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Abstract: Rainfall Intensity–Duration–Frequency (IDF) curves are among the most essential datasets
used in water resources management across the globe. Traditionally, they are derived from observations
of historical rainfall, under the assumption of stationarity. Change of climatic conditions makes use
of historical data for development of IDFs for the future unreliable, and in some cases, may lead to
underestimated infrastructure designs. The IDF_CC tool is designed to assist water professionals
and engineers in producing IDF estimates under changing climatic conditions. The latest version of
the tool (Version 4) provides updated IDF curve estimates for gauged locations (rainfall monitoring
stations) and ungauged sites using a new gridded dataset of IDF curves for the land mass of Canada.
The tool has been developed using web-based technologies and takes the form of a decision support
system (DSS). The main modifications and improvements between version 1 and the latest version
of the IDF_CC tool include: (i) introduction of the Generalized Extreme value (GEV) distribution;
(ii) updated equidistant matching algorithm (QM); (iii) gridded IDF curves dataset for ungauged
location and (iv) updated Climate Models.
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1. Introduction

Rainfall Intensity–Duration–Frequency (IDF) curves describe the relationship between rainfall
intensity, rainfall duration, and the probability of exceedance given by the return period (frequency)
and are used for many water management applications, including the design of major and minor
stormwater management systems, sanitary sewers, detention ponds, culverts, bridges, dams, pumping
stations, and roads, among others [1]. In Canada, we are witnessing a growing demand for robust
methods and tools to assist rapid evaluation of the future extreme rainfall events and their impact
on IDF curves. According to [1], the increase in the demand for rainfall IDF information can be
summarized as follows: (i) as the spatial heterogeneity of extreme rainfall patterns becomes better
understood and documented, a stronger case is made for the value of “locally relevant” IDF information;
(ii) as urban areas expand and evolve, watersheds are generally becoming less permeable to rainfall and
consequently, experiencing increased runoff, and many existing water infrastructures are increasingly
failing to perform at the services levels for which they were designed. Understanding the full magnitude
of the deficit the systems are subject to requires information on the maximum inputs (extreme rainfall
events) with which drainage works must contend; and (iii) climate change will likely result in an
increase in the intensity and frequency of extreme precipitation events in most regions in the future [2].

One of the climate change impacts is intensification of the global hydrologic cycle, causing
increased intensity of wet and dry extremes and resulting floods and droughts [3]. Many studies
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have suggested that climate change will have considerable impacts on extreme rainfall and associated
management of water infrastructure [4–10]. Efforts have been made to better understand and improve
the reliability of the projected future precipitation events [11] with the adjusted forcing scenarios defined
for CMIP5 (Coupled Model Intercomparison Project Phase 5). In particular, the PDRMIP (Precipitation
Driver and Response Model Intercomparison Project) [12] is focusing on evaluating the climate change
drivers of precipitation with changes over land versus ocean and key regions of the globe. It is expected
that the PDRMIP will contribute to the adjustment of forcing scenarios for the CMPI6 (Coupled Model
Intercomparison Project Phase 6), currently in full swing [12,13].There has been a notable increase
in damages associated with extreme rainfall events in urban municipalities and some examples of
the impacts of extreme rainfall events on large urban centers in Canada and the economic losses are
presented in [14,15]. Lack of readily and easily accessible data, information to assess adaptation options,
and availability of technical resources to implement adaptation options have been identified as barriers
to climate change adaptation [16]. In addition, much of the work on the impacts of climate change on
design standards has been conducted in the academia with limited availability of research results to
practitioners. Political factors may also inhibit application of design standards that reflect increasing
intensity and frequency of extreme events. Further, there exists a level of uncertainty associated with
future climate projections, in particular with the uncertainty surrounding the future greenhouse gas
concentration scenarios, also known as Representative Concentration pathways [11–13,17] (RCPs),
creating difficulty in application of results. The issue is further aggravated by the presence of various
uncertainties associated with the use of several distinct GCMs (Global Climate Models) given the
limited capacity for projecting, with high accuracy, longer term precipitation events and large spatial
scales (usually larger than the size of most watersheds) and distinct potential downscaling techniques.

Because of changing conditions, IDF values will optimally need to be updated more frequently
than in the past, and climate change scenarios are required to inform IDF calculations. The main
assumption in the process of developing IDF curves is that historical series are stationary and, therefore,
can be used to represent future extreme conditions. This assumption is not valid under rapidly changing
conditions, and therefore, IDF curves that rely only on historical observations will misrepresent future
conditions [18,19]. In the presence of climate change, the statistical characteristics of the historical
observed rainfall events will be different for future conditions. Limited information is available on
how to bring climate change into the IDF calculations [20–25] and even less on how to implement
updated IDF curves in practice [26]. Authors such as [27,28] have presented decision support systems
to assist in the calculation of IDF curves, using GIS tools and Microsoft Excel, respectively.

The rainfall IDF_CC tool is designed to address this gap. The authors and supporting
agencies strongly believe that a publicly available, computerized tool for updating IDF relationships
under changing climate would aid in the selection of effective climate change adaptation options
at the local level, advancing the decision-making capabilities of municipalities and watershed
management authorities.

The initial version of the IDF_CC tool, version 1, was publicly released in 2015 [4,26]. A second
version was made public in August 2017, and since then, new features have been introduced into the
current version of the tool, which are described in this paper. The significant improvements of the last
version of the tool include: (i) use of the General Extreme Value (GEV) distribution, (ii) a new quantile
matching (QM) algorithm for updating IDFs using the GEV distribution; (iii) addition of a new module
for developing IDF curves for ungauged locations across Canada and a methodology for updating
them under climate change and (iv) new and updated climate models used for the IDF projections.

The manuscript is organized as follows: Section 2 describes the methodology implemented for
the calculation of IDF curves under climate change; the description of the IDF_CC implementation
follows in Sections 3 and 4 provides a detailed guide for IDF_CC tool use the discussion of the results
and uncertainty—and provides some conclusions, in Section 5, based on the up-to-date public use of
the tool.
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2. Methodology

This section presents the methodology development and use with the IDF_CC tool version 4
and changes made to the tool since the publication of version 1. We briefly describe version 1 of the
tool, and then the changes introduced to versions 2, 3 and 4. These changes include: (1) use of the
GEV distribution; (2) additional climate data with new climate projections; and (3) new gridded IDF
curves dataset. With use of the GEV distribution and a new dataset for ungauged IDF curves (gridded
dataset), the algorithms for updating IDF curves under climate change had to be modified and adapted
from the original version 1. These methods are described in Sections 2.3 and 2.4.

2.1. IDF_CC Tool

The IDF_CC tool version 1 was made public in March 2015 and has since been used by a large
number of practitioners, consultants, and municipal engineers [26]. IDF_CC tool version 1 used an
original equidistant quantile-matching (EQM) downscaling method for updating IDF curves [4,20].
The goal was to mimic changes between the projected time period and the baseline period from
climate models. The methodology used the Gumbel distribution fitted to the annual maximum
precipitation (AMP) series of the observed data and the series extracted from the GCMs using the
method of moments to estimate the parameters. The quantile-mapping functions are directly applied
to annual maximum precipitation (AMP) to establish statistical relationships between the AMPs of
GCM generated precipitation data and sub-daily observed (historical) data rather than using complete
daily precipitation records. Details of the implementation and use of the tool are detailed in [4]
and [26]. Version 1 of the tool has been used to estimate changes in IDF curves for Canada and produce
interpolated gridded maps [29]. Another study [30] details an analysis comparing the IDF_CC future
IDF projections to the theoretical Clausius–Clapeyron scaling that estimates a constant rate of increase
in short-duration precipitation, based on temperature increase.

Since version 1 was released, the IDF tool was improved and several new features were added
and are described in more detail in the following sections:

• Implementation of the General Extreme Value (GEV) distribution with the L-moments methods
(described in Section 2.2).

• Introduction of the module for development of IDF curves for ungauged locations (described in
Section 2.3).

• Update of the database with the stations from the Environment and Climate Change Canada
(ECCC) IDF engineering dataset [31].

• Update of the climate models data base with second version of bias corrected climate models from
the Pacific Climate Impacts Consortium [32].

2.2. Statistical Distributions

This section describes the statistical distributions and the estimation of the parameters used in the
IDF_CC tool.

2.2.1. Gumbel Distributions

The Gumbel distribution, usually denoted in its general form by G(x; µ, σ) with µ location and
σ, the scale parameter, is used as the standard distribution by ECCC for all precipitation frequency
analyses in Canada. The annual extremes quantiles can be expressed as follows:

Qt = µ+ KTσ (1)
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where Qt is the exceedance value, µ and σ are the mean and standard deviation (parameters of the
distribution) of the annual extreme series and KT the frequency factor, that can be calculated as follows:

KT =

√
6
π

[
0.5772 + ln

[
ln

( T
T − 1

)]]
(2)

where T is return period in years.
For the parameter estimation of the Gumbel distribution, ECCC uses and recommends the method

of moments technique [33] as it is simple and yields consistent estimators. In the case of the Gumbel
distribution, the parameters µ and σ are estimated by moments methods from data series.

2.2.2. GEV Distribution

The General Extreme Value (GEV) distribution, usually denoted in its general form by GEV(x;
µ, α, k) with µ the location, α the scale and k the shape parameter of the distribution, is a family of
continuous probability distributions that combines the three asymptotic extreme value distributions
into one: Gumbel (EV1), Fréchet (EV2) and Weibull (EV3) types. GEV uses three parameters: location,
scale and shape. The shape parameter is derived from skewness, as it represents where most of the
data lies, which creates the tail(s) of the distribution. A value of shape parameter k = 0 indicates an
EV1 distribution. A value of k > 0, indicates EV2 (Fréchet), and k < 0 indicates the EV3 distribution
(Weibull). The Fréchet type has a longer upper tail than the Gumbel distribution and the Weibull type
has a shorter tail [34–37]. For this reason, the GEV distribution can potentially provide a better fit to
the precipitation data than the 2-parameter Gumbel distribution [35,38–41].

The GEV cumulative distribution function F(x) is given by (3) for k , 0 and (4) for k = 0 (EV1).

F(x) = exp

−
[
1−

k
α
(x− µ)

]1/k
 for k , 0 (3)

F(x) = exp
{
−exp

[
−

1
α
(x− µ)

]}
for k = 0 (4)

with µ the location, α the scale and k the shape parameter of the distribution, with µ, α and k ∈ R and
α ≥ 0.

The inverse distribution function or quantile function is given by (5) for k , 0 and (6 for k = 0,
and the other parameters as described above.

Q(x) = µ+ α{1− (−lnF)k
}/k for k , 0 (5)

Q(x) = µ− α
{
−exp

[
−

1
α
(F− µ)

]}
for k = 0 (6)

Parameter estimation with the L-moments method
The L-moments [28,42] and maximum-likelihood methods are commonly used to estimate the

parameters of the GEV distribution and fit to annual maxima series. L-moments are a modification of the
probability-weighted moments (PWMs), as they use the PWMs to calculate parameters that are easier
to interpret. The PWMs can be used in the calculation of parameters for statistical distributions [34,36].
L-moments is a robust alternative to moments of the distributions and is a linear combination of the
order statistics of the annual maximum rainfall amounts [34,35,43]. The PWMs are estimated by ((7)
to (9)):

b0 = n−1
n∑

j=1

x j (7)

b1 = n−1
n∑

j=2

j− 1
n− 1

x j (8)
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b2 = n−1
n∑

j=3

( j− 1)( j− 2)
(n− 1)(n− 2)

x j (9)

where xj is the ordered sample of annual maximum series (AMP) and bi are the first PWMs. The sample
L-moments can then obtained as (Equations (10)–(12)):

`1 = b0 (10)

`2 = 2b1 − b0 (11)

`3 = 6b2 − 6b1 + b0 (12)

The GEV parameters: location (µ), scale (α) and shape (k) are defined ([34]) as (Equations (13)–(15)):

k = 7.8590c + 2.9554c2

where:

c = 2
3+`3/`2

−
ln(2)
ln(3)

(13)

α =
`2k

(1− 2−k).Γ(1 + k)
(14)

µ = `1 − α
1− Γ(1 + k)

k
(15)

where Γ(.) is the gamma function, `1, `2 and `3 are the three first L-moments, µ is the location, α is the
scale and k is the shape parameter of the GEV distribution.

2.3. IDF Curves for Ungauged Locations

One important addition that has been made in the latest version of the IDF_CC tool, and
described in this manuscript, is gridded IDF estimates across Canada. The intention in including
this dataset is to allow development of IDF curves at ungauged locations across Canada by users of
the tool. The methodology involves making preliminary estimates of IDF curves from atmospheric
variables (AVs) that shape precipitation extremes in different parts of Canada, and then performing a
bias-correction function to correct for spatial errors. A summary of the methodology is provided in the
following five steps. For a detailed description of the methodology and specific analysis of the created
ungauged dataset, the reader is directed to [44].

Step 1: Preparation of predictors
Daily time-series of AVs are extracted for all grids located within Canada for the period 1979–2013

from North American Regional Reanalysis (NARR) [45] and ERA-Interim [46] databases. Extracted
time-series are used to calculate annual mean and maximum AV values to obtain an array of 31
predictors at all reanalysis grid-points. These are used later in step 4 for the prediction of preliminary
IDF estimates. The calculated predictor variables are bi-linearly interpolated to obtain predictor values
at all precipitation gauging station locations. These are used in steps 2 and 3 to identify relevant AVs
and to calibrate machine learning algorithms at each precipitation gauging station location.

Step 2: Identification of relevant AVs at precipitation gauging station locations
The most relevant AVs out of the 31 potential AVs are identified at precipitation gauging stations

with at least 10 years of observational data. Individual sets of relevant AVs are obtained for precipitation
extremes of different durations. Since annual mean precipitation (P-mean) has been identified as an
important predictor when modelling precipitation extremes [47,48], it is considered as a ‘reference’
predictor in this study. This means that P-mean is considered as one of the relevant predictors at all
precipitation gauging stations.

The relevance of other AVs toward shaping AMP magnitudes is evaluated at each precipitation
gauging station by performing a chi-squared test and correlation analysis. Chi-squared tests are
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performed to compare two nested linear regression models of observed AMP magnitudes: (1) model
with only a ‘reference’ predictor, and (2) model with a ‘reference’ and a ‘test’ predictor. It is ascertained
whether the inclusion of the ‘test’ predictor variable leads to a statistically significant improvement (at
p = 0.05) in the definition of model 1 or not. AVs resulting in a statistically significant improvement in
regression model definition are also identified as relevant predictor variables. In addition, correlations
between AMP and different AVs and extreme precipitation magnitudes are calculated and highly
correlated AVs are also considered for modelling AMP magnitudes.

Step 3: Calibration of machine learning (ML) models at precipitation gauging stations
Next, ML models describing AMP magnitudes as a function of identified relevant AVs are calibrated

at each precipitation gauging station, for each of the sub-daily durations. To minimize the risk of
obtaining unstable regression relationships at stations with short data lengths, observational and AV
data from neighboring stations falling within a pooling extent are pooled when forming a relationship
between AMP and relevant AVs. In this study, two pooling extents encompassing 10 and 25 closest
stations surrounding the gauging station of interest are considered for analysis. One machine learning
algorithm, SVM (support vector machines) [49], is used to define the relationship between predictant
and predictor variables. The kernlab package [50] in the R programming language. The Sequential
Minimal Optimization procedure [51] is chosen as the optimization procedure for estimating SVM
regression parameters. The results produced by this algorithm in R are then incorporated in the
IDF_CC tool, as described in Section 3.1.

Step 4: Prediction of preliminary IDF estimates at reanalysis grids
Prediction of preliminary IDF estimates for a particular reanalysis grid is made by using a

calibrated ML model from the nearest precipitation gauging station and time-series of predictors
associated with the reanalysis grid as calculated in step 1. This process is repeated for all reanalysis
grids and precipitation durations to obtain gridded AMP estimates across Canada. Obtained AMP
estimates are fitted to a Generalized Extreme Value (GEV) distribution and precipitation intensities
corresponding to 2-, 5-, 10-, 25-, 50-, and 100-year return periods are estimated.

Step 5: Correction of spatial errors
In the final step, the estimated preliminary IDF magnitudes are bilinearly interpolated at

precipitation gauging station locations and used in conjunction with observation-based IDF magnitudes
to obtain correction factors at each precipitation gauging station location. Different sets of correction
factors are calculated for IDFs of different durations and return periods. Correction factor Cd, f ,s
obtained at a gauging station s, for a precipitation event of duration d, and frequency f is calculated as:

Cd, f ,s =
IDFobs,d, f ,s

IDFmod,d, f ,s
(16)

where, subscripts obs and mod denote observed and modelled data, respectively. Correction factors
calculated at each precipitation gauging station are bilinearly interpolated to obtain gridded correction
factors for all reanalysis grids located within Canada. Correction factors obtained for reanalysis grids
are multiplied with preliminary IDF estimates to obtain final gridded IDF estimates. The spatial
distribution of the correction factors indicates a higher accuracy of preliminary estimates in both
eastern and western coastal regions of Canada, south-western Ontario, and northern Quebec regions.
Relatively lower accuracy in preliminary estimates is obtained for northern Ontario, prairies and the
majority of the northern regions of Canada.

2.4. IDF Curves under Changing Climate

The main assumption in the process of developing IDF curves is that the historical series are
stationary and, therefore, can be used to represent future extreme conditions. This assumption is
not valid under rapidly changing conditions, and therefore, IDF curves that rely only on historical
observations will misrepresent future conditions [52,53]. Global Climate Models (GCMs) are one of
the best ways to explicitly address changing climate conditions for future periods (i.e., non-stationary
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conditions). GCMs simulate atmospheric patterns on larger spatial grid scales (usually greater than
100 km) and are, therefore, unable to represent the regional scale dynamics accurately. In contrast,
regional climate models (RCMs) are developed to incorporate the local-scale effects and use smaller
grid scales, usually 10 to 50 km or even less. The major shortcoming of RCMs is the computational
intensity required to generate realizations for various atmospheric forcings.

Both GCMs and RCMs have larger spatial scales than the size of most watersheds, which is the
relevant scale for IDF curves. Downscaling is one of the techniques to link GCM/RCM grid scales and
local study areas for the development of IDF curves under changing climate conditions. Downscaling
approaches can be broadly classified as either dynamic or statistical. The dynamic downscaling
procedure is based on limited area models or uses higher resolution GCM/RCM models to simulate
local conditions, whereas statistical downscaling procedures are based on transfer functions which relate
GCM outputs with the local study areas; that is, a mathematical relationship is developed between GCM
outputs and historically observed data for the time period of observations. Statistical downscaling
procedures are used more widely than dynamic models because of their lower computational
requirements and availability of GCM outputs for a wider range of emission scenarios.

The IDF_CC tool adopts a modified version of the equidistant quantile-matching (EQM)
method [20] for temporal downscaling of precipitation data which can capture the distribution
of changes between the projected time period and the baseline. Future projections are incorporated by
using the concept of quantile delta mapping [54–56], also known as scaling. For spatial downscaling,
the tool utilizes data from GCMs produced for Coupled Model Intercomparison Project Phase 5
(CMIP5) [50] and statistically downscaled daily Canada-wide climate scenarios, at a gridded resolution
of 300 arc-seconds (0.0833 degrees, or roughly 10 km) for the simulated period of 1950–2100 [32].
Spatially and temporally downscaled information is used for updating IDF curves.

2.4.1. Equidistant Quantile Matching Method with GEV

The IDF_CC tool uses an equidistant quantile matching (EQM) method to update IDF curves
under changing climate conditions by temporally downscaling precipitation data to explicitly capture
the changes in the GCM data between the baseline period and a future period. The flow chart of the
EQM methodology is shown in Figure 1.

The following section presents the EQM method for updating the IDF curves that is employed
by the IDF_CC tool. The following notation is used in the descriptions of the EQM steps: x, stands
for the annual maximum precipitation, j is the subscript for 5, 10, 15 min, 1, 2, 6, 12, 24 h sub-daily
durations, o the observed historical series, h for historical simulation period (base-line for model data),
m for model (downscaled GCMs), f the sub/superscript for the future projected series, F the CDF of the
fitted probability GEV distribution and F−1 the inverse CDF. The steps involved in the algorithm are
as follows:

1. Extract sub-daily maximums x j,o,h from the observed data at a given location (i.e., maximums of
5, 10, 15 min, 1, 2, 6, 12, 24 h precipitation data).

2. Extract daily maximums for the historical baseline period from the selected GCMs, xm,h.
3. Fit the GEV probability distribution to maxima series extracted in (i) for each sub-daily duration,

F j,o,h, and for the GCM series from step (ii), Fm,h.

4. Based on sampling technique proposed by [22], generate random numbers for non-exceedance
probability in the [0, 1] range. The quantiles extracted from the GEV fitted to each pair F j,o,h and
Fm,h are equated to establish a statistical relationship in the following form:

x̂ j,o,h =
a j + xm,h

b j + c jxm,h
+

d j

xm,h
(17)
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where x̂ j,o,h corresponds to the AMP quantiles at the station scale and a j, b j, c j and d j, are the
adjusted coefficients of the equation for each sub-daily duration j. A Differential Evolution (DE)
optimization algorithm is used to fit the coefficients a j, b j, c j and d j.

5. Extract daily maximums from the RCP Scenarios used in the IDF_CC tool (i.e., RCP 2.6, RCP 4.5,
RCP 8.5) for the selected GCM model, xm, f .

6. Fit the GEV probability distribution to the daily maximums from the GCM model for each of the
future scenarios Fm, f .

7. For each projected future precipitation series xm, f , calculate the non-exceedance probability τm, f
from the fitted GEV Fm, f . Find the corresponding quantile (x̂m,h) at the GCM historical baseline by
entering the value of τm, f in the inverse CDF F−1

m,h. This is a scaling step introduced to incorporate
the future projections in the updated IDF and uses the concepts of quantile delta mapping [54,56].
The relative change ∆m, is calculated using Equation (20):

τm, f = Fm, f
(
xm, f

)
(18)

x̂m,h = F−1
m,h

(
τm, f

)
(19)

∆m =
xm, f

x̂m,h
(20)

8. To generate the projected future maximum sub-daily series at the station scale (x f
j,o,h), use (17) by

replacing xm,h to x̂m,h and multiplying by the relative change ∆m from Equation (20).

x f
j,o,h = ∆m.x̂ j,o,h (21)

9. Generate IDF curves for the future sub-daily data and compare the same with the historically
observed IDF curves to observe the change in intensities.

2.4.2. Spatial Interpolation of GCM Data

GCM spatial grid size scales are too coarse for application in updating IDF curves, and usually
range above 1.5◦ × 1.5◦. Therefore, GCM data has to be spatially interpolated for station coordinates
for use in downscaling. The inverse square distance weighting method is applied in the IDF_CC tool.
The nearest four GCM grid points to the station are used by weighting the precipitation value by the
distance between the station and the GCM grid points. In this way, the GCM grid points that are closer
to the station are weighted more than the grid points farther away. The mathematical expression for
the inverse square distance weighting method is given as follows:

wi =

1
d2

i∑k
i=1

1
d2

i

(22)

where di is the distance between the ith GCM grid point and the station, and k is the number of nearest
grid points (equal to 4 in the IDF_CC tool).
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Figure 1. Equidistance Quantile-Matching method for generating future Intensity–Duration–Frequency
(IDF) curves under climate change.

2.5. Updating IDFs for Ungauged Locations

The updating procedure for ungauged locations adopts a modified version of the equidistant
quantile matching (EQM) discussed in [20]. Changes in future conditions due to climate change are
captured from GCMs by evaluating the magnitude and sign of change, comparing the model’s baseline
and future periods for each RCP, and then applied to the IDF estimates from the gridded data. The flow
chart of the modified EQM methodology is shown in Figure 2.

The following discussion presents the modified EQM method for updating the IDF curves for
gridded data that is employed by the current version of the IDF_CC tool. The following notation
is used in the descriptions of the EQM steps: x, stands for the annual maximum precipitation, j is
the subscript for 5 min, 10 min, 15 min, 1 h, 2 h, 6 h, 12 h, 24 h sub-daily durations, T the return
period (in years), o the observed historical series, h for historical simulation period (baseline for model
data), m for model (downscaled GCMs), f is the sub/superscript the future projected series, p is the
non-exceedance probability for a given T, F the CDF of the fitted probability GEV distribution and F−1

the inverse CDF. The steps involved in the algorithm are as follows:

10. Extract the IDF curves, representing the historical IDF, from the gridded dataset for all durations
(5 min, 10 min, 15 min, 1 h, 2 h, 6 h, 12 h, 24 h) and all return periods (2, 5, 10, 25, 50 and 100
years) PPT j,RP at the selected location.

11. Extract daily maximums for the historical baseline period from the selected GCMs, xm,h.
12. Fit the GEV probability distribution to maxima series extracted for the GCM series in (ii), Fm,h.
13. Extract daily maximums from the RCP Scenarios (i.e., RCP 2.6, RCP 4.5, RCP 8.5) for the selected

GCM model, xm, f .
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14. Fit the GEV probability distribution to the daily maximums from the GCM model for each of the
future scenarios Fm,p.

15. For each projected future precipitation series, calculate the quantiles (QRP,m, f ) using the
non-exceedance probability (pRP) for each T (2, 5, 10, 25, 50 and 100 years) from the inverse CDF
of the fitted GEV, F−1

m, f . Similarly, calculate the quantiles (Q̂RP,m,h) at the GCM historical baseline

by entering the value of the non-exceedance probability for each T in the inverse CDF F−1
m,h. This is

a scaling step introduced to incorporate the future projections in the updated IDF and mimics the
concepts of quantile delta mapping [54,56]. The relative change ∆RP,m is calculated using (25), for
each T 2, 5, 10, 25, 50 and 100 years.

QRP,m, f = F−1
m, f (pRP) (23)

Q̂RP,m,h = F−1
m,h(pRP) (24)

07∆RP,m =
QRP,m, f

Q̂RP,m,h
(25)

16. To generate the projected future IDF curves for each duration and T, at the selected location, use
PPT j,RP and multiple by the relative change ∆RP,m from (25).

PPTp
j,RP = ∆RP,m.PPT j,RP (26)
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Figure 2. Modified Equidistance Quantile-Matching method for generating future IDF curves under
climate change for gridded data.
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2.6. Statistically Downscaled Global Climate Models

The IDF_CC tool database includes 24 bias corrected and statistically downscaled GCM ([32])
projections generated using the Bias Correction Constructed Analogues with quantile (version 2)
mapping reordering (BCCAQv2) method [32,55]. The models were selected based on the availability
of projections (RCP 2.6, 4.5 and 8.5).

BCCAQ v2 [56] is a hybrid method that combines results from BCCA [57] and quantile
mapping (QMAP) [58]. This method uses similar spatial aggregation and quantile mapping steps
as Bias-Correction Spatial Disaggregation (BCSD) [59–61], but obtains spatial information from a
linear combination of historical analogues for daily large-scale fields, avoiding the need for monthly
aggregates [32]. QMAP applies quantile mapping to daily climate model outputs that have been
interpolated to the high-resolution grid using the climate imprint method of [62].

3. IDF_CC Tool Implementation

The web-based tool developed for updating IDF curves has the usual components of a Decision
Support System (DSS), as presented in Figure 3. The user interface relies on a GIS (geographic
information system) tool that is responsible for presenting stations on the map. User information,
station data, climate model data and series are stored in the tool’s database system. The mathematical
models and algorithms assist in the IDF fitting and updating process, as described above. The primary
objective of the tool is to automate and facilitate the IDF update procedure using historical observed
data collected from rainfall stations and precipitation data from climate model series as the input.
The update procedure requires the historical sub-daily annual maximum of observed precipitation
data to be provided by the user. In the case of Canada, a repository of stations from Environmental
and Climate Change Canada (ECCC—the country’s official environmental agency) is pre-loaded and
available through the user interface with sub-daily historical records.

The IDF_CC tool incorporates three of the most commonly used RCPs with larger available
model outputs: 2.6, 4.5 and 8.5. The numbers, (2.6, 4.5 and 8.5) represent the radiative forcing values
W/m2 at year 2100, accommodating a set of anthropogenic emissions, detailed in chapter 8 of IPCC
AR5 [63]. More details about the energy balance models and the temperature changes projected and
the correlation to each of the RCPs can be found at [64].

Based on the precipitation series, either provided by the user or from official sources, the IDF
curve is first fitted to observed historical data by using Gumbel and GEV distribution. With the
IDF fitted, possible changes for the future are calculated from the selected GCM model using the
EQM method. Results are presented in the form of tables and interactive graphs. As mentioned,
GCM models for IPCC AR 5 [17] provide scenarios for the future (RCPs), and each RCP usually has
several different runs.

For this reason, a range of possible future IDFs is generated with the application of the EQM
method. Results for future IDF curves are available as median, and a range representing outputs based
on each available RCP in the form of tables and interactive graphs. Output uncertainty is associated
with different climate projects and runs available for each GCM and RCP.

The IDF_CC tool was designed in the form of a decision support system (DSS) to generate local
IDF curve information that accounts for the impacts of climate change. The following section describes
the components of the tool as implemented. For details of tool implementation and use, the user can
consult the IDF_CC tool Technical and User’s Manual [65,66].
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decision-making process.

3.1. IDF_CC Tool Components

This section describes the three major system components of the IDF_CC tool: (i) the user interface
(UI); ii) the model base, and iii) the database and climate data models repository. The IDF_CC tool is
implemented in three distinct logical layer components, as presented in Figure 4: the first layer is the
user interface, the second is the model base and the third is the database and netCDF file repository.

Water 2020, 10, x FOR PEER REVIEW  11 of 32 

 

method. Results are presented in the form of tables and interactive graphs. As mentioned, GCM 

models for IPCC AR 5 [17] provide scenarios for the future (RCPs), and each RCP usually has several 

different runs.  

For this reason, a range of possible future IDFs is generated with the application of the EQM 

method. Results for future IDF curves are available as median, and a range representing outputs 

based on each available RCP in the form of tables and interactive graphs. Output uncertainty is 

associated with different climate projects and runs available for each GCM and RCP. 

 

Figure 3. Decision Support System architecture of the IDF_CC tool and illustration of its support of 

the decision-making process. 

The IDF_CC tool was designed in the form of a decision support system (DSS) to generate local 

IDF curve information that accounts for the impacts of climate change. The following section 

describes the components of the tool as implemented. For details of tool implementation and use, the 

user can consult the IDF_CC tool Technical and User’s Manual [65,66]. 

3.1. IDF_CC Tool Components  

This section describes the three major system components of the IDF_CC tool: (i) the user 

interface (UI); ii) the model base, and iii) the database and climate data models repository. The 

IDF_CC tool is implemented in three distinct logical layer components, as presented in Figure 4: the 

first layer is the user interface, the second is the model base and the third is the database and netCDF 

file repository. 

 

Figure 4. Elements of the layer architecture of the IDF_CC tool. Figure 4. Elements of the layer architecture of the IDF_CC tool.

3.2. User Interface

The user interface provides for communication between the user and the other two DSS
components: models and database. Three major parts of the user interface are: (1) Leaflet API:
the GIS component responsible for map operations; (2) data manipulation: functionalities that allow
users to manipulate stations and data; (3) visualization of the results: functionalities dedicated to the
presentation of results to the user (tables, equations, interactive graphs). The GIS tool allows switching
between several different background maps and has the common GIS functionalities such as zoom
and pan (Figure 5). The data input functions are built using Excel-like spreadsheets with copy and
paste functionalities. These characteristics facilitate the manipulation of the rainfall datasets that can
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be easily imported and exported from Excel spreadsheets and text files. The results are visualized
through a user-friendly and interactive graphical presentation of the IDF curves and equations.

Figure 5 also presents the main menu options that allow the user to access the two main modules
of the IDF_CC tool: IDFs for ungauged locations and the IDFs for gauged locations.
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3.3. Model Base

The mathematical models provide support for the calculations required to develop the IDF curves
based on the historical data and to incorporate climate model data to project the updated curves for
the future. The list of algorithms included in the model base of the IDF_CC tool are:

• Statistical analysis algorithm is applied to fit the selected theoretical distribution to both historical
(Gumbel and GEV) and future precipitation data (GEV) using the method of moments to estimate
the parameters of the Gumbel distribution and L-moments method for the GEV.

• An optimization algorithm using a differential evolution (DE) optimization algorithm introduced
by [67] is used on the equidistant quantile matching. The DE algorithm is used to find the
coefficients of the equation to establish a statistical relationship between historical observed data
and the model’s baseline, as described in Section 2.4.1. The optimization algorithm is also used to
fit the analytical relationships in the IDF curves. For each return period (T), an equation is fitted
by finding the coefficients of the IDF equation through minimization of the sum of the root square
errors between the IDF curve and equation calculated values.

• The updated equidistant quantile matching (EQM) algorithm is applied to the IDF curve updating
procedure. This algorithm combines historical precipitation data with data from the climate data
to develop the IDF for future periods (Section 2.4.1).

3.4. Database

The database stores user data, information related to stations and their data, and information from
GCMs. The database management system (DBMS) used for the tool’s database is the latest version of
Microsoft SQL Server™ (MSSQL). Data are organized into relational tables to model aspects of reality,
such as the availability of stations, their location and precipitation series, to support the calculation
of IDF curves by the mathematical models. Besides tables, other essential DBMS features used by
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the tool include: (1) Views, which allow the combination of several tables in a relational way and
return aggregated data to the user interface; and (2) Store procedures, which include functions that
provide great flexibility for developers, and are used to insert and recover data very efficiently from
the database with less computational burden. The following information is stored in the database:

• Repository of ECCC IDF curves dataset: the IDF_CC tool’s database stores the latest records from
the hydro-meteorological station information available from ECCC stations across the country.
There are approximately 700 stations throughout the country. Only publicly available data from
the ECCC stations are stored in the tool’s database, including station name, location, coordinates,
station ID, sub-daily AMP records and daily precipitation data.

• Dataset of gridded IDF curves for the ungauged location module. The dataset is stored in the
database of the IDF_CC tool as another physical table in the database associating the coordinates
with the estimates of the IDF using the methodology described in Section 2.3.

• Climate projections in the form of Global Climate Models (GCM) output files are converted from
the netCDF format to an MSSQL database structure created for the IDF_CC tool that is more
efficient for use with the tool’s algorithms. The GCM data is available in a gridded format. For each
grid point, precipitation series are available. These points cover the globe and are represented
by a pair of coordinates (longitude and latitude). The database structure was created in order
to allow the grid points to be stored with geographic information and the associated series in
tabular form. The selection of the grid points from the GCMs and associated series is made with
the use of nearest neighbor query available in MSSQL, which adds to the tool’s IDF updating
procedure efficiency.

• Some user information is required to access the IDF_CC tool’s functionalities, and the user must
create an account and provide data that are stored in the database, including their name, email,
institution/municipality, the intent of use and password.

• User-provided stations and data: any registered user of IDF_CC can create stations and provide
data for them. The type of data and input options are discussed in Section 4 of the paper.
User-created stations can be shared among other users registered with the IDF_CC tool. Stations
created by users will contain the same basic data as EC stations, including name, ID, coordinates and
location. The coordinates will allow the tool to plot the station on the map with different colors for
easier identification. Users are allowed to provide data for their station by including pre-processed
sub-daily annual maximum precipitation (AMP) series or raw for-the-day-maximums series.
The tool can identify the type of data provided and process the IDF curves calculation accordingly.
There are several sub-daily durations that the user can choose from 5, 10, 15, 20 and 30 min, 1, 2, 3,
6, 12, 18 and 24 h.

• Users can upload files that are related to a specific station. The files are also stored in the database
and can be either text documents, spreadsheets and/or pdf files.

Data from the climate models (raw IPCC and bias corrected PCIC models) stored in the database
require up to 80 gigabytes of storage space. Data from hydro-meteorological stations and miscellaneous
files associated with the ECCC, which is much less demanding, take up to 700 megabytes of server space.

3.5. IDF_CC Tool—Technical Implementation Details

The tool is a web-based DSS without the need for installation files and is not operating system
dependent. It was built for compatibility with major web-browsers and is mobile friendly. The primary
scientific and technical challenges associated with developing the IDF_CC tool are (i) to create a
computationally efficient method for downscaling GCM data and updating IDF curves, and (ii)
addressing complexity associated with large output files procedures by GCMs. The former was
addressed by the implementation of the Equidistant Quantile Matching algorithm (EQM) [20,65] and
the second, by converting climate models output series from the netCDF format files into an MSSQL
database integrated with the tool. The database that stores climate model data was fine-tuned to
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provide the necessary data series for the tool’s mathematical models very efficiently. As a result,
the updating procedures require only seconds, even when the GCM ensemble option—which includes
all models—is selected.

The mathematical models and functions of the tool were written using the objected oriented C#
language, which is part of the Microsoft. Net Framework™. This programming language provides
the required features to implement efficiently the optimization and the EQM algorithms and all other
codes used by the tool. The user interface is based on the rich combination of technologies: Microsoft
ASP.Net, HMTL5 (HyperText Markup Language version 5), CCS3 (Cascading Style Sheets, version 3),
JavaScript, jQuery framework and Leaflet API for the GIS functionalities.

4. Use of IDF_CC Tool and Results

The IDF_CC tool provides precipitation accumulation depths for a variety of return periods (2, 5,
10, 25, 50 and 100 years) and durations (5, 10, 15 and 30 min and 1, 2, 6, 12 and 24 h), and allows
users to generate IDF curve information based on historical data (for gauged or ungauged locations)
and future climate conditions that can inform infrastructure management decisions. The users can
select from multiple future greenhouse gas concentration scenarios (RCPs) and apply results from a
selection of 24 raw climate models [50] and 24 bias-corrected models from PCIC [26] and the ensemble
combining all models, that simulate various climate conditions at the local scale. The procedure for
use of IDF_CC tool is illustrated in Figure 6.
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4.1. IDF Curves for Gauged Locations

The tool’s database stores the data for the hydro-meteorological station available from ECCC.
There are approximately 700 stations publicly available for the country and roughly 500 of these have
at least 10 years of observation data (the minimum length required to generate reliable IDF curves
using the IDF_CC tool).

This section provides a detailed description of the main steps for IDF_CC tool use illustrated with
the tool’s interface screen captures. The intention here is to document the process for using the tool
and assist the reader in starting to use the publicly available web-based tool.

After creating a user account and logging in, the IDF_CC tool allows users to select their location
of interest by zooming in on the map, as shown in Figure 7. Alternatively, users may search for,
and select, a local ECCC hydro-meteorological station using a text search box (Figure 7). Users have
the option of selecting one of the 700 pre-loaded ECCC hydro-meteorological stations and creating and
entering data for their own “user created” stations.
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Users are able to view IDF curves based on the historical records for pre-loaded and user created
stations using the tool in both table (Figure 8) and plot formats (Figure 9). Users can also view
interpolation equations (Figure 10) used for generating IDF curves based on historical data (from
ECCC) or user entered rain station data. The return period is noted as T in the screenshots presented
in the next figures.
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4.2. IDF Curves for the Ungauged Locations

The current version of the IDF_CC tool incorporates a module with a dataset of ungauged location
IDF curves covering the entire country. The input from the user for this module is the selection of
a location on the map, or a pair of coordinates, as presented in Figure 11. Based on the coordinates
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selected by the user, the IDF_CC tool will extract the nearest grid points from the ungauged dataset,
calculate the IDF curve for the selected location, and display the result as in Figure 12. This curve
represents the historical (or observed) period. Development of updated IDFs due to climate change is
presented in the next section. The locations created are saved to the user’s account for later use and
deleted by right clicking on the markers. The tool limits the creation of the stations within Canada only.
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4.3. Use of IDF_CC Tool for Developing IDF Curves for Future Conditions

The IDF_CC tool can be used to produce updated IDF curves using (i) the gauged location module
with preloaded data from ECCC, or (ii) data from its own sources, or (iii) the dataset available for
ungauged locations, as illustrated in Figure 6.

By selecting the “IDF under climate change” tab the users can generate IDF curves that account
for future climate conditions in both modules. To generate the updated IDF curves for future climate,
the user can select from 24 raw (CMIP5) and 24 bias corrected (PCIC) GCMs, all GCMs (ensemble
option) or an individual model and the projection period (any minimum 30-year period between
2006 and 2100—Figure 13). The models available within the IDF_CC tool are listed in Appendix A.
The minimum 50 year period was selected based on the experiments with data from the climate models
and studies [68–70] that present extensive analysis of the effect of short data series on the parameters
of the GEV distribution.

The steps to produce updated IDF curves can be summarized as follows: (i) select an existing
or created station (gauged module) or a location on the map (ungauged module); (ii) calculate the
historical IDFs that can be used for comparison with the IDFs for future climatic conditions; and (iii)
select the GCM model and projection period, and generate the IDF curves for future climatic conditions.
The results for each GCM model are automatically provided for three future emission scenarios (RCP2.6,
RCP4.5 and RCP8.5).
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Figure 13. Screen for selection of the Global Climate Models (GCM) model and time period.

Outputs for IDF curves based on future climate scenarios are provided in tabular and graphical
formats, as shown in Figures 7–9. Tables and graphs are automatically generated for each of the three
available RCPs (2.6, 4.5 and 8.5). Results are provided for 5 min to 24 h durations, and for 1 in 2-to 1 in
100-year return periods (Figure 13). Further, a comparison graph can be generated to quickly assess
the impact of different RCPs on outputs for a particular station (Figures 14 and 15). All the results,
including plots and tables, can be exported for use outside of the tool. Users also have the option
of exporting future IDF results in CSV file format for analysis. Exported future IDF results contain
outputs reflecting the user’s selection of the climate models and projection period.
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4.4. Sensitivity Analysis and Comparison of Results

To validate the results from the presented methodology, a brief comparison between projections
of the bias-corrected models and literature values from previously published material for the London
CS station is conducted. The projections that the IDF_CC tool produces cannot be compared directly
with other sources, given the innovative and unique nature of our work. The comparison of results
also depends on the choice of selected parameters, such as the climate model, the period of analysis,
and a representative pathway (RCP) selected. As an example, Table 1 presents the projected future IDF
curve (the 50th of the multi-model ensemble) of the London CS station for two selected return periods
of 50 and 100 years and several durations, using all 24 bias-corrected (Table A1) climate and the 24 raw
(Table A2) climate models for RCP 8.5 and the late 2100 century period (2071–2100). The projections
are calculated for the baseline values as presented (also indicated in Table 1). The range of projected
increase in IDF values is from 25.3 to 30.1% for the 50-year return period and 27.0 to 30.2% for the
100-year return period of the bias-corrected models, while for the raw climate models, the projected
range is 25.9 to 33.9% and 25.0 to 33.5%, respectively. The results show a close agreement with the
dataset of climate models in the IDF_CC tool. These results (magnitude and direction of the projections)
are in line with previous studies conducted for the same station [16,23,66].

Table 1. Projection (%) for London CS station, for RCP 8.5, period 2071–2100 using bias-corrected
models, using the 50th of the multi-model ensemble.

Duration\T (Years)
Bias Correct Climate Models Raw Climate Models

50 Years 100 Years 50 Years 100 Years

5 min 26.4% 30.1% 26.5% 25.0%

10 min 25.3% 27.0% 28.4% 27.5%

15 min 25.8% 28.6% 27.9% 26.1%

30 min 26.3% 29.3% 26.1% 25.8%

1 h 26.0% 29.1% 27.0% 25.5%

2 h 26.3% 29.1% 26.2% 25.9%

6 h 26.5% 30.1% 25.9% 26.1%

12 h 26.7% 30.2% 26.7% 27.1%

24 h 26.4% 29.1% 33.9% 33.5%

The projections are compared with the MTO IDF Curves Finder tool (MTO, 2020). Once more, it is
crucial to note that no direct comparison should be drawn since the methodology of the IDF_CC tool is
very different from the methodology of the MTO tool. The IDF_CC tool makes use of a large number
of projections (climate models). The MTO tool uses linear trend analysis to extrapolate the values from
the baseline (historical period) to obtain future projects, and no direct information from the climate
models is incorporated. Table 2 presents the values for 50- and 100-year return periods for several
sub-daily durations for both tools. The projections from the MTO tool were taken for the year 2085
(representing roughly the late century), and the projections from the IDF_CC tool represent the 50th
percentile (median) from the output from the ensemble of the two climate models available for the
late century (2071–2100) [71]. The results obtained from the IDF_CC tool once more show consistency
in the direction and the magnitude of the projections compared to the MTO tool. A more important
analysis, however, is the discussion of uncertainty presented in the next sub-section.
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Table 2. Projection for London CS station, RCP 85—Period 2071–2100 using bias corrected models
(values in mm).

Duration\T (Years) MTO Tool for Year 2085
IDF CC Tool

Bias Correct Models Raw Models

50 Years 100 Years 50 Years 100 Years 50 Years 100 Years

5 min 22.7 24.8 23.1 26.7 23.2 25.7

10 min 28.1 30.7 37.9 44.6 38.8 44.8

15 min 31.8 34.8 45.0 52.9 45.8 51.8

30 min 39.4 43.0 57.5 65.9 57.4 64.1

1 h 48.8 53.3 74.5 87.2 75.1 84.8

2 h 60.4 66.0 83.5 95.5 83.4 93.2

6 h 85.2 93.0 91.9 104.8 91.4 101.6

12 h 105.6 115.2 102.0 114.8 102.0 112.0

24 h 132.0 144.0 127.0 141.7 134.5 146.4

4.5. Discussion of Uncertainty

One of the major challenges associated with use of the IDF_CC tool is addressing and describing
uncertainty associated with climate modeling. The projections provided by different models are highly
uncertain due to complex processes driving precipitation and the various ways of modeling these
processes. The high number of projections is available by the IDF_CC tool, combining the two climate
datasets and three future RCPs (2.6, 4.5 and 8.5)—a total of 144 projections. They create a robust set of
outputs available to the users. Additionally, the IDF_CC tool’s flexible architecture offers users with
the opportunity to apply an ensemble of GCMs, one GCM, bias-corrected GCM outputs, and/or raw
climate models. To illustrate the level of uncertainty associated with various choices, an additional
feature is available within the IDF_CC tool—presentation of boxplots generated from running all
available GCMs, for each emission scenario using all available model experiments (runs). Figure 16
provides an example of a box plot for the 5-year return period IDF curve for the London CS station
(located in Ontario, Canada) for RCP 8.5, and all 24 raw climate models. Using the outputs from
the IDF_CC tool, the uncertainty graphs can be presented in another format, as shown in Figure 17,
where the shaded area presents the range of all possible IDFs for the selected climate models. It is
important to highlight that all the IDF projections are equally likely, given that the climate models are
built using the state-of-the-art knowledge in the field of meteorology.
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5. Conclusions

The process of updating and incorporating climate change impacts into local IDF curves is highly
technical and data-intense. The lack of relevant climate change impact information at the watershed
and municipal level has been noted as a challenge that is difficult to overcome in many institutions
responsible for decision making, including those with very high adaptive capacity.

Many of the current water infrastructure systems have not been designed to accommodate extreme
rainfall events, and increasing urbanization is creating more impervious areas resulting in larger
runoffs. Inadequate infrastructure investment and maintenance further aggravates the exposure of
urban communities to flooding. Rainfall intensity–duration–frequency (IDF) curves are used for many
water management applications in Canada, including planning, design, operation and maintenance of
stormwater management systems, wastewater systems, stormwater detention ponds, culverts, bridges,
dams, pumping stations, roads and master drainage planning.

The IDF_CC tool uses a sophisticated and efficient IDF curve updating methodology that
incorporates changes in the modeled characteristics of GCMs between the baseline and the future
projections. The mathematical models and procedures used within the IDF_CC tool include: (i) spatial
interpolation of GCM data using the inverse distance method; (ii) statistical analyses algorithms,
which include fitting Gumbel and GEV probability distribution functions using method of moments
and method of L-moments, respectively; (iii) an IDF updating algorithm based on the EQM method.

The tool is designed to allow water managers, municipal infrastructure professionals, provincial
and federal government agencies, researchers, consultants and non-profit groups to quickly develop
estimates related to the impact of climate change on IDF curves for any location in Canada, using the
gauged or un-gauged modules available within the tool.

The tool is continuously developing, and improvements are frequently being introduced. As a
next step, the tool developers are planning to introduce model outputs generated by the new SSP
(Shared Socio-Economical pathways) emissions scenarios, created for CMIP6, into the IDF_CC tool.
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Appendix A. List of Bias Corrected and Raw Models

Table A1. The selected bias corrected and downscaled CMIP5 models and their attributes which has all the three emission scenarios (RCP2.6, RCP4.5 and RCP8.5)
using the BCCAQ v2 method.

Country Centre
Acronym Model Centre Name Original (Longitude

vs. Latitude)
Bias corrected
(Longitude vs. Latitude)

China BCC bcc_csm1_1 Beijing Climate Center, China Meteorological
Administration 2.8 × 2.8

0.0833 × 0.0833

China BCC bcc_csm1_1 m Beijing Climate Center, China Meteorological
Administration

China BNU BNU-ESM College of Global Change and Earth System Science 2.8 × 2.8
Canada CCCma CanESM2 Canadian Centre for Climate Modeling and Analysis 2.8 × 2.8
USA CCSM CCSM4 National Center of Atmospheric Research 1.25 × 0.94

France CNRM CNRM-CM5
Centre National de Recherches Meteorologiques and
Centre Europeen de Recherches et de Formation
Avancee en Calcul Scientifique

1.4 × 1.4

Australia CSIRO3.6 CSIRO-Mk3-6-0
Australian Commonwealth Scientific and Industrial
Research Organization in collaboration with the
Queensland Climate Change Centre of Excellence

1.8 × 1.8

USA CESM CESM1-CAM5 National Center of Atmospheric Research 1.25 × 0.94

China LASG-CESS FGOALS_g2
IAP (Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, China) and THU
(Tsinghua University)

2.55 × 2.48

USA NOAA GFDL GFDL-CM3 National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 2.5 × 2.0

USA NOAA GFDL GFDL-ESM2G National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 2.5 × 2.0

USA NOAA GFDL GFDL-ESM2M National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 2.5 × 2.0

United Kingdom MOHC HadGEM2-AO Met Office Hadley Centre 1.25 × 1.875
United Kingdom MOHC HadGEM2-ES Met Office Hadley Centre 1.25 × 1.875
France IPSL IPSL-CM5A-LR Institut Pierre Simon Laplace 3.75 × 1.8
France IPSL IPSL-CM5A-MR Institut Pierre Simon Laplace 3.75 × 1.8

Japan MIROC MIROC5 Japan Agency for Marine-Earth Science and
Technology 1.4 × 1.41
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Table A1. Cont.

Country Centre
Acronym Model Centre Name Original (Longitude

vs. Latitude)
Bias corrected
(Longitude vs. Latitude)

Japan MIROC MIROC-ESM Japan Agency for Marine-Earth Science and
Technology 2.8 × 2.8

Japan MIROC MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and
Technology 2.8 × 2.8

Germany MPI-M MPI-ESM-LR Max Planck Institute for Meteorology 1.88 × 1.87
Germany MPI-M MPI-ESM-MR Max Planck Institute for Meteorology 1.88 × 1.87
Japan MRI MRI-CGCM3 Meteorological Research Institute 1.1 × 1.1
Norway NOR NorESM1-M Norwegian Climate Center 2.5 × 1.9
Norway NOR NorESM1-ME Norwegian Climate Center 2.5 × 1.9

Table A2. The selected raw CMIP5 models and their attributes which has all the three emission scenarios (RCP2.6, RCP4.5 and RCP8.5).

Country Centre
Acronym Model Centre Name Number of Ensembles

GCM Resolutions
(Longitude vs. Latitude)

China BCC bcc_csm1_1 Beijing Climate Center, China Meteorological Administration 1 2.8 × 2.8
China BCC bcc_csm1_1 m Beijing Climate Center, China Meteorological Administration 1
China BNU BNU-ESM College of Global Change and Earth System Science 1 2.8 × 2.8

Canada CCCma CanESM2 Canadian Centre for Climate Modeling and Analysis 5 2.8 × 2.8
USA CCSM CCSM4 National Center of Atmospheric Research 1 1.25 × 0.94

France CNRM CNRM-CM5
Centre National de Recherches Meteorologiques and Centre
Europeen de Recherches et de Formation Avancee en Calcul

Scientifique
1 1.4 × 1.4

Australia CSIRO3.6 CSIRO-Mk3-6-0
Australian Commonwealth Scientific and Industrial Research
Organization in collaboration with the Queensland Climate

Change Centre of Excellence
10 1.8 × 1.8

USA CESM CESM1-CAM5 National Center of Atmospheric Research 1 1.25 × 0.94
E.U. EC-EARTH EC-EARTH EC-EARTH 1 1.125 × 1.125

China LASG-CESS FGOALS_g2 IAP (Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing, China) and THU (Tsinghua University) 1 2.55 × 2.48

USA NOAA GFDL GFDL-CM3 National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 1 2.5 × 2.0

USA NOAA GFDL GFDL-ESM2G National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 1 2.5 × 2.0

USA NOAA GFDL GFDL-ESM2M National Oceanic and Atmospheric Administration’s
Geophysical Fluid Dynamic Laboratory 2.5 × 2.0
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Table A2. Cont.

Country Centre
Acronym Model Centre Name Number of Ensembles

GCM Resolutions
(Longitude vs. Latitude)

United Kingdom MOHC HadGEM2-AO Met Office Hadley Centre 1 1.25 × 1.875
United Kingdom MOHC HadGEM2-ES Met Office Hadley Centre 2 1.25 × 1.875

France IPSL IPSL-CM5A-LR Institut Pierre Simon Laplace 4 3.75 × 1.8
France IPSL IPSL-CM5A-MR Institut Pierre Simon Laplace 4 3.75 × 1.8
Japan MIROC MIROC5 Japan Agency for Marine-Earth Science and Technology 3 1.4 × 1.41
Japan MIROC MIROC-ESM Japan Agency for Marine-Earth Science and Technology 1 2.8 × 2.8
Japan MIROC MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology 1 2.8 × 2.8

Germany MPI-M MPI-ESM-LR Max Planck Institute for Meteorology 3 1.88 × 1.87
Germany MPI-M MPI-ESM-MR Max Planck Institute for Meteorology 3 1.88 × 1.87

Japan MRI MRI-CGCM3 Meteorological Research Institute 1 1.1 × 1.1
Norway NOR NorESM1-M Norwegian Climate Center 3 2.5 × 1.9
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