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Abstract: The calibration of hydrological models is often complex in regions with scarce data, and
generally only uses site-based streamflow data. However, this approach will yield highly generalised
values for all model parameters and hydrological processes. It is therefore necessary to obtain more
spatially heterogeneous observation data (e.g., satellite-based evapotranspiration (ET)) to calibrate
such hydrological models. Here, soil and water assessment tool (SWAT) models were built to evaluate
the advantages of using ET data derived from the Global Land surface Evaporation Amsterdam
Methodology (GLEAM) to calibrate the models for the Bayinhe River basin in northwest China, which
is a typical data-scarce basin. The result revealed the following: (1) A great effort was required to
calibrate the SWAT models for the study area to obtain an improved model performance. (2) The SWAT
model performance for simulating the streamflow and water balance was reliable when calibrated
with streamflow only, but this method of calibration grouped the hydrological processes together and
caused an equifinality issue. (3) The combination of the streamflow and GLEAM-based ET data for
calibrating the SWAT model improved the model performance for simulating the streamflow and
water balance. However, the equifinality issue remained at the hydrologic response unit (HRU) level.
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1. Introduction

Distributed hydrological models are important tools for revealing the hydrological processes
that occur in a changing environment [1]. However, a hydrological model includes multiple complex
parameters. Hence, various inputs are required to accurately simulate hydrological processes [2].
Although less effort is needed to calibrate a hydrological model if the input data are reliable and
comprehensive [3], in some regions with data scarce, the calibration of a hydrological model is complex
and requires considerable effort. Recently, auto-calibration software and methods for hydrological
models have been developed, for example, Parameter ESTimation (PEST) [4], the Shuffled Complex
Evolution algorithm (SCE-UA) [5], and SWAT Calibration Uncertainty Programs (SWAT-CUP) [6]. These
tools are convenient for model calibration; however, there is more than one set of optimal parameters
after a calibration using auto-calibration software or methods [7,8]. Moreover, although some of the
parameters are reasonable, others are not, and it is difficult to evaluate whether the calibrated parameters
are correct. The main output variables of a hydrological model are streamflow, evapotranspiration (ET),
soil water content, surface runoff, groundwater flow, and lateral flow [7,9]. However, generally, only
site-based streamflow data are used to calibrate and validate a hydrological model because it is difficult
to observe other variables [9]. Furthermore, in some watersheds, there are only a few hydrological
stations that are heterogeneously distributed. As a result, an auto-calibrated model using site-based
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streamflow data will yield highly generalised values for all model parameters and hydrological
processes of the watershed [10,11]. Therefore, to obtain reasonable model parameters and to better
simulate watershed hydrological processes, it is necessary to combine the model auto-calibration
procedure with both site-based streamflow and other spatially heterogeneous observation data.

ET is one of the most important components of the water balance; approximately 60–70% of
precipitation returns to the atmosphere from the land surface. The remaining precipitation may become
streamflow or enter other forms of water. With the development of remote sensing, ET data are no
longer difficult to obtain. With the help of remote sensing technology, energy data relating to the
soil–vegetation–air interface can be extracted, and then combined with site-based meteorological data to
calculate the regional ET based on the traditional algorithm. Many regional ET models exist, including
the Reg model [4], Priestley–Taylor jet propulsion laboratory model (PT-JPL) [12], Penman–Monteith
MODIS global terrestrial evapotranspiration algorithm (PM-MOD16) [13], and Global Land surface
Evaporation Amsterdam Methodology (GLEAM) [14] amongst others.

Due to the different structures of datasets, models perform differently in terms of ET simulation.
Models have been validated with observed data and have been reported to perform well in most places
in China [15]. Therefore, most datasets can be used directly to calibrate and validate hydrological
models. Immerzeel and Droogers [16] incorporated remote sensing-derived ET data (based on MODIS
data and the SEBAL model) into their calibration of the Soil and water assessment tool (SWAT) for
a catchment in the Krishna basin in southern India. After calibration, the performance of the SWAT
to simulate ET showed an obvious increase. Rientjes et al. [17] used streamflow and satellite-based
actual ET (based on MODIS data and the SEBAL model) to calibrate the HBV rainfall-runoff model for
the Karkheh River basin in Iran. The authors concluded that the catchment water balance was best
reproduced when both streamflow and satellite-based ET served as the calibration target. Parajuli et
al. [18] applied time series PM-MOD16 ET data to evaluate the SWAT calibration. They demonstrated
the use of satellite-based ET data to evaluate the SWAT performance, which can be applied in watersheds
with a lack of meteorological data. In these studies, satellite-based ET data were used to optimise the
hydrological model parameters, and the simulated results of the actual ET or streamflow were good.
However, many satellite-based ET datasets are missing data for most places in northwest China [15].

GLEAM is a series of algorithms to calculate the components of surface ET based on remote
sensing data for water and heat [14]. Compared with other surface ET datasets, GLEAM can not
only effectively distinguish soil evaporation, plant emission, plant interception evaporation, snow
evaporation, water surface evaporation and other components involved in the process of surface
ET, but also considers radiation, temperature, precipitation and the surface layer in the calculation
process [14]. In addition, GLEAM datasets perform well and cover the entire area of China [19], and can
be directly used to calibrate and validate hydrological models.

Many inland rivers exist in northwest China, which generally originates in mountainous areas
and dissipates in piedmont plain areas. The land-surface conditions, environment, and climate are
therefore different in the upper, middle, and lower reaches. The best way to simulate the hydrological
processes in these inland watersheds is to build individual models for each of these reaches [7,20].
However, there is often a lack of observational data (e.g., precipitation and streamflow) that are key for
building hydrological models successfully. The Bayinhe River, located in the northeast Qaidam basin,
is a typical inland river [21]. The upper reach of the Bayinhe River is situated in Qilian Mountain
and the middle reach is in the Zelinggou basin and Delingha City. Only one hydrological station and
one meteorological station exist in the entire watershed, both of which are in the middle reach. There
is, therefore, an issue regarding how the hydrological processes can be simulated for this basin with
data scarce.

The objective of this research is to evaluate the advantages of using the ET data derived from the
GLEAM to separately calibrate the widely used SWAT model for the upper and middle reaches of the
Bayinhe River. We combine actual streamflow data in one calibration as a means of simplifying the
calibration process and improving the model performance.
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2. Materials and Methods

2.1. Study Area

The Bayinhe River basin is an archetypical, alpine inland river basin located at the north-eastern
edge of the Qaidam basin. The river itself originates from the Zongwulong mountain range on the
southern slopes of Mount Qilian (average elevation 4200 m). The river exits the mountains into the
Zelinggou basin and then travels through the basin before flowing into Delingha City [21]. Finally,
the river splits and flows east into Keluke Lake and west into Gahai Lake. According to statistics from
the Delingha meteorological station, the mean annual precipitation in the Bayinhe River basin between
1999 and 2019 was 210 mm, and the mean annual temperature was 5.81 ◦C. The Bayinhe River basin is
a typical ecologically fragile, arid and semi-arid plateau. The region’s primary land cover types are
desert and grassland with primarily light frigid calcic soil and dark frigid calcic soil. This study takes
the upper and middle reaches of the Bayinhe River basin (above the Delingha hydrological station) as
its study area (Figure 1).
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Figure 1. (a) Bayinhe watershed study area and (b) its location in the Qaidam basin.

2.2. Data Preparation

2.2.1. Basic Data of the SWAT Model

Setting up the surface parameters for a SWAT model requires soil data, land use data, topographic
data, and a drainage basin outlet point. Soil classification data (Figure 2a) were taken from the
1:1,000,000 soil types from the dataset of Qinghai Province, while relevant soil hydrology data were
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referenced from the Soils of Qinghai Province. Land use data (Figure 2b) were cropped from the
1:100,000 China land use dataset for 2015. To correspond data to the land use types in the SWAT
hydrological model database, land use types were reclassified as farmland, forest, grassland, water
bodies, residential land, and bare land. Terrain data (Figure 1) had a 30 × 30 m resolution (ASTER
GDEM). In addition, the Delingha hydrological station was selected as the basin’s outlet point. Figure 2c
delineates the sub-basins that comprise the middle and upper reaches of the Bayinhe River basin.
This study divided the region into a total of 17 sub-basins.
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Figure 2. Soil and Water Assessment Tool (SWAT) model basic data. (a) Soil types; (b) land use types;
(c) sub-basins.
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2.2.2. Data for Model Calibration

Two types of datasets were used to calibrate the SWAT model: (i) the monthly streamflow data
from the Delingha hydrological station for 2006 to 2015, and (ii) the monthly actual ET in each sub-basin
as derived from the GLEAM datasets for 2006 to 2015.

The GLEAM includes a series of algorithms to calculate the components of surface ET based
on satellite data for water and heat (Table 1). The algorithms calculate the potential ET based on
the Priestley–Taylor method [22]. There are four modules in the GLEAM to calculate the different
proportions of the ET process: the interception model, soil water module, stress module and Priestley
and Taylor model [14]. The GLEAM provides daily actual ET data at a 0.25◦ × 0.25◦ spatial resolution.
Figure 3 illustrates the coverage of the GLEAM dataset for the study area.

Table 1. Variables to calculate the actual evapotranspiration (ET) in the Global Land surface Evaporation
Amsterdam Methodology (GLEAM).

Variables Datasets Datasets Description

Solar radiation ERA-interim
European Centre for Medium-Range
Weather Forecasts (ECMWF) Interim

Re-Analysis data

Air temperature ERA-interim
European Centre for Medium-Range
Weather Forecasts (ECMWF) Interim

Re-Analysis data

Precipitation MSWEP v2.2 Multi-Source Weighted-Ensemble
Precipitation version 2.2

Snow water equivalent GLOBSNOW L3A v2 & NSIDC
v01

GLOBSNOW version 2 and the
National Snow and Ice Data Center

version 01
Vegetation optical thickness LPRM Land Parameter Retrieval Model

Surface soil water ESA-CCI v4.3 European Space Agency’s Climate
Change Initiative version 4.3
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2.3. SWAT Model

SWAT is a semi-distributed hydrologic model; it first uses a conceptual model to estimate
precipitation, streamflow, and sediment for each individual hydrologic response unit (HRU). After
these calculations are complete, the SWAT calculates the convergence of the river basin channels.
Finally, the flow rate and sediment and pollutant loads for the basin outlet section are obtained [9].

The simulation of watershed hydrology by the SWAT can be divided into (1) the land-surface
component of the water cycle (flow and slope convergence), which controls the input of water, sediment,
and nutrients in the main channel of each sub-basin, and (2) the surface water component of the water
cycle (channel convergence), which determines the transport of water, sediment, and other substances
from the channel network to the basin outlet [9].

The water volume calculation of the SWAT model is based on the principle of water volume
balance and follows Equation (1) [9]:

SWCt = SWC0 +
t∑

i = 1

(
Rday −Wsurf − Et − SCseep −Wgw

)
(1)

where SWCt is the soil water content (mm); SWC0 is the soil water content in the previous period
(mm); t is the model time step; Rday is the amount of precipitation on i day (mm); Wsurf indicates the
surface streamflow of the i-th day (mm); Et represents the actual ET (mm); SCseep represents the soil
permeation of i-th day (mm); Wgw represents the amount of basic flow (mm).

2.4. SWAT Model Calibration Strategy

Three SWAT models were built: (1) SWAT1 simulates the water balance of the entire study area
(upper and middle reaches of the Bayinhe River), and is calibrated by the stream outflow from the
middle reach; (2) SWAT2U simulates the water balance of the upper reach of the Bayinhe River and is
calibrated with the GLEAM based ET data; (3) SWAT2M simulates the water balance of the middle
reach of the Bayinhe River and is calibrated with the GLEAM-based ET data and stream outflow
from the middle reach. For the SWAT2M, the simulated stream outflow from the upper reach was
directly used as the inflow to the middle reach. The auto-calibration tool SWAT-CUP combined with
a manual calibration strategy [9] were used to calibrate the SWAT model based on observed data.
The Nash-Sutcliff efficiency (NSE), percent bias (PBIAS) and coefficient of determination (R2) were
used to evaluate the performance of the three SWAT models.

Figure 3 shows the unique calibration strategy used in this study (SWAT2U and SWAT2M). Firstly,
the upper and middle reaches were separately modelled. Secondly, the satellite-based ET data derived
from the GLEAM dataset were used to calibrate the SWAT model to simulate the water balance of the
upper reach of the Bayinhe River. Thirdly, the simulated stream outflow from the upper reach was
used as the inflow to the middle reach. The ET data and streamflow data were then used to calibrate
the SWAT model for the middle reach of the Bayinhe River.

2.5. Parameters Sensitivity

In this study, 25 model parameters related to ET and streamflow were selected and their sensitivities
were calculated. The sequential uncertainty fitting (SUFI2) algorithm was combined with the global
sensitivity method in SWAT-CUP software (Swiss Federal institute of Aquatic Science and Technology,
Duebendorf, Swizerland) and used to evaluate parameter sensitivities. The SUFI2 algorithm in
SWAT-CUP combined with the SWAT-CUP and manual calibration strategy [9] were used to calibrate
the three SWAT models based on the parameter sensitivity results (Section 3.1).
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2.6. Indicators for Evaluating the SWAT Model Simulation Result

Based on the results of [23], this study uses the NSE (Equation (2)), PBIAS (Equation (3)), and R2

(Equation (4)) to evaluate the performance of the SWAT model.

NSE = 1−

∑n
i = 1

(
Sobs

i − Ssim
i

)2

∑n
i = 1

(
Sobs

i − S
obs

)2 (2)

PBIAS =

∑n
i = 1

(
Sobs

i − Ssim
i

)
× 100∑n

i = 1

(
Sobs

i

) (3)

R2 =

[∑N
i = 1

(
Psim

i − P
sim

)(
Pobs

i − P
obs

)]2

∑N
i = 1

(
Psim

i − P
sim

)2 ∑N
i = 1

(
Pobs

i − P
obs

)2 (4)

In Equations (2)–(4), Sobs
i represents the measured flow, Ssim

i represents the simulated flow, and S
obs

represents the mean of the measured flow. NSE values range from negative infinity to 1; the closer the
value of NSE to 1, the better and more credible the simulation results are. The closer the value of NSE
to 0.5, the closer the simulation results are to the observed values, which means that the overall model
result is credible; however, the process simulation error is large. If the NSE is far less than 0, the model
is not reliable. If the PBIAS value is between −10% and 10%, the model results are good. R2 ranges
from 0 to 1, whereby the closer the value of R2 is to 1, the better and more credible the simulation
results are [23].

3. Results

3.1. Parameters Sensitivity

Table 2 presents the results for the first ten sensitivity parameters of the SWAT1, SWAT2U, and
SWAT2M models. The higher the absolute value of t-Stat and the lower the p-value, the more sensitive
the parameter is. The first ten sensitivity parameters for the SWAT1 model were CN2 (the SCS runoff

curve number), CH_K2 (the effective hydraulic conductivity in main-channel alluvium), SOL_BD
(the moist bulk-density), CH_N2 (Manning’s “n” value for the main channel), SOL_K (the saturated
hydraulic-conductivity), SOL_AWC (the available water capacity of the soil layer), GW_REVAP (a
groundwater “revap” coefficient), GWQMN (the threshold depth of water in the shallow aquifer
required for return flow to occur), SLSUBBSN (the average slope length), and SMFMN (the annual
minimum melt-rate for snow). The first ten sensitivity parameters for the SWAT2U model were CN2,
SOL_BD, SOL_K, ESCO (a soil evaporation compensation factor), SLSUBBSN, GWQMN, SMFMN,
SNOCOVMN (a snow-pack temperature lag factor), SNO50COV (the fraction of the snow volume in a
given area that corresponds to 50% of the snow cover) and CH_N2. The first ten sensitivity parameters
for the SWAT2M model were CN2, SOL_BD, SLSUBBSN, SOL_K, HRU_SLP (the average slope
steepness), ALPHA_BF (the baseflow alpha-factor), SOL_AWC, ESCO, GW_REVAP, and GWQMN.
The first ten sensitivity parameters were different for the three SWAT models because different
calibration data were used.
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Table 2. Sensitivity parameters of the Soil and Water Assessment Tool (SWAT) models: SWAT1,
SWAT2U and SWAT2M.

SWAT1 SWAT2U SWAT2M
Sensitivity
Parameters t-Stat p-value Sensitivity

Parameters t-Stat p-value Sensitivity
Parameters t-Stat p-value

CN2 −27.09 0.00 CN2 −29.16 0.00 CN2 35.31 0.00
CH_K2 7.89 0.00 SOL_BD −7.83 0.00 SOL_BD 17.82 0.00

SOL_BD −6.00 0.00 SOL_K −3.45 0.00 SLSUBBSN −15.89 0.00
CH_N2 5.01 0.00 ESCO 2.86 0.00 SOL_K 13.47 0.00
SOL_K −3.87 0.00 SLSUBBSN 2.31 0.02 HRU_SLP 4.03 0.00

SOL_AWC −2.48 0.01 GWQMN −1.82 0.07 ALPHA_BF −3.88 0.00
GW_REVAP 1.96 0.05 SMFMN 1.19 0.23 SOL_AWC 2.97 0.00

GWQMN −1.75 0.08 SNOCOVMN −1.17 0.24 ESCO 2.61 0.01
SLSUBBSN 1.65 0.10 SNO50COV −0.96 0.34 GW_REVAP 2.07 0.04

SMFMN 1.07 0.19 CH_N2 −0.83 0.39 GWQMN 1.89 0.07

CN2: SCS runoff curve number; CH_K2: effective hydraulic conductivity in main-channel alluvium; SOL_BD:
moist bulk-density; CH_N2: Manning’s “n” value for the main channel; SOL_K: saturated hydraulic-conductivity;
SOL_AWC: available water capacity of the soil layer; GW_REVAP: a groundwater “revap” coefficient; GWQMN:
threshold depth of water in the shallow aquifer required for return flow to occur; SLSUBBSN: average slope length;
SMFMN: annual minimum melt-rate for snow; ESCO: a soil evaporation compensation factor; SNOCOVMN: a
snow-pack temperature lag factor; SNO50COV: fraction of the snow volume in a given area that corresponds to 50%
of the snow cover; HRU_SLP: average slope steepness; ALPHA_BF: baseflow alpha-factor.

3.2. Non-Calibrated SWAT

The non-calibrated SWAT model results can demonstrate how well the SWAT model predicts
the streamflow before calibration, which indicates the effort required for calibration when using each
configuration [3]. Figure 4 exhibits the monthly streamflow at the outlet of the middle reach simulated
by the non-calibrated SWAT. The performance of the non-calibrated SWAT was poor: R2 < 0.50,
NSE < 0.50, and PBIAS < −20%. Moreover, the simulated and observed streamflow were not well
matched in each year.

Water 2020, 12, x FOR PEER REVIEW 8 of 14 

 

Table 2. Sensitivity parameters of the Soil and Water Assessment Tool (SWAT) models: SWAT1, 
SWAT2U and SWAT2M. 

SWAT1 SWAT2U SWAT2M 
Sensitivity 
Parameters 

t-Stat p-value 
Sensitivity 
Parameters 

t-Stat p-value 
Sensitivity 
Parameters 

t-Stat p-value 

CN2 −27.09 0.00 CN2 −29.16 0.00 CN2 35.31 0.00 
CH_K2 7.89 0.00 SOL_BD −7.83 0.00 SOL_BD 17.82 0.00 

SOL_BD −6.00 0.00 SOL_K −3.45 0.00 SLSUBBSN −15.89 0.00 
CH_N2 5.01 0.00 ESCO 2.86 0.00 SOL_K 13.47 0.00 
SOL_K −3.87 0.00 SLSUBBSN 2.31 0.02 HRU_SLP 4.03 0.00 

SOL_AWC −2.48 0.01 GWQMN −1.82 0.07 ALPHA_BF −3.88 0.00 
GW_REVAP 1.96 0.05 SMFMN 1.19 0.23 SOL_AWC 2.97 0.00 

GWQMN −1.75 0.08 SNOCOVMN −1.17 0.24 ESCO 2.61 0.01 
SLSUBBSN 1.65 0.10 SNO50COV −0.96 0.34 GW_REVAP 2.07 0.04 

SMFMN 1.07 0.19 CH_N2 −0.83 0.39 GWQMN 1.89 0.07 

CN2: SCS runoff curve number; CH_K2: effective hydraulic conductivity in main-channel alluvium; 
SOL_BD: moist bulk-density; CH_N2: Manning’s “n” value for the main channel; SOL_K: saturated 
hydraulic-conductivity; SOL_AWC: available water capacity of the soil layer; GW_REVAP: a 
groundwater “revap” coefficient; GWQMN: threshold depth of water in the shallow aquifer 
required for return flow to occur; SLSUBBSN: average slope length; SMFMN: annual minimum 
melt-rate for snow; ESCO: a soil evaporation compensation factor; SNOCOVMN: a snow-pack 
temperature lag factor; SNO50COV: fraction of the snow volume in a given area that corresponds to 
50% of the snow cover; HRU_SLP: average slope steepness; ALPHA_BF: baseflow alpha-factor. 

3.2 Non-Calibrated SWAT 

The non-calibrated SWAT model results can demonstrate how well the SWAT model predicts 
the streamflow before calibration, which indicates the effort required for calibration when using 
each configuration [3]. Figure 4 exhibits the monthly streamflow at the outlet of the middle reach 
simulated by the non-calibrated SWAT. The performance of the non-calibrated SWAT was poor: R2 
< 0.50, NSE < 0.50, and PBIAS < −20%. Moreover, the simulated and observed streamflow were not 
well matched in each year.  

 
Figure 4. Non-calibrated Soil and Water Assessment Tool (SWAT) model simulated monthly 
streamflow at the outlet of the middle reach. 

3.3. SWAT1 Performance 

Figure 5 exhibits the monthly streamflow at the outlet of the middle reach simulated by the 
calibrated SWAT1 (R2 = 0.74; NSE = 0.73; PBIAS = 0.6%). Compared to the non-calibrated SWAT (R2 
= 0.06; NSE = −0.11; PBIAS = −34.5%), the performance of the SWAT1 model to simulate the monthly 
streamflow improved by ~863.6% to 1133.3%. The simulated and observed streamflow were well 

0
10
20
30
40
50
60
70
80
90

100

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9

Streamflow (cms)

Month/ Year

Observed Simulated

2006          2007 2008          2009          2010         2011            2012          2013           2014          2015

Figure 4. Non-calibrated Soil and Water Assessment Tool (SWAT) model simulated monthly streamflow
at the outlet of the middle reach.

3.3. SWAT1 Performance

Figure 5 exhibits the monthly streamflow at the outlet of the middle reach simulated by the
calibrated SWAT1 (R2 = 0.74; NSE = 0.73; PBIAS = 0.6%). Compared to the non-calibrated SWAT
(R2 = 0.06; NSE = −0.11; PBIAS = −34.5%), the performance of the SWAT1 model to simulate the
monthly streamflow improved by ~863.6% to 1133.3%. The simulated and observed streamflow were
well matched except for some specific years (e.g., the fourth and sixth years) when the simulated
streamflow was particularly low.
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Figure 5. Soil and Water Assessment Tool (SWAT)-1 model simulated monthly streamflow at the outlet
of the middle reach.

3.4. SWAT2U Performance

In the SWAT2U model, the ranges of some important and sensitive parameters (i.e., SMFMN,
SNOCOVMN, SNO50COV, and ALPHA_BF) were assigned according to existing research for some
similar watersheds [23,24]. Figure 6 shows the annual average ET simulated by the SWAT2U model
for the upper reach of the Bayinhe River. In most of the sub-basins, the observed ET derived from the
GLEAM was higher than that of the SWAT model. Table 3 presents the performance of the SWAT2U
model for simulating the monthly ET in each sub-basin. All R2 values were >0.90, all NSE values were
>0.84 and PBIAS values were within −20% to 20%. Hence, the SWAT2U model was well-calibrated by
using the monthly ET data derived from the GLEAM. Figure 7 exhibits the simulated stream outflow
from the upper reach. This part of the streamflow was the inflow for the middle reach.

Table 3. Performance of the Soil and Water Assessment Tool (SWAT)-2U model to simulate the
monthly evapotranspiration (ET). NSE: Nash-Sutcliff efficiency; PBIAS: percent bias; R2: coefficient
of determination.

Sub-Basin
Indicators

R2 NSE PBIAS

1 0.92 0.89 12.5
2 0.92 0.84 15.4
3 0.91 0.86 10.7
4 0.95 0.95 7.3
5 0.95 0.90 −5.7
6 0.94 0.94 6.4
7 0.95 0.93 −1.3
8 0.91 0.86 10.9
9 0.90 0.86 14.2

10 0.92 0.89 13.4
11 0.95 0.94 3.3
12 0.92 0.89 16.8



Water 2020, 12, 897 10 of 14
Water 2020, 12, x FOR PEER REVIEW 10 of 14 

 

  

(a) (b) 

Figure 6. (a) Simulated evapotranspiration (ET) by the Soil and Water Assessment Tool (SWAT)-2U 

model; (b) observed ET from the Global Land surface Evaporation Amsterdam Methodology 
(GLEAM). 

 
Figure 7. Simulated streamflow out of the upper reaches. 

3.5. SWAT2M Performance 

Table 4 and Figure 8 show the SWAT2M model simulation results for the streamflow in the 
middle reach of the Bayinhe River. The R2 and NSE values reached up to 0.78 and 0.75, respectively, 
and the PBIAS was within −20% to 20%. Moreover, the simulated and observed streamflows were 
well-matched. The performance of the SWAT2M model for simulating the monthly ET was also 
good (Table 4: R2 > 0.91; NSE > 0.78; PBIAS within −20% to 20%). The performance of the SWAT2M 

model for simulating the monthly streamflow at the outlet of the middle reach was better than that 
of the SWAT1 model. Figure 9 presents the monthly ET simulated by the SWAT2 model for the 
entire study area, whereby the simulated and observed ET were well-matched.  
  

0

5

10

15

20

25

30

35

40

45

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9

Streamflow (cms)

Month/ Year
2006          2007          2008 2009         2010         2011          2012          2013          2014          2015

Figure 6. (a) Simulated evapotranspiration (ET) by the Soil and Water Assessment Tool (SWAT)-2U
model; (b) observed ET from the Global Land surface Evaporation Amsterdam Methodology (GLEAM).

Water 2020, 12, x FOR PEER REVIEW 10 of 14 

 

  

(a) (b) 

Figure 6. (a) Simulated evapotranspiration (ET) by the Soil and Water Assessment Tool (SWAT)-2U 

model; (b) observed ET from the Global Land surface Evaporation Amsterdam Methodology 
(GLEAM). 

 
Figure 7. Simulated streamflow out of the upper reaches. 

3.5. SWAT2M Performance 

Table 4 and Figure 8 show the SWAT2M model simulation results for the streamflow in the 
middle reach of the Bayinhe River. The R2 and NSE values reached up to 0.78 and 0.75, respectively, 
and the PBIAS was within −20% to 20%. Moreover, the simulated and observed streamflows were 
well-matched. The performance of the SWAT2M model for simulating the monthly ET was also 
good (Table 4: R2 > 0.91; NSE > 0.78; PBIAS within −20% to 20%). The performance of the SWAT2M 

model for simulating the monthly streamflow at the outlet of the middle reach was better than that 
of the SWAT1 model. Figure 9 presents the monthly ET simulated by the SWAT2 model for the 
entire study area, whereby the simulated and observed ET were well-matched.  
  

0

5

10

15

20

25

30

35

40

45

1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9

Streamflow (cms)

Month/ Year
2006          2007          2008 2009         2010         2011          2012          2013          2014          2015

Figure 7. Simulated streamflow out of the upper reaches.

3.5. SWAT2M Performance

Table 4 and Figure 8 show the SWAT2M model simulation results for the streamflow in the
middle reach of the Bayinhe River. The R2 and NSE values reached up to 0.78 and 0.75, respectively,
and the PBIAS was within −20% to 20%. Moreover, the simulated and observed streamflows were
well-matched. The performance of the SWAT2M model for simulating the monthly ET was also good
(Table 4: R2 > 0.91; NSE > 0.78; PBIAS within −20% to 20%). The performance of the SWAT2M model
for simulating the monthly streamflow at the outlet of the middle reach was better than that of the
SWAT1 model. Figure 9 presents the monthly ET simulated by the SWAT2 model for the entire study
area, whereby the simulated and observed ET were well-matched.

Table 4. Performance of the Soil and Water Assessment Tool (SWAT)-2M model to simulate the
monthly streamflow and evapotranspiration (ET). NSE: Nash-Sutcliff efficiency; PBIAS: percent bias;
R2: coefficient of determination.

SWAT2M Outputs Location
Indicators

R2 NSE PBIAS

Streamflow outlet 0.78 0.75 16.5
ET Sub-basin 1 0.92 0.90 7.4
ET Sub-basin 2 0.92 0.88 6.2
ET Sub-basin 3 0.91 0.78 −10.6
ET Sub-basin 4 0.93 0.90 12.4
ET Sub-basin 5 0.92 0.91 6.9
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Figure 8. Soil and Water Assessment Tool (SWAT)-2M simulated monthly streamflow at the outlet of
the middle reach.
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Figure 9. Soil and Water Assessment Tool (SWAT)-2 simulated monthly evapotranspiration (ET).

3.6. Water Balance

Figure 10 presents the water balance of the SWAT1 and SWAT2 models (where SWAT2 = SWAT2U
+ SWAT2M). It is obvious that the total water yield of the SWAT1 model was higher than that of the
SWAT2 model, which resulted in a lower total simulated streamflow by the SWAT2 models. In addition,
the precipitation and ET of the SWAT1 model were lower than those of the SWAT2 models. This was
because different calibration data may result in different model parameter values and different water
components. Compared to other research in similar study areas [7,24,25], the simulated water balance
of the Bayinhe River basin by the SWAT1 and SWAT2 models was reasonable.Water 2020, 12, x FOR PEER REVIEW 12 of 14 
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4. Discussion

The performance of the non-calibrated SWAT model was quite poor because the precipitation
data were obtained from the only meteorological station in the watershed—in the middle reaches
of the Bayinhe River, which is not representative of the rainfall across the entire upper and middle
reaches. This indicates that a great effort was required to calibrate the SWAT model to obtain a
better model performance. The study area of the upper and middle reaches includes variations in
climate, terrain, and land use. However, as mentioned, only one hydrological station exists in the
entire watershed, at the outlet of the middle reaches. Therefore, we first calibrated the SWAT model
(SWAT1) using only the observed streamflow at the outlet of the middle reach. Compared to the
non-calibrated SWAT model, the performance of the calibrated SWAT1 model to simulate the monthly
streamflow improved obviously. The traditional calibration using the site-based streamflow grouped
the hydrological processes together, which was primarily due to there being only one gauging station.
Hence, this situation illustrates the need for more data with a high spatial resolution to calibrate the
SWAT model for such a data scarce area.

To address this issue, the SWAT2 model was calibrated with both the site-based streamflow and
satellite-based ET data. In addition, the upper and middle reaches were calibrated separately (SWAT2U
and SWAT2M). The SWAT2U model simulated the water balance of the upper reach of the Bayinhe
River and was calibrated using the GLEAM-based ET data, whereas the SWAT2M model simulated the
water balance of the middle reach of the Bayinhe River and was calibrated using the GLEAM-based ET
data and observed stream outflow from the middle reach. For the SWAT2M, the simulated stream
outflow from the upper reach was used directly as the inflow to the middle reach. The performances of
the SWAT2U and SWAT2M models for simulating the monthly ET were very good. The performance
of the SWAT2M model for simulating the monthly streamflow at the outlet of the middle reach was
better than that of the SWAT1 model. Although other similar studies [16–18] have used different ET
data to calibrate their hydrological models, our results, which used the satellite-based ET data to
improve our model’s performance, were essentially the same as these previous studies. In our research,
the GLEAM-based ET data played four roles in the calibration process, whereby the data: (1) distributed
the hydrological processes of the study area (compared to SWAT1); (2) reduced the uncertainty of the
SWAT model in this data scarce area; (3) improved the performance of the SWAT model to simulate the
streamflow and water balance; (4) improved the reliability of the model parameters.

As mentioned, the precipitation data used in the present study were obtained from the only
meteorological station in the study area; thus, the spatial heterogeneity of precipitation was not
considered. This may have been a factor for the discrepancy between the simulated and observed
streamflow in some specific months. Hence, if the spatial heterogeneity of precipitation had been taken
into account, the model uncertainties may have been reduced. Although the use of the GLEAM-based
ET data to calibrate the SWAT model improved the model’s performance for simulating the streamflow,
the performance was not very good. Consequently, validated satellite-based precipitation data are
needed for hydrological modelling in such data scarce areas.

In this research, we assumed that the GLEAM-based ET data could provide an independent
measure of ET. Although the dataset was validated for the entire area of China, the GLEAM is
just a series of algorithms to calculate ET, and some deviation still exists in comparison to field
observed ET. Moreover, the spatial resolution of the GLEAM-based ET data is 0.25◦ × 0.25◦, with
one data point corresponding to one or more sub-basins. The use of the GLEAM dataset was able to
reduce the grouping of hydrological processes that occurred during the model calibration. However,
an equifinality issue may still have occurred at the HRU scale [16]. Further study is therefore required
to downscale the GLEAM-based ET data and improve the calibration results in HRUs.

5. Conclusions

In this research, three SWAT models (SWAT1, SWAT2U, and SWAT2M) were built to evaluate
the advantages of using ET data derived from the GLEAM to separately calibrate the widely used
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SWAT model for the upper and middle reaches of a scare data area: The Bayinhe River. The results
showed that:

(1) A great effort was required to calibrate the SWAT model for the Bayinhe River basin to obtain
a better model performance;

(2) The performance of the SWAT model to simulate the streamflow and water balance was reliable
when calibrated with streamflow only; however, this calibration method grouped the hydrological
processes together and caused an equifinality issue;

(3) The combination of the streamflow and GLEAM-based ET data for the SWAT model calibration
improved the model’s performance for simulating the streamflow and water balance. However,
the equifinality issue remained at the HRU level.
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