFs.
The process was repeated eight times, each time considering a new subset as the test subset.
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The 16 soil hydraulic models had a total of 96 coefficients (response variables). In scenario 6,
θs was considered as input, which reduced the total number of response variables to 80 (96 − 16 =

80). Therefore, SAS 9.4 software program [37] was used to develop a total of 4480 regression-based
PTFs, (5 modeling scenarios × 96 parameters + 1 scenario × 80 parameters) × 8 folds. The raw model
parameters estimated by the PTFs were post-processed to ensure the values are in the physically
meaningful and feasible range. The coefficients were then utilized to predict the soil water contents at
measured soil tensions for all soils.

2.4. Evaluation Criteria

Three statistics were calculated including the mean absolute error (MAE, Equation (1)), the root
mean square error (RMSE, Equation (2)) and the correlation coefficient (r, Equation (3)) to evaluate the
performance of the PTFs. Furthermore, mean bias error (MBE, Equation (4)) was used to assess the
degree of model bias (overestimation or underestimation):

MAE =
1
n

n∑
i=1

|Ei −Mi| (1)

RMSE =

√√
1
n

n∑
i=1

(Ei −Mi)
2 (2)

r =

∑n
i=1

(
Ei − E

)(
Mi −M

)
√∑n

i=1

(
Ei − E

)2 ∑n
i=1

(
Mi −M

)2
(3)

MBE =
1
n

n∑
i=1

(Ei −Mi) (4)

where M and E are the measured and the PTF-estimated soil water content values (cm3 cm−3),
respectively; M and E are the mean measured and the mean estimated water content values, and n
is the total number of measured water retention points for all 81 samples (n = 7729). The evaluation
statistics were calculated only for the test subset after combining the PTF estimations for the 8 folds
resulting in a total of 96 values (16 models × 6 scenarios) for each statistic.

3. Results

3.1. Overall Performance of the Models

Figure 3 illustrates the scatter plots of the fitted and the PTF-estimated soil water contents against
the measured values for all 16 models (only S6). Tables 4 and 5 summarize the performance evaluation
statistics values for the 16 models and the six modeling scenarios. The r values vary between 0.80 to
0.96. The RMSE values range from 0.034 cm3 cm−3 to 0.100 cm3 cm−3. The MBE values range from
−0.012 to 0.059 with bimodal variants (except FX-b-PDI) showing roughly an order of magnitude
greater MBE values than unimodal expressions. The lowest and highest MAE values of 0.024 cm3 cm−3

and 0.079 cm3 cm−3 belong to the VGm model (S6) and the VGm bimodal model (S4), respectively.
When averaged across the scenarios, the K PDI and the VGm bimodal models show the lowest and the
highest MAE values of 0.036 cm3 cm−3 and 0.072 cm3 cm−3, respectively. When the MAE is calculated
for each sample separately, the VGm bimodal provides the worst fit for 24% to 61% of the samples
across scenarios.
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Figure 3. Scatter plots of the fitted (dark blue) and the PTF-estimated (white) versus the measured
soil water content data (scenario 6). 1 BC: Brooks and Corey [34], FX: Fredlund and Xing [35], K:
Kosugi [36], VG and VGm: van Genuchten [24] constrained and unconstrained unimodal models. PDI
and b denote Peters–Durner–Iden [30,31] and bimodal variants of the models, respectively.

When averaged across the models, scenarios 3 and 6 have the highest and lowest MAE values of
0.055 cm3 cm−3 and 0.037 cm3 cm−3, respectively. The minimum MAE values for all models belong to
S6. The second-best performance for 11 out of the 16 models belongs to S1. The maximum MAE values
belong to multiple scenarios for different models with S2 and S5 having the highest MAE values for a
total of ten and four models, respectively.

For S6, the first to fifth best models are the VGm (MAE = 0.024 cm3 cm−3), the VG
(MAE = 0.026 cm3 cm−3), the VG PDI (MAE = 0.026 cm3 cm−3), the BC (MAE = 0.027 cm3 cm−3)
and the K PDI (MAE = 0.027 cm3 cm−3). The first to fifth worst models are the VGm bimodal
(MAE = 0.064 cm3 cm−3), the VG bimodal (MAE = 0.064 cm3 cm−3), the VG bimodal-PDI (MAE
= 0.046 cm3 cm−3), the K bimodal (MAE = 0.045 cm3 cm−3) and the VGm bimodal-PDI (MAE =

0.044 cm3 cm−3). When the MAE is calculated for each sample separately, the VGm bimodal followed
by the VG bimodal and the VG bimodal-PDI provide the worst fit for 56%, 13%, and 13% of the samples,
respectively. The VG PDI, the K PDI, and the VG provide the best fit for 16%, 13% and 11% of the
samples, respectively.
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Table 4. Performance evaluation of the unimodal and unimodal-Peters–Durner–Iden (PDI) parametric
PTFs for all modeling scenarios (S1–S6).

Models S1 S2 S3 S4 S5 S6

BC RMSE 0.054 0.051 0.069 0.054 0.074 0.037
MAE 0.042 0.039 0.059 0.042 0.056 0.027

r 0.91 0.92 0.84 0.91 0.83 0.96
MBE −0.006 −0.006 −0.007 −0.006 −0.005 −0.002

FX RMSE 0.07 0.063 0.077 0.063 0.074 0.057
MAE 0.052 0.049 0.062 0.049 0.053 0.040

r 0.85 0.88 0.81 0.88 0.86 0.91
MBE 0.009 0.007 0.003 0.007 −0.005 0.007

K RMSE 0.048 0.055 0.063 0.048 0.051 0.038
MAE 0.039 0.044 0.053 0.039 0.041 0.029

r 0.92 0.90 0.86 0.92 0.91 0.96
MBE −0.005 −0.006 −0.006 −0.005 −0.006 −0.012

VG RMSE 0.051 0.052 0.064 0.051 0.056 0.036
MAE 0.041 0.041 0.054 0.041 0.045 0.026

r 0.91 0.91 0.86 0.91 0.90 0.96
MBE −0.009 −0.009 −0.01 −0.009 −0.009 −0.012

VGm RMSE 0.054 0.056 0.069 0.053 0.056 0.034
MAE 0.041 0.043 0.056 0.042 0.044 0.024

r 0.90 0.90 0.84 0.91 0.89 0.96
MBE −0.003 −0.002 −0.004 −0.005 −0.001 −0.002

FX-PDI RMSE 0.052 0.065 0.07 0.055 0.065 0.042
MAE 0.041 0.049 0.06 0.043 0.05 0.029

r 0.91 0.87 0.84 0.90 0.87 0.95
MBE −0.008 −0.009 −0.007 −0.007 −0.007 −0.006

K-PDI RMSE 0.045 0.049 0.046 0.045 0.049 0.038
MAE 0.036 0.039 0.037 0.036 0.039 0.027

r 0.93 0.92 0.93 0.93 0.92 0.95
MBE −0.003 −0.003 −0.004 −0.003 −0.006 −0.003

VG-PDI RMSE 0.048 0.052 0.056 0.048 0.051 0.038
MAE 0.038 0.041 0.047 0.038 0.04 0.026

r 0.92 0.91 0.89 0.92 0.92 0.96
MBE −0.008 −0.008 −0.007 −0.008 −0.008 −0.006

VGm-PDI RMSE 0.067 0.064 0.056 0.058 0.061 0.048
MAE 0.049 0.049 0.043 0.045 0.048 0.033

r 0.84 0.87 0.89 0.89 0.88 0.92
MBE 0.011 0.006 0.002 0.011 0.006 0.006

BC: Brooks and Corey [34], FX: Fredlund and Xing [35], K: Kosugi [36], VG and VGm: van Genuchten [24] constrained
and unconstrained unimodal models. PDI and b denote Peters–Durner–Iden [30,31] and bimodal variants of the
models, respectively; RMSE: root mean square error (cm3 cm−3), MAE: mean absolute error (cm3 cm−3), r: correlation
coefficient, MBE: mean bias error (cm3 cm−3).
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Table 5. Performance evaluation of the bimodal and bimodal-PDI parametric PTFs for all modeling
scenarios (S1–S6).

Models S1 S2 S3 S4 S5 S6

K-b RMSE 0.067 0.071 0.074 0.066 0.072 0.063
MAE 0.052 0.055 0.060 0.052 0.057 0.045

r 0.88 0.87 0.84 0.88 0.86 0.90
MBE 0.030 0.030 0.028 0.029 0.030 0.026

VG-b RMSE 0.083 0.085 0.085 0.085 0.089 0.085
MAE 0.065 0.067 0.067 0.067 0.070 0.064

r 0.88 0.87 0.86 0.86 0.85 0.88
MBE 0.016 0.017 0.010 0.015 0.016 0.014

VGm-b RMSE 0.098 0.099 0.085 0.100 0.092 0.086
MAE 0.076 0.077 0.065 0.079 0.070 0.064

r 0.81 0.80 0.85 0.80 0.82 0.88
MBE 0.056 0.059 0.047 0.059 0.048 0.059

FX-b-PDI RMSE 0.059 0.059 0.066 0.06 0.06 0.047
MAE 0.046 0.047 0.052 0.048 0.046 0.033

r 0.90 0.90 0.87 0.90 0.91 0.94
MBE 0.002 0.004 0.002 0.007 0.003 0.004

K-b-PDI RMSE 0.058 0.069 0.065 0.061 0.071 0.056
MAE 0.046 0.053 0.053 0.048 0.055 0.04

r 0.89 0.86 0.86 0.89 0.85 0.92
MBE 0.012 0.013 0.012 0.011 0.012 0.014

VG-b-PDI RMSE 0.063 0.076 0.074 0.064 0.081 0.066
MAE 0.050 0.058 0.060 0.050 0.063 0.046

r 0.91 0.88 0.86 0.91 0.87 0.92
MBE −0.007 −0.005 −0.009 −0.008 −0.007 −0.007

VGm-b-PDI RMSE 0.065 0.069 0.071 0.065 0.071 0.059
MAE 0.053 0.055 0.058 0.052 0.057 0.044

r 0.89 0.89 0.86 0.90 0.88 0.93
MBE 0.031 0.030 0.029 0.030 0.031 0.030

FX: Fredlund and Xing [35], K: Kosugi [36], VG and VGm: van Genuchten [24] constrained and unconstrained
unimodal models. PDI and b denote Peters–Durner–Iden [30,31] and bimodal variants of the models, respectively;
RMSE: root mean square error (cm3 cm−3), MAE: mean absolute error (cm3 cm−3), r: correlation coefficient, MBE:
mean bias error (cm3 cm−3).

Table 6 shows the correlation coefficient values between the PTF-estimated and fitted model
parameters for all models and the six modeling scenarios. The average of positive correlation coefficients
is consistently low across the scenarios ranging between 0.45 to 0.54. The lowest positive r values were
close to zero for all scenarios, while the highest values varied between 0.89 to 0.95. On average across
scenarios, strong correlations (r > 0.70) between the PTF-estimated and fitted model parameters are
only observed for 31% of the parameters from which only 7% were parameters besides θs and θr.
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Table 6. The correlation coefficient values between PTF-estimated and fitted model parameters.

Models par S1 S2 S3 S4 S5 S6

BC α 0.73 0.73 0.74 0.73 0.63 0.73
λ 0.15 0.28 0.10 0.15 0.36 0.59
θr 0.57 0.76 0.57 0.57 0.76 0.82
θs 0.73 0.81 0.61 0.73 0.41

FX α 0.70 0.64 0.63 0.70 0.64 0.49
n 0.49 0.45 0.49 0.28 0.55 0.55
hr −0.18 −0.15 −0.18 −0.09 −0.15 −0.09
θs 0.72 0.79 0.61 0.72 0.82
m 0.65 0.65 0.66 0.66 0.53 0.77

FX-PDI α 0.71 0.71 0.72 0.71 0.71 0.62
n 0.73 0.73 0.73 0.73 0.73 0.74
θr 0.79 0.84 0.79 0.77 0.84 0.89
θs 0.72 0.80 0.62 0.72 0.83
m 0.35 0.17 0.30 0.33 0.25 0.34

FX-b-PDI α1 0.14 0.14 0.14 0.12 −0.04 0.06
n1 −0.06 −0.12 0.11 −0.06 −0.12 −0.08
θr 0.62 0.80 0.64 0.74 0.80 0.82
θs 0.73 0.80 0.68 0.73 0.84
α2 0.46 0.47 0.51 0.19 0.43 0.31
n2 −0.14 −0.19 0.06 −0.21 −0.09 −0.32
w2 0.04 −0.28 0.20 −0.18 −0.11 −0.12
m1 0.36 0.21 0.42 0.36 0.21 0.21
m2 −0.34 −0.34 0.09 0.20 −0.21 0.05

K hm 0.84 0.85 0.84 0.84 0.85 0.81
σ 0.27 0.27 0.18 0.27 0.17 0.33
θr 0.77 0.79 0.78 0.77 0.81 0.90
θs 0.73 0.81 0.61 0.73 0.83

K-PDI hm 0.83 0.86 0.83 0.83 0.83 0.86
σ 0.53 0.51 0.57 0.53 0.42 0.47
θr 0.87 0.89 0.88 0.87 0.89 0.95
θs 0.72 0.80 0.77 0.72 0.78

K-b hm1 −0.04 −0.04 −0.04 −0.27 −0.27 −0.10
σ1 −0.23 −0.23 −0.23 −0.23 −0.23 −0.21
θr 0.03 −0.03 0.11 0.03 0.06 0.31
θs 0.72 0.80 0.61 0.72 0.82

hm2 0.08 0.17 0.13 0.24 0.29 0.26
σ2 0.10 0.13 0.13 0.10 0.22 0.23
w2 −0.39 −0.39 −0.39 −0.39 −0.17 −0.26

K-b-PDI hm1 −0.08 −0.08 −0.08 −0.08 −0.23 −0.24
σ1 −0.18 −0.18 −0.18 −0.18 −0.18 −0.13
θr 0.80 0.80 0.80 0.80 0.80 0.88
θs 0.73 0.80 0.62 0.73 0.83

hm2 0.08 0.08 0.01 0.06 −0.04 0.07
σ2 −0.34 −0.34 −0.34 −0.06 −0.06 −0.03
w2 −0.40 −0.49 0.08 −0.34 −0.24 0.02

VG α 0.67 0.67 0.68 0.67 0.59 0.64
n 0.13 0.18 0.10 0.10 0.14 0.40
θr 0.74 0.80 0.69 0.73 0.79 0.78
θs 0.73 0.81 0.60 0.73 0.82

VG-PDI α 0.65 0.65 0.66 0.65 0.64 0.50
n 0.55 0.55 0.56 0.55 0.56 0.55
θr 0.89 0.89 0.88 0.89 0.89 0.94
θs 0.72 0.80 0.62 0.72 0.83
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Table 6. Cont.

Models par S1 S2 S3 S4 S5 S6

VG-b α1 −0.36 −0.36 0.08 −0.36 −0.01 −0.04
n1 0.05 0.05 0.04 0.05 0.04 0.07
θr 0.10 0.30 0.06 0.10 0.30 0.22
θs 0.73 0.80 0.61 0.73 0.83
α2 0.16 0.08 0.16 −0.14 −0.25 0.14
n2 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02
w2 −0.21 −0.21 −0.21 −0.21 −0.21 −0.21

VG-b-PDI α1 −0.07 −0.26 −0.27 −0.07 −0.28 −0.17
n1 −0.01 −0.09 −0.03 −0.29 −0.32 −0.32
θr 0.41 0.39 0.41 0.41 0.38 0.40
θs 0.73 0.81 0.62 0.73 0.84
α2 −0.03 −0.05 −0.03 −0.02 −0.08 0.08
n2 −0.06 0.19 −0.06 0.06 0.20 0.05
w2 0.10 0.03 0.10 0.10 0.03 0.03

VGm α 0.71 0.71 0.71 0.71 0.70 0.70
n 0.60 0.60 0.60 0.60 0.60 0.58
θr 0.44 0.65 0.44 0.41 0.66 0.63
θs 0.72 0.79 0.59 0.72 0.82
m 0.73 0.75 0.71 0.73 0.74 0.74

VGm-PDI α 0.64 0.64 0.69 0.64 0.69 0.69
n 0.54 0.55 0.49 0.26 0.27 0.42
θr 0.83 0.83 0.83 0.83 0.83 0.88
θs 0.70 0.79 0.69 0.70 0.82
m 0.27 0.34 0.51 0.34 0.43 0.42

VGm-b α1 −0.08 −0.08 −0.08 0.05 0.05 −0.04
n1 0.20 0.21 0.07 0.20 0.11 0.17
θr 0.31 0.32 0.31 0.31 0.42 0.38
θs 0.69 0.78 0.67 0.69 0.81
α2 0.02 −0.16 0.04 −0.09 0.34 0.15
n2 −0.33 −0.22 −0.29 −0.19 −0.22 −0.18
w2 −0.24 −0.24 −0.20 −0.24 −0.17 −0.15
m1 −0.18 0.07 0.03 0.20 0.07 0.20
m2 0.04 0.05 0.04 −0.08 0.05 0.05

VGm-b-PDI α1 −0.16 −0.16 −0.16 −0.16 −0.16 0.37
n1 0.17 0.22 0.26 0.26 0.26 0.26
θr 0.27 0.25 0.27 0.27 0.25 0.31
θs 0.73 0.81 0.62 0.73 0.84
α2 −0.33 −0.35 −0.31 −0.31 −0.36 −0.28
n2 −0.27 0.13 −0.27 −0.27 0.13 0.27
w2 0.14 −0.04 0.08 0.08 −0.04 −0.21
m1 −0.19 0.31 0.19 0.21 0.12 0.14
m2 0.11 0.16 0.11 0.00 −0.02 −0.04

BC: Brooks and Corey [34], FX: Fredlund and Xing [35], K: Kosugi [36], VG and VGm: van Genuchten [24] constrained
and unconstrained unimodal models. PDI and b denote Peters–Durner–Iden [30,31] and bimodal variants of the
models, respectively; S1 to S6 denote modeling scenarios 1 to 6, respectively.

3.2. Performance across Textural and Tension Classes

Figure 4 depicts the performance of the models across four soil textural classes for the six modeling
scenarios. Information is also provided regarding the total number of the measured water retention
pairs for each soil texture.
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Figure 4. Performance of the 16 models for 4 textures and the six modeling scenarios (S1–S6). BC:
Brooks and Corey [34], FX: Fredlund and Xing [35], K: Kosugi [36], VG and VGm: van Genuchten [24]
constrained and unconstrained unimodal models. PDI and b denote Peters–Durner–Iden [30,31] and
bimodal variants of the models, respectively. L: Loam (1087 data pairs), CL: Clay Loam (1277 data
pairs), SL: Silt Loam (1348 data pairs), C: Clay (3708 data pairs). MBE: mean bias error (cm3 cm−3).

The data set contained only a limited number of samples with loamy sand, sandy clay loam and
silt loam textures; therefore, these textures were excluded from the analysis. Some high MAE values are
observed for the loam soils across multiple models and modeling scenarios. Average MAE values (data
not shown here) across models are highest for the loam soils for four out of six modeling scenarios. For
S6, the MAE values of the models for the sandy loam soils show relatively lesser fluctuations compared
to that for the other textures. Overall, the best models (i.e., unimodal and PDI variants) performed
superior for all textures while models with lower performance (i.e., bimodal and bimodal-PDI variants)
performed poorly for all textures.

Figure 5 illustrates the performance of the models at different parts of the curve divided into a
total of 11 tension classes: 10 classes from pF 0 to 3 (100 cm increments) and one class for pF values
larger than 3. Overall, the relative performance of the models across tension classes was not sensitive
to the modeling scenarios. The MAE values show relatively low fluctuations across tension classes for
the original unimodal expressions ranging roughly between 0.02 cm3 cm−3 to 0.06 cm3 cm−3. A similar
trend is observed for the PDI variants. However, the bimodal and bimodal-PDI variants, in particular
variants of the K, the VG and the VGm models, show relatively larger MAE values as well as greater
degrees of fluctuations across tensions classes. For the VGm bimodal, the K bimodal and the VGm

bimodal-PDI models, MAE values peak at the wet and the dry parts of the PTF. For the VG PDI and
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the VG bimodal-PDI, MAE values increase from the wet-end up to the intermediate tension range but
level off toward the dry part.
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Figure 5. Performance of the 16 models across tension classes and the six modeling scenarios (S1–S6). BC:
Brooks and Corey [34], FX: Fredlund and Xing [35], K: Kosugi [36], VG and VGm: van Genuchten [24]
constrained and unconstrained unimodal models. PDI and b denote Peters–Durner–Iden [30,31] and
bimodal variants of the models, respectively. pF classes (cm of water): C1 (<100), C2 (100–200), C3
(200–300), C4 (300–400), C5 (400–500), C6 (500–600), C7 (600–700), C8 (700–800), C9 (800–900), C10
(900–1000) and C11 (>1000). MBE: mean bias error (cm3 cm−3).

4. Discussion

4.1. Overall Performance of the Parametric PTFs

The RMSE values reported for parametric PTFs in the literature typically range from
0.034 cm3 cm−3 to 0.085 cm3 cm−3 [11]. Therefore, PTFs developed using the HYPROP data, both in this
study and by Haghverdi et al. [18], rank high among previously published parametric PTFs. Our results
(Table 6), however, show that a majority of the SWRC model parameters cannot be estimated with high
accuracy as a function of basic soil properties. The low correlations and differences between parametric
PTFs estimated versus fitted soil hydraulic parameters were also reported by other researchers [20,38].
Tomasella et al. [21] argued that the relationships between the basic soil properties and the model
parameters are often complicated and also vary at different parts of the curve, which makes them
difficult to estimate using parametric PTFs. Schaap et al. [20] mentioned that macroscopic variables
typically used as inputs for parametric PTFs could not predict information contained by the SWRC.
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In our study, not highly accurate PTF-estimated parameters (average positive r ranged between
0.45 to 0.54 among scenarios) resulted in reasonable soil water content estimations by the water
retention models (average r ranged between 0.86 to 0.93 among scenarios), a result also reported
by Schaap et al. [20]. The VGm parametric PTF with an RMSE of 0.034 cm3 cm−3 was the best PTF
when all input predictors were considered. When averaged across modeling scenarios with different
combinations of input predictors, the K-PDI model with an RMSE of 0.045 cm3 cm−3 showed the
highest performance. This performance is also comparable to the performance of neural network
PC-PTFs developed using similar soils with RMSE values of 0.033 cm3 cm−3 and 0.045 cm3 cm−3 with
the HYPROP and sandbox/pressure plates data, respectively [5,18].

4.2. Performance Across Soil Textures and Tension Classes

Overall, the performance of the PTFs across soil textures was consistent such that highly
ranked models (i.e., unimodal and PDI variants) performed superior for almost all soil textures.
Haghverdi et al. [5] showed that the accuracy of PC-PTFs developed using equilibrium data for each
textural class was affected by the percentage share of the textural class in the PTF training dataset.
Haghverdi et al. [18] noticed the same trend when the HYPROP data was used to develop PC-PTFs
and suggested to include at least 13% of data for each textural class in the PTF training data set.
However, we did not see a clear relationship between the number of soil samples per textural class
and the performance of the parametric PTFs for each texture. This is because PC-PTFs developed by
Haghverdi et al. [5,18] are data-driven models, which means they need a large enough training data set
to learn the shape of the WRC for different textures. For parametric PTFs, however, the soil hydraulic
models control the shape of the WRCs across all textural classes. Since our data set is mainly dominated
by four soil textures and given the limited and uneven number of samples across soil textural classes,
further studies are needed with global data sets with a more comprehensive soil textural distribution
to confirm our findings.

Cornelis et al. [2] reported a reasonable performance for most parametric PTFs they tested at
wet-end (saturation) and dry part of the SWRC (near PWP), while the lowest performance occurred
around the field capacity. We only observed high fluctuations in MAE values at different parts of
the SWRC for PTFs with low performance (i.e., bimodal and bimodal-PDI PTFs). The PTFs with the
highest performance in our study (i.e., PDI variants and unimodal expressions) showed a good stable
performance from the wet to the dry boundaries of the PTF.

4.3. Importance of the Input Parameters

We could not detect any consistent improvement in the performance of the PTFs when BD (S2:
average RMSE: 0.065 cm3 cm−3) and SOM (S3: average RMSE: 0.068 cm3 cm−3) were considered as
input predictors in addition to soil texture (S1: average RMSE: 0.061 cm3 cm−3). When averaged across
the models, the first five scenarios (S1–S5) showed a relatively similar performance with average RMSE
values varying between 0.061 to 0.068 cm3 cm−3. The best performance of all models occurred at S6
(average RMSE: 0.052 cm3 cm−3) when θs was added as an additional input predictor. The low effect
of SOM and the high impact of θs as input predictors were also reported for PC-PTFs developed using
similar soils by Haghverdi et al. [18]. The low impact of SOM is attributed to the fact that a majority
of the soils used in the two studies were collected from the dry Central Anatolia Region of Turkey
with low organic matter content. Haghverdi et al. [4] also reported only a slight improvement in the
performance of their PTFs when OC and BD were added as extra predictors. Cornelis et al. [2] studied
multiple parametric PTFs and observed no correlation between SOM, BD and the performance of
the PTFs. Vereecken et al. [11] reviewed several studies on van Genuchten based parametric PTFs
and noticed improvements in the performance of parametric PTFs when the water content data were
considered as input in addition to the basic soil properties.

When the HYPROP data was used to develop PC-PTF by Haghverdi et al. [18], excluding θs

as an input predictor remarkably decreased the accuracy of the most PTFs down to unacceptable



Water 2020, 12, 896 15 of 29

performance levels (RMSE values ranged from 0.061 to 0.159 cm3 cm−3). PTFs without θs as input
performed much better in this study (average RMSE values ranged from 0.061 to 0.068 cm3 cm−3)
compared to Haghverdi et al. [18], which is a promising result given the practical difficulties to measure
θs directly. We attribute this to the differences between the structure of the PC-PTFs developed by
Haghverdi et al. [18] and the parametric PTFs derived in this study. The PC-PTF relies on neural
networks to relate basic soil properties to the whole SWRC, whereas in parametric PTFs, soil hydraulic
models govern the shape and continuity of the estimated SWRC. Consequently, including θs as a
measure of the soil water content upper boundary seems to be much more critical when PC-PTFs are
developed using the HYPROP data.

4.4. Fitted versus Parametric PTF Estimated SWRC

Figure 6 depicts the performance of the 16 models in terms of their MAE values with fitted
(average MAE: 0.006 cm3 cm−3) versus PTF-estimated (S6, average MAE: 0.037 cm3 cm−3) parameters.
Although bimodal and bimodal-PDI expressions provided the best fit (average MAE: 0.003 cm3 cm−3)
to the measured data, their parametric PTFs ranked lowest (S6, average MAE: 0.048 cm3 cm−3); hence,
application of their PTFs is not recommended. The bimodal-PDI and bimodal variants provided a
similar direct fit performance as the PDI variants did, but their parametric PTFs showed a much
lesser accuracy (S6, average MAE: 0.048 cm3 cm−3) compared to PDI models (S6, average MAE:
0.029 cm3 cm−3).
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Figure 6. Mean absolute error (MAE) values for all 16 models with the fitted versus the PTF-estimated
parameters (scenario 6). 1 BC: Brooks and Corey [34], FX: Fredlund and Xing [35], K: Kosugi [36], VG
and VGm: van Genuchten [24] constrained and unconstrained unimodal models. PDI and b denote
Peters–Durner–Iden [30,31] and bimodal variants of the models, respectively. MBE: mean bias error
(cm3 cm−3).

When MAE values were correlated to the number of model parameters, a positive strong correlation
was observed (r = 0.71) for the fitted models while the correlation was negative (r = −0.79) for the
parametric PTFs. This is because a greater number of free parameters make models very robust and
flexible when directly fitted to the high-resolution HYPROP data. On the other hand, a high number of
response variables to estimate when parametric PTFs are developed means more potential sources for
error which, as our results show, substantially diminishes the performance of the bimodal parametric
PTFs. We should highlight that in this paper, bimodal models were fitted to repacked samples to
investigate how the number of free model parameters impacts the direct fit performance of the models
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as well as the efficacy of the respective parametric PTFs. In practice, bimodal SWRC models should
only be fitted to soils with evident soil structure and matrix effects. Since the structure of the samples
was impacted during repacking, the increase in the performance of the bimodal variants is mainly
attributed to the rise in the number of fitting parameters rather than bimodality.

The original unimodal expressions (except for the FX model) ranked lowest when fitted to the
observations (average MAE: 0.011 cm3 cm−3), but their parametric PTFs on average performed as high
as the PDI variants (S6, average MAE: 0.029 cm3 cm−3). In the first part of this study [25], we showed
that the PDI variants are suggested for full SWRC parametrization using HYPROP data due to their
superior dry-end performance (average MAE: 0.017 cm3 cm−3) compared to the traditional unimodal
expressions (average MAE: 0.041 cm3 cm−3). Therefore, the combined results of both parts of this
study suggest the application of PDI variants for full SWRC parametrization (direct fit and parametric
PTFs) using HYPROP data. More investigation is needed to determine whether these findings hold for
different data sets, parametric PTFs developed using data mining techniques and the nonparametric
k-nearest PTF of Haghverdi et al. [3].

5. Conclusions

We developed and evaluated a set of parametric PTFs for a total of 16 soil water retention models,
including five original unimodal models and their PDI, bimodal and bimodal-PDI variants. Table A1
(in Appendix B) provides regression equations (parametric PTFs) for estimating the parameters of the
selected soil water retention models for the six modeling scenarios (S1–S6). Our results showed that
considering saturated water content as an additional input predictor enhanced the performance of
the parametric PTFs for all models. However, parametric PTFs that were developed only using soil
texture as input also showed promising performances. When all input predictors were considered,
the parametric PTF of the van Genuchten model [24] with five free parameters showed the highest
performance (RMSE of 0.034 cm3 cm−3). The parametric PTF of the PDI variant [30,31] of the Kosugi
model [36] showed the highest average performance across six modeling scenarios with different
combinations of input predictors (0.045 cm3 cm−3). The high number of model parameters of bimodal
variants negatively impacted the performance of their parametric PTFs. PDI variants, on the other
hand, have the same number of free parameters as original unimodal and showed an excellent fit to
the complete SWRC [25], and their parametric PTFs highly ranked among all models. Consequently,
combined results of both parts of this study recommend the application of PDI variants and FX model
for estimation and parametrization of the complete SWRC (i.e., from saturation to oven dryness) using
typical data obtained by the HYPROP system.
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W.D. All authors have read and agreed to the published version of the manuscript.
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Appendix A

Appendix A.1 Unimodal Expressions:

The BC model [34] is represented as:

θ(h) = θr + (θs − θr)(αh)−λ for h > α−1

θ(h) = θs for h ≤ α−1 (A1)



Water 2020, 12, 896 17 of 29

where θ(h) is the volumetric water content at soil tension h, α (1/cm) is the inverse of the air entry value
(the bubbling pressure), λ (−) is the pore size distribution index, and θr and θs are the residual and
saturated soil water contents, respectively.

The FX model [35] is given by:
θ(h) = θsχ(h)Γ(h) (A2)

with
Γ(h) =

{
ln

[
e + (αh)n

]}−m
(A3)

and

χ(h) = 1−
ln(1 + h/hr)

ln(1 + h0/hr)
(A4)

where α, n, and m are the SWRC shape parameters, hr is the tension corresponding to θr, h0 is the soil
tension at zero water content, and e is the Euler number.

The K model [36] is expressed as:

θ(h) = θr +
1
2
(θs − θr)erfc

 ln(h/hm)
√2σ

 (A5)

where “erfc” is the complementary error function, σ is the standard deviation of the log-transformed
pore-size distribution density function, and hm is the suction corresponding to the median pore radius.

The VG [24] is represented as:

θ(h) = θr + (θs − θr)

[
1

1 + (αh)n

]1−1/n

(A6)

where α and n are the curve shape parameters and other parameters as previously defined. The VGm

model [24] with m as an additional shape parameter has five free parameters:

θ(h) = θr + (θs − θr)

[
1

1 + (αh)n

]m

(A7)

Appendix A.2 PDI Expressions:

The general form of the PDI model [30,31] consists of a capillary retention term, θcap(h), and an
adsorptive retention term, θad(h), and is given as:

θ(h) = θcap(h) + θad(h) = (θs − θr)Scap + θrSad (A8)

where Scap and Sad are the capillary and the water adsorption saturation functions, and θr is the
maximum water content for the water adsorption.

To guarantee that the water content reaches zero at h = h0, the Scap is substituted by scaled versions
of the original functions:

θ(h) = (θs − θr)
Γ(h) − Γ0

1− Γ0
+ θrSad (A9)

where Γ(h) represents basic saturation functions and Γ0 is the basic function at h = h0.
The basic classic saturation functions for the abovementioned unimodal expressions are:

Γ(h) =
{
ln

[
e + (αh)n

]}−m
for the FX model (A10)

Γ(h) =
1
2

erfc

 ln(h/hm)
√2σ

 for the K model (A11)
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Γ(h) =
[

1
1 + (αh)n

]1−1/n

for the VG model (A12)

Γ(h) =
[

1
1 + (αh)n

]m

for the VGm model (A13)

The water adsorption saturation function is given as [30]:

Sad(x) = 1 +
1

xa − x0

{
x− xa + b ln

[
1− exp

(xa − x
b

)]}
(A14)

where xa and x0 are pF values at suctions equal to ha and h0, respectively, ha is the suction at air entry
for the adsorptive retention, and b is the shape parameter, which is given by:

b = 0.1 +
0.2
n2

{
1− exp

[
−

(
θr

θs − θr

)2]}
for the FX, the VG and the VGm models (A15)

b = 0.1 + 0.07σ
{

1− exp
[
−

(
θr

θs − θr

)2]}
for the K model (A16)

Appendix A.3 Bimodal Expressions:

The bimodal expressions for each unimodal model are the unscaled weighted sum of the two
unimodal subfunctions without adsorption (Sad = 1):

θ(h) = (θs − θr)
2∑

i=1

wiΓ(h)i + θr (A17)

where wi is the weighting factor for the subfunction i, subject to 0 < wi < 1 and Σ wi = 1. The Γ(h) is
calculated using Equations (10)–(13).

Appendix A.4 Bimodal-PDI Expressions:

The bimodal-PDI expression for each model is the scaled weighted sum of the two unimodal
subfunctions with adsorption considered:

θ(h) = (θs − θr)

(∑2
i=1 wiΓi

)
− Γ0

1− Γ0
+ θrSad (A18)

The Γ is calculated using Equations (10)–(13). The Sad is calculated using Equation (14) for which
the shape parameter b is calculated using Equations (15) and (16). The shape parameter is calculated
only for the “coarsest” subfunction, which is the subfunction with the lowest hm value for the K model
or the highest α value for the FX, the VG and the VGm models.

Appendix B

Note that the goal of this study is only to develop PTFs for soils with identical conditions and
within the range of the soils used in this study. We realize that a much bigger data set is needed to
develop PTFs applicable to other regions in the world with different soil conditions.
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Table A1. List of regression equations (parametric PTFs) for estimating the parameters of the selected
soil water retention models for the six modeling scenarios, S1–S6 (bold text).

par Equation

BC log(α)

S1, S2, S4→−0.959 − 4.542(Silt) − 2.868(Clay2) + 11.817(Clay)(Silt)
S3→−1.009 − 4.614(Silt) + 0.050(SOM) − 2.838(Clay2) +

11.885(Clay)(Silt)
S5→−0.663 − 1.940(Silt) − 0.321(BD2) + 1.402(Clay2) + 0.063(BD)(SOM)

− 0.133(Clay)(SOM)
S6→−1.273 − 3.199(Silt2) − 2.670(Clay2) − 1.419(BD)(Silt) +

9.453(Clay)(Silt)

λ

S1, S4→ 0.398 + 0.003(Silt) + 0.682(Clay)(Silt)
S2→ 0.506 + 0.477(Clay) − 0.777(BD)(Clay) − 0.086(BD)(Silt)

S3→ 0.371 − 0.113(Clay)(SOM) + 0.004(Silt)(SOM)
S5→ 0.501 + 0.561(Clay) + 0.001(SA) − 1.84 × 10 − 5(SA2) −

0.833(BD)(Clay) − 0.086 (Silt)(SOM)
S6→ 0.983 − 0.754(BD)(θS) − 0.284(BD)(Clay)

θr
S1, S3, & S4→ 0.028 − 0.194(Silt2) + 0.434(Clay2)

S2 & S5→ 0.308 − 0.109(BD2) − 0.055(Clay2) − 0.165(BD)(Silt)
S6→ 0.068 + 0.640(θS

2) − 0.283(BD)(θS) − 0.066(Silt)(SOM)

θs

S1 & S4→ 0.446 + 1.358(Clay)(Silt)
S2→ 0.781 − 0.135(BD2) + 0.124(Clay2)

S3→ 0.305 + 1.319(Silt) − 1.895(Silt2) + 0.178(Clay)(SOM)
S5→ 0.694 + 0.085(SOM) − 0.157(BD2) + 7.06 × 10−6(SA2) +

0.264(BD)(Clay) − 0.187(Clay)(SOM) − 0.001(Silt)(SA)

FX Log(α)

S1, S4→−2.036 − 6.063(Silt2) − 1.077(Clay2) + 9.015(Clay)(Silt)
S2→−1.856 + 1.671(BD)(Clay) − 1.764(BD)(Silt)

S3→−1.894 − 4.431(Silt2) − 1.573(Clay2) + 9.542(Clay)(Silt) −
0.773(Silt)(SOM)

S5→−1.769 − 5.589(Silt2) − 1.268(Clay2) − 0.149(BD)(SOM) +
8.405(Clay)(Silt)

S6→−1.555 − 8.899(Silt2) − 0.121(BD)(SOM) − 5.501(θS)(Clay) +
18.627(Clay)(Silt)

Log(n)

S1, S3→ 0.319 − 0.758(Silt2) + 1.533(Clay2)
S2→ 1.051 + 4.176(Silt2) − 2.709(BD)(Silt)
S4→ 0.475 − 0.541(Silt) + 0.012(Clay)(SA)

S5, S6→ 0.767 + 0.454(SOM) − 0.587(BD)(Silt) − 0.426(BD)(SOM)

Log(hr)

S1, S3→ 2.661 − 1.679(Clay) − 0.094(Silt) + 2.013(Clay2)
S2→−1.420(Clay) + 1.426(Clay2) − 0.400(BD)(Silt)

S4→ 2.090 + 0.023(SA) + 3.378(Silt2) + 0.176(Clay2) − 5.061(Clay)(Silt) −
0.032(Silt)(SA)

S5→ 2.775 − 1.420(Clay) + 1.426(Clay2) − 0.400(BD)(Silt)
S6→ 2.666 − 0.007(SA) − 0.059(SOM2) + 3.59 × 10 −4(SA2) −

2.656(θS)(Clay) + 0.610(Clay)(SOM) − 0.016(Silt)(SA)

θs

S1, S4→ 0.455 + 1.322(Clay)(Silt)
S2→ 0.792 − 0.136(BD2) + 0.093(Clay2)

S3→ 0.311 + 1.296(Silt) − 1.818(Silt2) + 0.175(Clay)(SOM)
S5→ 0.811 + 0.036(SOM) − 0.163(BD2) − 0.020(Clay)(SOM)

m

S1, S3, S4→ 0.231 + 3.236(Silt) + 2.688(Clay2) − 10.96(Clay)(Silt)
S2, S5→ 0.584 − 2.013(Clay) + 1.452(BD)(Silt) + 3.685(Clay2) −

4.835(Clay)(Silt)
S6→ 2.133 − 3.130(θS) + 0.453(Silt)(SOM)
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par Equation

FX-PDI Log(α)

S1, S2, S4→−1.071 − 5.543(Silt) − 3.691(Clay2) + 14.613(Clay)(Silt)
S3→ 1.111 − 5.497(Silt) − 3.501(Clay2) + 0.015(SOM2) +

14.331(Clay)(Silt)
S5→−1.128 − 5.638(Silt) − 3.652(Clay2) + 0.039(BD)(SOM) +

14.814(Clay)(Silt)
S6→−0.618 − 0.391(BD2) − 2.088(Silt) + 1.788(Clay2) + 0.113(SOM2) +

0.071(BD)(SOM) − 0.629(θS)(SOM)

Log(n)

S1, S2, S4, S5→ 0.471 − 1.489(Silt) + 3.278(Clay)(Silt)
S3→ 0.526 − 1.219(Silt) − 0.011(SOM) + 2.456(Clay)(Silt) +

0.189(Clay)(SOM)
S6→ 0.343 − 0.043(BD)(SOM) + 1.399(θS)(Clay) − 1.192(θS)(Silt)

θr

S1, S3→ 0.023 + 0.210(Silt) − 0.610(Silt2) + 1.125(Clay2)
S2, S5→ 0.641 − 0.226(BD2) − 0.016(Silt2) − 0.282(BD)(Silt)

S4→ 0.060 + 1.015(Clay)(SA) − 0.007(Silt)(SA)
S6→− 0.546 + 1.363(θS) − 0.605(θS)(Silt) − 0.098(Clay)(SOM) +

0.005(Clay)(SA)

θs

S1, S4→ 0.453 + 1.315(Clay)(Silt)
S2→ 0.786 − 0.135(BD2) + 0.098(Clay2)

S3→ 0.309 + 1.299(Silt) − 1.831(Silt2) + 0.174(Clay)(SOM)
S5→ 0.819 − 0.171(BD2) + 0.026(BD)(SOM) − 0.007(Clay)(SOM)

m

S1→ 1.179 − 3.118(Clay) + 3.144(Clay2)
S2→−0.158 + 0.574(BD)

S3→ 0.791 − 0.605(Clay)(SOM)
S4→ 0.931 − 1.199(Clay) + 2.20 × 10 −5(SA2)

S5→ 0.922 − 0.012(SA) + 1.23 × 10 −4(SA2) − 0.442(Clay)(SOM)
S6→ 1.824 − 1.461(BD)(θS) − 0.562(Clay)(SOM)

FX-b-PDI Log(α1)

S1→−1.926 − 2.231(Silt2) + 2.225(Clay2)
S2→−1.609 + 1.772(Clay2) − 1.275(BD)(Silt)

S3→−1.240 − 0.808(SOM) − 2.723(Silt2) + 0.102(SOM2) +
1.103(Clay)(SOM)

S4→−1.939 + 0.001(SA) − 2.198(Silt2) + 2.117(Clay2)
S5→−1.140 + 0.016(SOM) −0.022(SOM2) −1.806(BD)(Silt)

S6→−1.470 − 0.048(SOM) − 0.009(SOM2) − 1.896(BD)(Silt) +
0.116(θS)(SOM) + 3.515(Clay)(Silt) − 0.001(SOM)(SA)

Log(n1)

S1, S4→ 0.389 + 1.006(Clay)(Silt)
S2, S5→ 0.587 − 0.083(BD2) + 0.346(Clay)(Silt)

S3→ 0.375 + 0.478(Clay)(Silt) + 0.206(Clay)(SOM)
S6→ 0.310 + 0.385(θs

2) + 0.445(Clay)(Silt)

θr

S1→−0.020 + 1.849(Clay)(Silt)
S2→ 0.365 − 0.180(BD2) + 0.217(BD)(Clay)

S3→−0.012 + 1.811(Clay)(Silt)
S4→ 0.020 + 0.456(Clay)(Silt) + 0.008(Clay)(SA)

S5→ 0.421 − 0.177(BD2) − 0.023(BD)(SOM) + 0.002(BD)(SA) + 1.25 ×
10−4(SOM)(SA)

S6→ 0.163 − 0.184(BD2) + 0.382(BD)(θs) + 0.005(Clay)(SA) −
0.079(θS)(SOM) + 0.014(BD)(SOM)

θs

S1→ 0.454 + 1.316(Clay)(Silt)
S2→ 0.788 − 0.135(BD2) + 0.096(Clay2)

S3→ 0.313 + 1.343(Silt) − 1.871(Silt2) + 0.159(Clay)(SOM)
S4→ 0.454 + 1.316(Clay)(Silt)

S5→ 0.779 − 0.157(BD2) + 0.029(BD)(SOM) − 0.022(Clay)(SOM) +
0.002(Silt)(SA)
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Log(α2)

S1→−0.988 − 8.727(Silt) + 8.774(Silt2) + 0.324(Clay2) + 7.864(Clay)(Silt)
S2→−2.414 + 0.448(BD) − 2.047(BD)(Silt) + 6.947(Clay)(Silt)

S3→−1.271 − 6.954(Silt) + 6.438(Silt2) + 8.284(Clay)(Silt)
S4→−1.190 − 5.734(Silt) + 5.603(Silt2) − 1.41 × 10 −4(SA2) +

0.072(Silt)(SA)
S5→−0.334 − 1.015(BD) − 0.438(SOM) + 0.006(SOM)(SA)
S6→−0.460 + 1.843(θs) − 3.923(BD)(θs) + 0.008(BD)(SA)

Log(n2)

S1→ 0.422 + 0.396(Clay2)
S2→ 1.058 − 0.396(BD) − 0.272(Clay)

S3→ 0.400 + 0.541(Clay2)
S4→ 0.491 − 0.002(Silt)(SA)

S5→ 1.314 − 0.538(BD) − 0.218(BD)(Clay) − 0.010(Silt)(SA)
S6→ 0.526 − 0.287(θs

2) + 0.136(BD)(Clay)

w2

S1→ 0.186 + 2.909(Clay) + 3.093(Silt2) − 9.554(Clay)(Silt)
S2→ 0.651 − 0.125(BD) − 0.017(Silt)

S3→ 0.887 − 1.552(Silt) − 0.183(SOM) + 0.787(Silt)(SOM)
S4→ 0.453 + 0.006(SA) + 0.264(Silt2) + 0.905(Clay)(Silt) − 0.029(Silt)(SA)

S5→ 0.590 − 0.623(Silt) − 0.051(SOM) + 0.407(Silt)(SOM)
S6→ 0.510 + 0.657(Clay)(Silt) + 0.009(Silt)(SA)

m1

S1, S4→ 0.980 − 1.234(Clay)
S2, S5, S6→−0.319 + 0.711(BD)

S3→ 1.059 − 1.471(Clay)

m2

S1, S2→ 0.617 − 0.061(Silt)
S3→ 0.631 − 0.117(Silt)(SOM)

S4→ 0.894 − 0.022(SA) + 2.88 × 10−4(SA2)
S5→ 0.647 − 0.129(Silt)(SOM)

S6→ 0.868 − 1.471(θs)(Silt)

K Log(hm)

S1, S3, S4→ 1.731 + 3.860(Silt) + 1.527(Clay2) − 7.986(Clay)(Silt)
S2→ 2.289 + 4.692(Silt2) + 0.691(Clay2) − 5.440(Clay)(Silt)

S5→ 1.275 + 0.674(BD) + 0.573(Clay2) + 3.978(Silt2) − 2.841(Clay)(Silt)
S6→ 1.110 + 1.202(θS) − 0.048(SOM) − 0.395(Silt2) + 1.269(Clay2) +

2.803(BD)(Silt) − 6.360(Clay)(Silt)

σ

S1, S2, S4→ 1.767 − 1.021(Clay) − 0.814(Silt) + 5.650(Clay)(Silt)
S3→ 1.520 − 0.015(Silt) + 1.929(Clay)(Silt) + 0.105(Clay)(SOM)

S5→ 1.537 − 0.185(BD)(Silt) + 2.142(Clay)(Silt) + 0.180(Silt)(SOM)
S6→ 0.473 + 0.714(Clay) + 0.416(Silt2) + 1.393(BD)(θS)

θr

S1, S4→−0.002 + 0.397(Clay) + 0.366(Silt) − 0.797(Silt2)
S2→ 0.418 − 0.139(BD2) − 0.367(Silt2)

S3→−0.019 + 0.421(Clay) + 0.330(Silt) − 0.766(Silt2) + 0.009(SOM2)
S5→ 0.285 − 0.106(BD2) − 0.356(Silt2) + 0.008(SOM2) + 0.164(BD)(Clay)

S6→−0.019 − 0.134(BD2) − 0.526(Silt2) + 0.570(BD)(θS) +
0.333(Clay)(Silt)

θs

S1→ 0.454 + 1.418(Clay)(Silt)
S2→ 0.800 − 0.139(BD2) + 0.138(Clay2)

S3→ 0.307 + 1.368(Silt) − 1.956(Silt2) + 0.187(Clay)(SOM)
S4→ 0.454 + 1.418(Clay)(Silt)

S5→ 0.838 − 0.175(BD2) + 0.022(BD)(SOM) + 0.009(Clay)(SOM)

K-PDI Log(hm)

S1, S3, S4, S5→ 1.520 + 4.933(Silt) + 2.512(Clay2) − 12.216(Clay)(Silt)
S2→ 1.644 + 0.389(BD) + 5.851(Silt2) + 1.656(Clay2) − 8.069(Clay)(Silt)
S6→ 2.046 + 0.805(θS

2) − 0.001(SOM) + 6.834(Silt2) + 2.045(Clay2) −
11.538(Clay)(Silt)
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σ

S1, S4→ 1.092 + 1.998(Silt) − 4.733(Clay)(Silt)
S2→ 0.824 + 1.809(Silt) + 0.131(BD2) − 3.559(Clay)(Silt)

S3→ 0.973 + 1.738(Silt) + 0.070(SOM2) − 4.104(Clay)(Silt)
S5→ 0.448 + 1.915(Silt) + 0.220(BD2) + 0.097(SOM2) − 2.226(Clay)(Silt)

− 0.308(Silt)(SOM)
S6→ 0.847 + 1.353(BD)(Silt) + 1.178(θS)(Silt) − 5.227(Clay)(Silt) +

0.005(SOM)(SA)

θr

S1, S4→−0.007 + 0.692(Clay) + 0.507(Silt) − 1.087(Silt2)
S2→ 0.337 − 0.088(BD2) − 0.930(Silt2) + 1.604(Clay)(Silt)

S3→−0.019 + 0.708(Clay) + 0.483(Silt) − 1.066(Silt2) + 0.006(SOM2)
S5→ 0.305 + 0.054(SOM) − 0.093(BD2) − 1.135(Silt2) + 2.046(Clay)(Silt)

− 0.128(Clay)(SOM)
S6→−0.362 + 1.084(θS) − 0.477(Silt2) + 0.003(Clay)(SA)

θs

S1, S4→ 0.456 + 1.315(Clay)(Silt)
S2→ 0.784 − 0.133(BD2) + 0.108(Clay2)

S3→ 0.360 + 0.658(Silt) − 0.808(Silt2) + 0.641(Clay2) + 0.013(SOM2)
S5→ 0.457 + 0.219(SOM) + 0.240(BD)(Clay) − 0.159(BD)(SOM) +

0.009(Silt)(SOM) + 3.01 × 10 −4(SOM)(SA)

K-b Log(hm1)
S1, S2, S3→ 2.582 + 0.456(Clay2)
S4, S5→ 2.750 − 0.008(Clay)(SA)

S6→ 4.154 − 1.922(BD)(θS) − 0.010(Clay)(SA)

σ1 S1, S2, S3, S4, S5, S6→ 1.356 + 0.635(Silt)

θr

S1, S4→ 0.057 − 0.161(Clay)(Silt)
S2→ 0.160 − 0.058(BD) − 0.054(Silt2) − 0.107(BD)(Clay)

S3→ 0.044 + 0.005(SOM2) − 0.128(Clay)(Silt)
S5→ 0.184 − 0.090(BD) − 0.126(Clay) + 0.026(Silt)(SOM)

S6→−0.025 + 0.268(θS
2) − 0.001(Silt2) + 0.032(BD)(Clay) +

0.220(θS)(Silt) − 0.799(Clay)(Silt)

θs

S1, S4→ 0.455 + 1.330(Clay)(Silt)
S2→ 0.792 − 0.136(BD2) + 0.098(Clay2)

S3→ 0.317 + 1.269(Silt) − 1.786(Silt2) + 0.176(Clay)(SOM)
S5→ 0.813 + 0.035(SOM) − 0.164(BD2) − 0.019(Clay)(SOM)

Log(hm2)

S1→ 3.348 − 4.328(Silt) + 5.114(Silt2) + 2.456(Clay)(Silt)
S2→ 2.229 − 5.031(Clay) − 0.415(Silt) + 6.065(BD)(Clay)

S3→ 2.631 − 0.516(Silt2) + 0.524(Clay)(SOM) + 0.023(Silt)(SOM)
S4→ 2.766 + 2.57 × 10 −4(SA2) − 0.875(Clay)

S5→ 2.480 + 0.009(SOM)(SA)
S6→ 2.470 − 1.440(θS

2) − 0.002(SOM)(SA) + 0.521(θS)(SOM) + 0.018(SA)

σ2

S1→ 1.417 + 1.936(Clay2)
S2→ 0.944 − 0.990(Clay2) + 2.205(BD)(Clay)

S3→ 1.304 + 0.953(Clay)(SOM)
S4→ 1.416 + 1.936(Clay2)

S5, S6→ 1.306 + 0.010(SOM)(SA)

w2

S1, S2, S3, S4→ 0.495 + 0.030(Clay)
S5→ 0.486 − 0.079(Clay) + 0.001(BD)(SA)

S6→ 0.607 + 0.215(Clay) + 0.009(Silt2) − 0.264(BD)(Clay) −
0.188(BD)(Silt)

K-b-PDI Log(hm1)
S1, S2, S3, S4→ 2.346 − 0.715(Clay2)

S5→ 2.328 − 0.812(Clay2) + 0.001(SOM)(SA)
S6→ 2.219 − 2.759(Clay2) + 1.885(θS)(Clay) + 2.99 × 10−4(SOM)(SA)

σ1

S1, S2, S3, S4, S5→ 1.107 + 1.719(Clay)(Silt)
S6→ 1.501 − 3.464(Clay) − 5.711(θS)(Silt) + 0.516(θS)(SOM) +

15.642(Clay)(Silt)
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θr

S1, S3, S4→ 0.180 − 0.546(Silt) + 2.256(Clay)(Silt)
S2, S5→ 0.929 − 0.534(BD) − 0.220(Silt2)

S6→−0.342 + 0.933(θS) − 0.001(SOM) − 0.012(SOM2) + 0.514(θS)(Clay)
− 0.460(Clay)(Silt)

θs

S1, S4→ 0.455 + 1.315(Clay)(Silt)
S2→ 0.787 − 0.134(BD2) + 0.100(Clay2)

S3→ 0.312 + 1.293(Silt) − 1.822(Silt2) + 0.173(Clay)(SOM)
S5→ 0.808 + 0.034(SOM) − 0.161(BD2) − 0.017(Clay)(SOM)

Log(hm2)

S1, S2→ 2.499 − 1.642(Clay2)
S3→ 2.367 + 0.240(SOM) − 1.705(Clay2) − 0.080(SOM2)

S4→ 2.422 − 0.012(Clay)(SA)
S5→ 2.265 − 0.063(SOM2) + 0.163(BD)(SOM) − 0.010(Clay)(SA)

S6→ 1.038 + 1.894(BD)(θS) − 0.010(Clay)(SA)

σ2

S1, S2, S3→ 1.247 + 0.343(Clay)(Silt)
S4, S5→ 1.327 + 0.003(SA) − 1.469(Silt2)

S6→−0.448 + 2.731(BD)(θS) − 0.319(θS)(SOM)

w2

S1→ 0.534 + 0.077(Clay) − 0.410(Clay)(Silt)
S2→ 0.618 − 0.055(BD) − 0.099(Clay)

S3→ 0.342 + 0.245(SOM) − 0.065(SOM2)
S4→ 0.537 - 0.194(Clay)(Silt)

S5→ 0.492 + 0.116(Clay) + 0.029(SOM) − 0.480(Clay)(Silt)
S6→ 0.337 + 0.130(SOM) - 0.059(SOM2) + 0.078(BD)(SOM) +

0.002(Silt)(SA)

VG α

S1, S2, S4→−1.186 − 4.644(Silt) − 3.038(Clay2) + 12.213(Clay)(Silt)
S3→−1.241 − 4.723(Silt) + 0.055(SOM) − 3.005(Clay2) +

12.287(Clay)(Silt)
S5→−1.462 − 3.087(Silt) + 0.080(SOM) − 0.019(BD)(SOM) +

5.604(Clay)(Silt)
S6→−1.344 − 0.469(θS

2) − 2.131(BD)(Silt) + 0.061(BD)(SOM) +
4.481(Clay)(Silt)

n

S1→ 0.216 − 0.100(Silt) − 0.109(Clay)(Silt)
S2→ 0.279 − 0.030(BD2) − 0.040(BD)(Silt) − 0.417(Clay)(Silt)

S3→ 0.222 − 0.088(Silt) − 0.007(SOM) − 0.127(Clay)(Silt)
S4→ 0.192 + 0.109(Clay) − 0.020(Silt) − 0.472(Clay)(Silt)

S5→ 0.221 − 0.059(BD)(Silt) − 0.172(Clay)(Silt) − 0.017(Silt)(SOM)
S6→ 0.443 − 0.320(BD)(θS) − 0.048(BD)(Silt) − 0.238(Clay)(Silt) +

0.009(Silt)(SOM)

θr

S1→ 0.016 + 0.411(Clay) − 0.372(Silt2)
S2→ 0.296 + 0.115(Clay) − 0.111(BD2) − 0.440(Silt2)

S3→ 0.043 − 0.939(Silt2) + 0.015(SOM2) + 1.691(Clay)(Silt) −
0.088(Clay)(SOM)

S4→ 0.017 + 0.411(Clay) − 0.013(Silt) − 0.354(Silt2)
S5→ 0.125 + 0.308(Clay) + 0.029(SOM2) − 0.174(BD)(Silt) −

0.068(BD)(SOM)
S6→−0.100 − 0.385(Silt2) + 0.174(BD)(θS) + 0.624(θS)(Clay)

θs

S1, S4→ 0.456 + 1.357(Clay)(Silt)
S2→ 0.781 − 0.131(BD2) + 0.143(Clay2)

S3→ 0.335 + 1.182(Silt) − 1.706(Silt2) + 0.183(Clay)(SOM)
S5→ 0.815 + 0.033(SOM) − 0.163(BD2) − 0.009(Clay)(SOM)

VG-PDI α

S1, S2, S4→−1.241 − 4.335(Silt) − 2.919(Clay2) + 11.276(Clay)(Silt)
S3→−1.509 − 2.870(Silt) + 0.031(SOM2) + 5.128(Clay)(Silt)

S5→−1.545 − 2.947(Silt) + 0.064(BD)(SOM) + 5.326(Clay)(Silt)
S6→−1.442 + 0.013(BD2) + 0.088(SOM2) − 1.826(BD)(Silt) −

0.015(BD)(SOM) − 0.286(θS)(SOM) + 3.633(Clay)(Silt)
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n

S1, S2, S4→ 0.311 − 0.556(Silt) + 1.207(Clay)(Silt)
S3, S5→ 0.340 − 0.501(Silt) − 0.031(SOM) + 1.125(Clay)(Silt)

S6→ 0.390 − 0.140(θS
2) − 0.369(BD)(Silt) − 0.021(BD)(SOM) +

0.922(Clay)(Silt)

θr

S1, S4→ 0.018 + 0.875(Clay) − 0.029(Silt) − 0.539(Silt2)
S2→ 0.260 + 0.613(Clay) − 0.098(BD2) − 0.640(Silt2)

S3→ 0.016 + 0.840(Clay) − 0.539(Silt2) + 0.032(Clay)(SOM) −
0.021(Silt)(SOM)

S5→ 0.256 + 0.618(Clay) − 0.100(BD2) − 0.653(Silt2) + 0.005(BD)(SOM)
S6→−0.100 − 0.140(BD2) − 1.342(Silt2) + 0.716(BD)(θS) +

1.828(Clay)(Silt)

θs

S1, S4→ 0.454 + 1.328(Clay)(Silt)
S2→ 0.787 − 0.135(BD2) + 0.108(Clay2)

S3→ 0.312 + 1.289(Silt) − 1.834(Silt2) + 0.178(Clay)(SOM)
S5→ 0.746 − 0.141(BD2) + 0.173(Clay2) + 0.027(BD)(SOM)

VG-b Log(α1)

S1, S2, S4→−2.389 + 0.456(Silt2)
S3→−2.225 − 0.062(SOM2)

S5→−2.218 − 0.083(BD)(SOM)
S6→− 0.015 − 3.238(BD)(θS)

Log(n1)

S1, S2, S4→ 0.378 − 0.676(Clay)(Silt)
S3, S5→ 0.410 + 0.008(SOM) − 0.017(SOM2) − 0.772(Clay)(Silt)

S6→ 0.643 − 0.588(θS) − 0.034(SOM2) + 0.131(θS)(SOM) −
0.170(Clay)(Silt)

θr

S1, S4→ 0.003 + 0.119(Silt2)
S2, S5→ 0.015-0.025(Silt2) − 0.057(BD)(Clay) + 0.066(BD)(Silt)

S3→ 0.002 + 0.118(Silt2) + 4.51 × 10−4(SOM2)
S6→ 0.002 + 0.227(Silt) + 0.065(Silt2) − 0.346(θS)(Silt)

θs

S1, S4→ 0.456 + 1.320(Clay)(Silt)
S2→ 0.780 − 0.130(BD2) + 0.115(Clay2)

S3→ 0.327 + 1.193(Silt) − 1.670(Silt2) + 0.177(Clay)(SOM)
S5→ 0.803 + 0.034(SOM) − 0.159(BD2) − 0.011(Clay)(SOM)

Log(α2)

S1, S3→−1.298–3.945(Clay) − 5.678(Silt2) + 9.879(Clay)(Silt)
S2→−1.316 − 0.070(BD2) − 2.675(Silt2) − 1.388(BD)(Clay) +

0.583(Clay)(Silt)
S4→−2.135 − 0.006(Silt)(SA)
S5→−2.246 + 0.002(BD)(SA)

S6→−1.235 − 1.756(BD)(θS) + 0.205(BD)(SOM)

Log(n2) S1, S2, S3, S4, S5, S6→ 0.228 + 0.367(Silt)

w2 S1, S2, S3, S4, S5, S6→ 0.496 − 0.220(Silt) + 0.582(Silt2)

VG-b-PDI Log(α1)

S1, S4→−1.576 − 4.139(Clay) − 4.883(Silt2) + 13.717(Clay)(Silt)
S2→−1.908 − 0.443(BD)(Silt) + 0.250(Clay)(Silt)
S3→−2.014 + 0.236(Clay2) − 0.179(Silt)(SOM)
S5→−1.844 − 0.086(BD2) − 0.191(Silt)(SOM)

S6→−1.064 − 0.311(BD2) − 1.289(θS
2) − 0.105(Silt)(SOM)

Log(n1)

S1→ 0.502 − 0.080(Silt) + 0.025(Clay2) − 1.172(Clay)(Silt)
S2→ 0.697 − 1.143(Silt) + 1.216(Silt2) − 0.283(BD)(Clay)

S3→ 0.487 + 0.230(Silt2) + 0.389(Clay2) − 1.974(Clay)(Silt)
S4→ 0.448 − 0.003(SA) − 0.425(Silt2) + 4.06 × 10−5(SA2)

S5→ 0.361 − 0.297(Silt2) − 3.57 × 10−5(SA2) + 0.002(BD)(SA)
S6→ 0.320 − 0.310(Silt2) − 3.35 × 10 −5(SA2) + 0.062(BD)(θS) +

0.002(BD)(SA)



Water 2020, 12, 896 25 of 29

Table A1. Cont.

par Equation

θr

S1, S3, S4→ 0.025 + 1.200(Clay)(Silt)
S2→ 0.501 − 0.262(BD) + 0.631(Silt2) − 0.243(BD)(Silt)

S5→ 0.203 + 1.532(Silt2) + 2.97 × 10−5(SA2) − 0.651(BD)(Silt)
S6→−0.195 + 0.590(θS) − 0.317(Silt) + 0.660(Silt2) − 0.001(SOM2) + 2.19

× 10−5(SA2)

θs

S1, S4→ 0.454 + 1.321(Clay)(Silt)
S2→ 0.787 − 0.135(BD2) + 0.100(Clay2)

S3→ 0.310 + 1.301(Silt) − 1.828(Silt2) + 0.173(Clay)(SOM)
S5→ 0.773 + 0.041(SOM) − 0.150(BD2) + 5.26 × 10−6(SA2) −

0.040(Clay)(SOM) + 0.001(Silt)(SA)

Log(α2)

S1, S3→−2.307 + 2.306(Clay2)
S2→−2.012 − 0.141(BD2) + 1.759(Clay2)

S4→−2.278 − 1.677(Clay) + 0.017(SA) + 6.323(Clay2) − 0.042(Clay)(SA)
S5→−2.269 + 0.008(BD)(SA)

S6→ 0.685 − 0.327(BD2) − 3.022(BD)(θS) + 1.94 × 10−4(SOM)(SA)

Log(n2)

S1, S3→ 0.336 − 0.486(Clay)(Silt)
S2→−0.057 + 0.175(BD2) + 0.180(BD)(Clay)

S4→ 0.343 − 0.006(Silt)(SA)
S5→−0.726 + 0.680(BD) + 1.658(Clay)(Silt)

S6→ 0.332 + 0.006(SA) − 0.019(θS)(SA) + 0.015(Silt)(SA)

w2
S1, S3, S4→ 0.673 − 1.012(Clay)(Silt)

S2, S5, S6→ 0.722 − 0.020(BD2) − 1.174(Clay)(Silt)

VGm Log(α)

S1, S2→−1.803 − 10.338(Silt2) − 4.471(Clay2) + 17.146(Clay)(Silt)
S3→−0.728 − 7.770(Silt) − 5.066(Clay2) + 0.019(SOM2) +

20.084(Clay)(Silt)
S4→−0.680 − 7.826(Silt) − 5.296(Clay2) + 20.425(Clay)(Silt)

S5→−1.597 + 0.036(SOM) − 0.111(BD2) − 10.071(Silt2) − 4.335(Clay2) +
15.972(Clay)(Silt)

S6→−1.488 + 3.123(Clay) + 0.021(SOM2) − 2.398(BD)(Silt) −
1.847(θS)(Clay)

Log(n) S1, S2, S3, S4, S5→ 0.611 − 1.993(Silt) + 4.257(Clay)(Silt)
S6→ 0.618 − 2.008(Silt) + 4.349(Clay)(Silt) − 0.032(Clay)(SOM)

θr

S1, S3→ 0.025 + 0.185(Silt) − 0.386(Silt2) + 0.355(Clay2)
S2→ 0.436 − 0.249(BD) + 0.002(Silt2) − 0.099(BD)(Silt)

S4→ 0.018 + 0.274(Silt) − 0.500(Silt2) + 0.003(Clay)(SA)
S5→ 0.445 − 0.271(BD) − 0.190(Silt2)

S6→−0.306 + 0.777(θS) + 1.99 × 10−5(SA2) − 0.184(θS)(Silt) −
0.025(Clay)(SOM) − 0.005(Silt)(SA)

θs

S1, S4→ 0.457 + 1.303(Clay)(Silt)
S2→ 0.778 − 0.129(BD2) + 0.116(Clay2)

S3→ 0.341 + 1.112(Silt) − 1.571(Silt2) + 0.177(Clay)(SOM)
S5→ 0.808 + 0.039(SOM) − 0.162(BD2) − 0.025(Clay)(SOM)

Log(m)

S1, S4→−0.394 − 4.345(Clay) + 1.782(Silt) + 3.577(Clay2)
S2→−0.648 − 1.738(BD)(Clay) + 1.337(BD)(Silt)

S3→−0.393 − 4.326(Clay) + 1.782(Silt) + 3.543(Clay2) − 0.001(SOM2)
S5, S6→−0.635 − 0.005(SOM2) − 1.750(BD)(Clay) + 1.342(BD)(Silt)

VGm-PDI Log(α)

S1, S4→−1.927 − 8.150(Silt2) − 3.484(Clay2) + 14.055(Clay)(Silt)
S2→−1.819 − 10.975(Silt2) − 4.945(Clay2) + 16.931(Clay)(Silt)

S3→−2.063 − 7.678(Silt2) − 2.788(Clay2) + 0.035(SOM2) +
13.143(Clay)(Silt)

S5, S6→−1.900 − 10.393(Silt2) − 4.004(Clay2) + 0.040(SOM2) +
15.146(Clay)(Silt)
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Log(n)

S1→ 0.089 + 1.372(Clay) − 1.150(Silt2)
S2→ 0.563 + 0.586(Clay) − 1.228(BD)(Silt)

S3→ 0.217 − 2.416(Silt2) + 0.009(SOM2) + 4.377(Clay)(Silt) −
0.035(Silt)(SOM)

S4→ 0.194 + 0.016(SA) − 0.026(Silt)(SA)
S5→ 0.564 − 1.097(BD)(Silt) + 0.004(SOM)(SA)

S6→−0.191 + 2.172(θS) − 0.009(BD)(SA) − 4.590(θS)(Silt) +
3.475(Clay)(Silt) − 0.559(Clay)(SOM) + 0.009(SOM)(SA)

θr

S1, S3, S4→ 0.152 − 0.557(Silt2) + 1.119(Clay2)
S2, S5→ 0.243 − 0.705(Silt2) + 0.617(Clay2)

S6→−0.359 − 2.393(Silt2) + 1.391(BD)(θS) − 0.628(BD)(Clay) +
3.541(Clay)(Silt)

θs

S1, S4→ 0.552 − 0.313(Silt) + 1.347(Clay)(Silt)
S2→ 0.740 + 0.223(Silt) − 0.268(BD2) − 0.276(Clay2)

S3→ 0.438 + 1.279(Clay)(Silt) + 0.046(Silt)(SOM)
S5→ 0.750 + 0.095(SOM) − 0.279(BD2) − 0.205(Clay)(SOM)

Log(m)

S1→ 0.062 − 5.386(Silt) + 9.343(Silt2)
S2→−0.877 + 0.486(BD2)

S3→−0.622 + 0.614(SOM) − 0.226(SOM2) − 2.088(Clay2)
S4→−0.328 − 0.352(Clay) + 6.84 × 10−5(SA2) − 0.021(Clay)(SA)

S5→−0.849 + 0.483(BD2) − 0.144(SOM2) + 0.705(Silt)(SOM)
S6→−0.146 − 1.321(θS)(SOM) + 1.542(Silt)(SOM)

VGm-b Log(α1)

S1, S2, S3→−1.356 − 6.170(Silt) − 7.060(Clay2) + 17.793(Clay)(Silt)
S4→−2.806 + 0.037(SA) − 0.053(Clay)(SA)

S5→−2.536-0.011(BD)(SA)
S6→−1.834 − 1.551(BD)(θS)

Log(n1)

S1→ 0.237 + 2.284(Silt2) − 0.922(Clay2)
S2→−0.319 + 2.216(BD)(Silt)

S3→−0.005 + 1.693(Silt) − 0.447(Clay)(SOM)
S4→ 0.237 + 2.284(Silt2) − 0.922(Clay2)

S5→ 0.097 + 0.499(BD)(Silt) + 0.499(Silt)(SOM)
S6→−0.440 + 0.753(θS) + 1.259(BD)(Silt)

θr

S1, S4→ 0.019 + 0.859(Silt2) − 0.285(Clay2)
S2→ 0.120 + 2.141(Silt2) − 1.078(Clay2) + 0.533(BD)(Clay) −

0.968(BD)(Silt)
S3→ 0.001 + 0.835(Silt2) − 0.257(Clay2) + 0.009(SOM2)

S5→−0.010 − 0.260(Silt2) − 0.114(Clay2) + 0.154(BD)(Silt) + 3.57 ×
10−4(SOM)(SA)

S6→ 0.027 − 0.177(Clay2) + 0.031(θS)(Silt) + 3.06 × 10−4(SOM)(SA)

θs

S1, S4→ 0.378 + 0.281(Silt) + 0.463(Clay)(Silt)
S2→ 0.743 + 0.215(Silt) − 0.267(BD2) − 0.282(Clay2)

S3→ 0.396 + 0.582(Clay)(Silt) + 0.147(Silt)(SOM)
S5→ 0.836 + 0.050(SOM) − 0.183(BD2) − 0.057(Clay)(SOM)

Log(α2)

S1→−1.936 − 2.545(Silt2) + 2.001(Clay)(Silt)
S2→−1.271 − 0.517(BD) − 2.025(Silt2)

S3→−2.122 − 0.053(SOM2) + 0.628(Clay)(SOM)
S4→−2.448 + 0.032(SA) + −3.84 × 10−4(SA2)

S5→−2.161 − 0.086(SOM2) − 0.016(Clay)(SA) + 0.010(SOM)(SA)
S6→−1.126 − 1.653(BD)(θs) + 0.003(SOM)(SA)

Log(n2)

S1→ 0.409 + 0.149(Clay) − 0.096(Silt)
S2→ 2.146 − 1.477(BD) − 2.658(Clay)(Silt)

S3→ 0.302 + 0.161(Clay) − 0.084(SOM) + 0.469(Silt)(SOM)
S4→ 0.307 + 0.051(Clay) − 1.79 × 10 −4(SA2) + 0.037(Silt)(SA)

S5→ 0.938 − 0.423(BD) − 0.560(Clay)(Silt)
S6→ 0.154 + 0.559(θs

2)
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Table A1. Cont.

par Equation

w2

S1, S2, S4→ 0.391 + 0.602(Silt2)
S3→ 0.451 − 0.062(SOM) + 0.736(Silt2)

S5, S6→ 0.585 − 0.563(Silt2) + 0.022(BD)(SOM)

Log(m1)

S1→−0.618 + 0.238(Clay)(Silt)
S2→−0.552 + 0.456(BD) + 5.074(Silt2) − 3.362(BD)(Silt)

S3→−0.468 + 0.127(Clay) − 0.494(SOM) + 0.083(SOM2) +
0.680(Silt)(SOM)

S4→−0.483 − 0.014(SA) + 0.037(Silt)(SA)
S5→ 0.433 − 0.773(BD) − 9.964(Silt2) + 3.258(BD)(Silt)

S6→−0.418 − 0.645(θs
2) + 0.025(θs)(SA) − 0.014(Clay)(SA)

Log(m2)

S1, S3→−0.275 − 2.238(Clay)(Silt)
S2→−1.630 + 1.152(BD)

S4→−0.318 − 0.021(Silt)(SA)
S5, S6→−1.101 + 0.569(BD)

VGm-b-PDI Log(α1) S1 − 5→−2.475 + 0.556(Clay)
S6→ 0.635 − 4.245(BD)(θs) + 0.329(BD)(Clay)

Log(n1)

S1→ 0.226 + 3.283(Silt2) − 0.629(Silt) − 0.469(Clay)(Silt)
S2→ 0.125 + 2.711(Silt2) − 0.222(BD)(Silt)

S3, S5, S6→ 0.127 + 0.155(Clay)(Silt) + 0.457(Silt)(SOM)
S4→ 0.134 + 2.418(Silt2) − 0.600(Clay)(Silt)

θr
S1, S3, S4→ 0.061 + 0.810(Clay)(Silt)

S2, S5→ 0.026 + 0.261(BD)(Clay) + 0.149(Clay)(Silt)
S6→ 0.114 − 0.516(θs)(Silt) + 1.199(Clay)(Silt)

θs

S1, S4→ 0.455 + 1.313(Clay)(Silt)
S2→ 0.787 − 0.134(BD2) + 0.099(Clay2)

S3→ 0.312 + 1.294(Silt) − 1.821(Silt2) + 0.172(Clay)(SOM)
S5→ 0.773 + 0.042(SOM) − 0.150(BD2) + 5.86 × 10 −6(SA2) −

0.042(Clay)(SOM) + 0.001(Silt)(SA)

Log(α2)

S1→−1.571 − 2.743(Silt) − 2.793(Clay2) + 8.305(Clay)(Silt)
S2→−1.675 − 1.160(Silt) − 0.050(BD2) + 1.709(Clay)(Silt)

S3, S4→−1.778 − 1.233(Silt) + 2.161(Clay)(Silt)
S5→−1.861 + 0.070(BD) − 1.604(Silt) + 2.594(Clay)(Silt) +

0.171(Silt)(SOM)
S6→−1.687 − 0.465(θs

2) + 0.028(SOM2) − 0.948(BD)(Silt) +
2.175(Clay)(Silt)

Log(n2)
S1, S3, S4→ 0.525 − 0.494(Silt2)

S2, S5→ 0.778 − 0.638(Silt2) − 0.598(BD)(Clay)
S6→ 0.412 − 0.706(Silt2) + 0.514(BD)(θs) − 0.590(BD)(Clay)

w2

S1→ 0.229 + 0.587(Silt) + 0.399(Clay2)
S2, S5→ 0.386 + 0.209(BD)(Silt)

S3, S4→ 0.267 + 0.450(Clay) + 1.009(Silt2) − 0.558(Clay)(Silt)
S6→ 0.583 − 0.164(BD)(θs)

Log(m1)

S1→−0.458 − 1.166(Silt2)
S2→−1.113 + 0.347(BD2)

S3→−0.175 − 1.331(Clay2) − 0.097(Clay)(SOM) − 0.465(Silt)(SOM)
S4→−0.384 − 0.021(Silt)(SA)

S5→ 0.001 − 1.293(Silt) − 0.005(BD)(SA)
S6→ 0.382 − 1.509(θs) − 0.051(SOM)

Log(m2)

S1, S3→− 0.307 + 0.736(Clay) − 1.272(Silt)
S2→−0.401 − 1.273(Silt) + 0.868(BD)(Clay)

S4→−0.079 − 1.255(Silt) + 0.001(SA)
S5→−0.010 − 1.325(Silt) − 0.001(BD)(SA)

S6→−0.448 − 1.374(Silt) + 0.688(BD)(θs) − 0.021(BD)(SOM) −
0.001(BD)(SA)



Water 2020, 12, 896 28 of 29

References

1. Bouma, J.; van Lanen, H.A.J. Transfer functions and threshold values: From soil characteristics to land
qualities. In Proceedings of the International Workshop on Quantified Land Evaluation Procedures,
Washington, DC, USA, 27 April–2 May 1987.

2. Cornelis, W.M.; Ronsyn, J.; Van Meirvenne, M.; Hartmann, R. Evaluation of pedotransfer functions for
predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 2001, 65, 638–648. [CrossRef]

3. Haghverdi, A.; Leib, B.G.; Cornelis, W.M. A simple nearest-neighbor technique to predict the soil water
retention curve. Trans. ASABE 2015, 58, 697–705.

4. Haghverdi, A.; Cornelis, W.; Ghahraman, B. A pseudo-continuous neural network approach for developing
water retention pedotransfer functions with limited data. J. Hydrol. 2012, 442, 46–54. [CrossRef]

5. Haghverdi, A.; Öztürk, H.; Cornelis, W. Revisiting the pseudo continuous pedotransfer function concept:
Impact of data quality and data mining method. Geoderma 2014, 226, 31–38. [CrossRef]

6. Schindler, U.; Durner, W.; von Unold, G.; Mueller, L.; Wieland, R. The evaporation method: Extending the
measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J. Plant Nutr.
Soil Sci. 2010, 173, 563–572. [CrossRef]

7. Schindler, U.; Durner, W.; von Unold, G.; Müller, L. Evaporation method for measuring unsaturated hydraulic
properties of soils: Extending the measurement range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083. [CrossRef]

8. Peters, A.; Durner, W. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol.
2008, 356, 147–162. [CrossRef]

9. Peters, A.; Iden, S.C.; Durner, W. Revisiting the simplified evaporation method: Identification of hydraulic
functions considering vapor, film and corner flow. J. Hydrol. 2015, 527, 531–542. [CrossRef]

10. Wösten, J.; Pachepsky, Y.A.; Rawls, W. Pedotransfer functions: Bridging the gap between available basic soil
data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [CrossRef]

11. Vereecken, H.; Weynants, M.; Javaux, M.; Pachepsky, Y.; Schaap, M.G.; van Genuchten, M.T. Using
pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose
Zone J. 2010, 9, 795–820. [CrossRef]

12. Fields, J.S.; Owen, J.S., Jr.; Zhang, L.; Fonteno, W.C. Use of the evaporative method for determination of
soilless substrate moisture characteristic curves. Sci. Hortic. 2016, 211, 102–109. [CrossRef]
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