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Abstract: Pumping tests are very important means for investigating aquifer properties; however,
interpreting the data using common analytical solutions become invalid in complex aquifer systems.
The paper aims to explore the potential of machine learning methods in retrieving the pumping tests
information in a field site in the Democratic Republic of Congo. A newly planned mining site with a
pumping test of three pumping wells and 28 observation wells over one month was chosen to analyze
the significance of machine learning methods in the pumping test analysis. Widely used machine
learning methods, including correlation, cluster, time-series analysis, artificial neural network (ANN),
support vector machine (SVR), random forest (RF) method, and linear regression, are all used in this
study. Correlation and cluster analyses among wells provide visual pictures of possible hydraulic
connections. The pathway with the best permeability ranges from the depth of 250 m to 350 m.
Time-series analysis perfectly captured changes of drawdowns within the three pumping wells.
The RF method is found to have the higher accuracy and the lower sensitivity to model parameters
than ANN and SVR methods. The coupling of the linear regressive model and analytical solutions is
applied to estimate hydraulic conductivities. The results found that ML methods can significantly and
effectively improve our understanding of pumping tests by revealing inherent information hidden in
those tests.

Keywords: pumping tests; machine learning; time-series analysis; cluster analysis; random
forest method

1. Introduction

Groundwater is one of the most valuable natural resources, and accounts for over 66% of freshwater
resources in the world [1]. Pumping tests play an important role in aquifer property estimations
and groundwater resource evaluations. Different analytical solutions [2], such as Theis solutions for
confined aquifers and Hantush-Jacob solutions for leaky aquifers, have been developed to provide
methods to interpret pumping test data. However, these solutions may become invalid in complex
hydrogeological conditions, due to the limitation of their strict assumptions. It is highly necessary to
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seek an alternative method to retrieve the hidden information about the relationship between the wells
behind pumping tests.

In the context of the complexity of a groundwater system in heterogeneous aquifers, machine
learning methods have been progressively and successfully applied in groundwater studies [3],
including groundwater level forecasting [4–7], parameter estimation [8–11] or optimization [12,13]
for groundwater models, downscaling of coarse Gravity Recovery and Climate Experiment (GRACE)
data [14], development of surrogate models [15], risk assessment of groundwater contamination [16],
chemical reactions [17], and well placement evaluation [18]. The employed machine learning (ML)
methods mainly include artificial neural networks (ANNs), genetic programming, neuro-fuzzy theory,
autoregressive models, support vector machine (SVM) and random forest (RF) methods, and boosted
regression tree method. ML methods depend on the selected variables, and thus groundwater modelers
may overlook the significance of non-physical-based ML methods. However, physical-based models
for pumping tests are challenging, due to the uncertainties of hydrogeology parameters, high time costs,
and complex boundary conditions. After numerical model calibration, the outputs from the model
serve as the inputs for ML methods to develop surrogate models, which become computationally
inexpensive alternatives for numerical models. Meanwhile, with limited hydrogeological information,
existing parameter estimations are not enough to support the accurate simulation of numerical
models. ML methods provide quick analysis of hidden correlations, and thus are necessary tools for
hydrogeological studies.

The Kolwezi megabreccia in the Democratic Republic of Congo (DRC) contains Cu–Co deposits
hosted in folded and brittle-fractured structures of the Mines Subgroup [19]. A newly planned
underground mine in the Kolwezi Copper Deposit was chosen as the study area. The syncline strata
in the mine are overturned with complex geologic and hydrogeological conditions. To analyze the
hydrogeological conditions of the mining area and accurately estimate the properties of the mine
geology, a large pumping test, including three pumping wells and 28 observation wells, over the
period of one month was carried out by North China Engineering Investigation Institute Co., Ltd.
The contour maps are not sufficient to demonstrate the change pattern of drawdowns in the pumping
tests. Meanwhile, there have been very limited studies on pumping tests using ML methods until
now. Therefore, the objectives of this paper are to fully explore the changes of groundwater levels
induced by a pumping test using statistical analysis and ML methods. The focused contents include
(1) correlation analysis of drawdown changes over the entire period of pumping and recovery for
28 observation wells, (2) forecasting of groundwater level in pumping wells using time-series methods;
(3) model development for estimating groundwater level changes induced by pumping using multiple
ML methods. The innovative point of this study lies in exploring the potential of ML methods in the
studies of pumping tests.

2. Materials and Methods

2.1. Study Area

The study area is located at the south of the equator in the Katanga plateau of the DRC (Figure 1a).
The study area has a savanna climate. The annual mean temperature is approximately 21.2 °C.
The average annual precipitation from 1979 to 2017 was approximately 1144.90 mm, and the average
annual evaporation was approximately 1860.00 mm. Precipitation mainly happens from November to
March of the following year, which accounts for more than 85% of the annual precipitation. The dry
season is from May to September, with low monthly precipitation of less than 5 mm. The overall
terrain is high in the south and low in the north, with varying elevations from 1250 m to 1550 m.
The nearest rivers are the Musonoi River and the Dilala River. The Musonoi River flows towards the
north. The Dilala River surrounds the east and north sides of the mining area, and finally joins the
Musonoi River in the northwest of the mining area. According to an investigation by the North China
Engineering Investigation Institute Co., Ltd., the linkage between the Musonoi River and groundwater
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is weak. Due to the lack of continuous monitoring of flow rate of these two rivers, the influences of the
river on groundwater levels will not be evaluated in this study.

Water 2020, 12, x FOR PEER REVIEW 3 of 14 

 

The strata in the study area are of the Late Proterozoic Katanga supergroup, which can be 
subdivided into the upper Kundelungu group and the lower Roan group (host strata). The strata in 
this area are mainly the Katanga series and the quaternary. The Katanga series mainly includes the 
Roan group (R), the Nguba group (Ng), and the Kundelungu group (Ku). A cross-section can be 
shown in Figure 1b [20]. The series of geology from young to old can be seen in Table 1. According 
to field investigation and regional studies, the average hydraulic conductivity of the Calcaire á 
Minerals Noirs (CMN) and the Roches Silicieuses Feuilletees (RSF) formations, where the breccia 
zones are developed, is approximately 0.65 m/d. 

 

Figure 1. Location of the study area: (a) the geology and location of wells in the plain; (b) the geology 
along the cross-section line LL. 

Table 1. List of regional stratigraphy in the study area. 

Series (From 
Young to Old) Formation Local Name Brief Description 

Approximated 
Thickness (m) 

Kundelungu Kundelungu Ku Sediments 3000–5000 
Nguba Nguba Ng Sandstone, shale 200–500 

Upper Roan 
(R) 

R4 Mwashya 
shale, siltstone, sandstone, 

dolomites 
50–100 

R3-2 Dipeta Sandy shales about 1000 
R3-1 Roches Greseuse Superior (RGS) Grey shales 100~200 

Lower Roan 

R2-3 

Mines 
Group 

Calcaire á Minerals Noirs (CMN) Black calcareous siltstone 130 

R2-2 Schistes Dolomitic Superior (SDS) 
Dolomitic shales, black ore 

mineral zone (BOMZ) 
50–80 

R2-1 

Schistes de Base (SDB) 
Dolomitic shales, black ore 

mineral zone (BOMZ) 
10–15 

Roches Silicieuses Cellulaire (RSC) Siliceous, vuggy dolomite 12–25 
Roches Silicieuses Feuilletees (RSF) Bedded dolomitic siltstone 5 

Dolomie Stratifiee (DSTRAT) Grey talcose sandstone 3 
Roches Argileuses Talceuse (RAT) GRISES Grey talcose sandstone 2–5 

R1 
Roches Argileuses Talceuse (RAT2) Talcose sandstone 190 
Roches Argileuses Talceuse (RAT1) Talcose sandstone 40 

2.2. Pumping Tests 

Figure 1. Location of the study area: (a) the geology and location of wells in the plain; (b) the geology
along the cross-section line LL.

The strata in the study area are of the Late Proterozoic Katanga supergroup, which can be
subdivided into the upper Kundelungu group and the lower Roan group (host strata). The strata
in this area are mainly the Katanga series and the quaternary. The Katanga series mainly includes
the Roan group (R), the Nguba group (Ng), and the Kundelungu group (Ku). A cross-section can be
shown in Figure 1b [20]. The series of geology from young to old can be seen in Table 1. According to
field investigation and regional studies, the average hydraulic conductivity of the Calcaire á Minerals
Noirs (CMN) and the Roches Silicieuses Feuilletees (RSF) formations, where the breccia zones are
developed, is approximately 0.65 m/d.

2.2. Pumping Tests

Pumping tests were carried out from 8:00 a.m. on 22 November 2018 to 8:00 p.m. on 23 December 2018,
which is almost 32 days. There were three pumping wells (P01, P02, and P03) and the productions of
each pumping well were 1232.40, 3532.32, and 2790.64 m3/d, respectively (Figure 1a). The pumping
rates were changed to 0 at 8:00 a.m. on December 18, 2018, which means that groundwater level will
gradually recover. During the period of pumping tests, the average precipitation was about 2.70 mm
per day (Figure 2). There were 28 observation wells (including three pumping wells) in the mine area.
The observed maximum drawdown among the wells was approximately 61 m in well P01, 58 m in well
P03, and 45 m in well P02, respectively. The location, the well depth, and the maximum drawdown of
each well are listed in Table 2, and all wells are multilayered. The depths of well O12 and O24 are shallow,
and changes of groundwater levels are subject to precipitation rather than pumping.
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Table 1. List of regional stratigraphy in the study area.

Series
(From Young

to Old)
Formation Local Name Brief Description Approximated

Thickness (m)

Kundelungu Kundelungu Ku Sediments 3000–5000

Nguba Nguba Ng Sandstone, shale 200–500

Upper Roan (R)

R4 Mwashya shale, siltstone,
sandstone, dolomites 50–100

R3-2 Dipeta Sandy shales about 1000

R3-1
Roches Greseuse
Superior (RGS) Grey shales 100–200

Lower Roan

R2-3

Mines Group

Calcaire á Minerals
Noirs (CMN)

Black calcareous
siltstone 130

R2-2
Schistes Dolomitic

Superior (SDS)

Dolomitic shales,
black ore mineral

zone (BOMZ)
50–80

R2-1

Schistes de
Base (SDB)

Dolomitic shales,
black ore mineral

zone (BOMZ)
10–15

Roches Silicieuses
Cellulaire (RSC)

Siliceous,
vuggy dolomite 12–25

Roches Silicieuses
Feuilletees (RSF)

Bedded dolomitic
siltstone 5

Dolomie Stratifiee
(DSTRAT)

Grey talcose
sandstone 3

Roches Argileuses
Talceuse (RAT)

GRISES

Grey talcose
sandstone 2–5

R1

Roches Argileuses
Talceuse (RAT2) Talcose sandstone 190

Roches Argileuses
Talceuse (RAT1) Talcose sandstone 40
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Table 2. List of the location, depth, and maximum drawdown of wells.

ID Well Name X Coordinate
(m)

Y Coordinate
(m)

Well Depth
(m)

Maximum Drawdown
(m)

1 P01 332,585.13 8,817,317.16 310.20 61.21
2 P02 332,754.99 8,817,435.06 251.51 45.08
3 P03 332,259.70 8,817,203.31 325.00 57.70
4 O01 332,466.69 8,817,664.79 110.39 0.42
5 O02 332,522.15 8,817,498.36 300.20 1.22
6 O03 332,061.84 8,817,135.65 330.19 22.35
7 O04 331,489.21 8,816,936.91 150.56 1.39
8 O05 333,045.08 8,817,509.79 300.05 7.55
9 O06 333,190.69 8,817,610.82 110.03 0.59

10 O07 332,821.69 8,816,666.56 150.95 0.27
11 O08 332,805.85 8,816,292.67 102.25 0.15
12 O09 330,946.09 8,817,636.84 100.25 0.13
13 O10 331,761.74 8,817,414.28 100.42 0.68
14 O11 330,483.97 8,817,678.42 150.00 0.48
15 O12 330,483.97 8,817,678.42 50.00 −0.13
16 O13 332,594.98 8,817,275.07 400.07 18.16
17 O14 332,856.15 8,817,437.12 344.13 37.27
18 O15 332,253.28 8,817,166.53 324.75 27.81
19 O16 332,709.88 8,817,245.02 450.20 3.84
20 O17 332,475.42 8,817,329.49 330.51 18.20
21 O18 332,546.68 8,817,209.31 602.00 2.94
22 O19 332,442.94 8,817,113.78 658.00 1.81
23 O20 332,778.77 8,817,213.32 346.00 4.86
24 O21 332,735.77 8,817,305.28 442.00 4.38
25 O22 332,515.40 8,817,012.31 612.00 2.26
26 O23 331,833.07 8,816,934.75 281.05 3.01
27 O24 332,026.27 8,816,985.75 50.00 −0.17
28 O25 332,026.27 8,816,985.75 150.00 8.95

2.3. Methods

The methods used in this paper include Pearson correlation analysis, k-means clustering, and ML
models consisting of autoregressive integrated moving average (ARIMA) [21], ANN [22], support vector
machine (SVR) [23], and RF [4] methods. These methods are applied using Python language [24,25].

2.3.1. Pearson Correlation Analysis

The correlation of time-series groundwater level data between pumping wells and observation
wells will be analyzed. The Pearson correlation coefficient used here is usually applicable to calculate
the relationships between two time series, X(t) and Y(t) (t = 1, 2, 3, . . . n), and can be expressed as

PR(X, Y) =
Cov(X(t), Y(t))√

Var[X(t)]Var[Y(t)]
(1)

where PR is the Pearson correlation coefficient; Cov is covariance, Var is variance, n is number of
observation data, and t is time period.

2.3.2. Cluster Analysis

After the Pearson correlation coefficient between two wells are obtained, k-means clustering
algorithms are adopted to further study the relationship of drawdowns in wells, which partitions the
data space into Voronoi cell representations. This transformation divides the data observations into
k-clusters. in which each of the observations belongs to the cluster with the nearest mean. Being in the
same cluster means the wells have similar hydraulic properties.
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2.3.3. Time-Series Analysis Method of Drawdowns within Pumping Wells

For the pumping tests, groundwater level changes within the three pumping wells were direct
responses to the groundwater pumping, and groundwater levels at other observation wells were
induced by groundwater pumping. Because the pumping rates of three pumping wells are constant,
drawdowns within three pumping wells are selected as the independent variable. The autoregressive
integrated moving average (ARIMA) method was adopted here to forecast the changes of groundwater
levels within the three pumping wells; thus, the results can be used to predict the changes of drawdowns
in other observation wells. The ARIMA model consists of an autoregressive (AR) model, moving
average (MA) model, and differencing method to make the time series stationary. The (p,d,q) order of the
model is the number of AR parameters, differences, and MA parameters in the model, respectively. First,
the differential order is determined by the try-and-error method, and an augmented Dickey–Fuller test
is performed to check whether the differential time series is stationary. Then the order of autoregression
and moving average will be given from the changes in the time-series data. Then the established ARIMA
model will be trained and used to predict the changes of groundwater levels. Finally, differential
reduction of the predicted results will be performed to get final simulated results.

2.3.4. Forecasting Method for Groundwater Levels among Observation Wells

When groundwater levels within pumping wells are predicted, other observation well data can
be estimated by the relationships between water levels of the observation wells, water levels of the
three pumping wells, and changes of precipitation in this region. The relationships will be established
by three widely used ML methods: ANN, SVR, and RF. The model evaluation criteria was carried out
by the root mean square error (RMSE) between the observed and simulated time-series data, as

RMSE =

√√
1
n

n∑
t=1

(X(t) −Y(t))2 (2)

where X(t) is the reference-measured dataset; Y(t) is the modeled dataset from ANN, SVR, and RF
methods; and n is the total number of observations.

2.3.5. Linear Graphic Method in the Theis Model

The linear graphic method in the Theis model is used to estimate the value of hydraulic conductivity.
When the pumping duration is large enough, the drawdowns can be expressed using Equation (3).
When the plot of the drawdowns and the logarithm time is drawn, the slope will be easily obtained by
linear regressive method, and then hydraulic conductivity can be estimated when the pumping rate
and the thickness of the aquifer are known:

s =
Q

4πKM
W(

Kr2

4Syt
) ≈ 0.183

Q
KM

lg
2.25K
Syr2 + 0.183

Q
KM

lgt (3)

where s is the drawdown, Q is the pumping rate, K is hydraulic conductivity, Sy is storativity, r is the
radial distance from the observation well to the pumping well, and t is pumping duration.

3. Results

3.1. Distribution of Maximum Drawdown

Although the multilayered observation wells are not at the same depths as the boreholes,
the contour map of maximum drawdowns for all wells is firstly projected in the same plain.
From Figure 3, the distribution of maximum drawdown is highly uniform. The long axis of the
maximum drawdown is approximately 45◦ northeast, and the length of the influence is approximately
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1.50 km. The short axis of maximum drawdown is approximately 45◦ northwest, and the length of the
influence is approximately 1.0 km.
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3.2. Relationship of Water Levels between Observation and Pumping Wells

Pumping well P03 is located almost at the center of the study area, with considerable pumping
rates, and was thus chosen as a representative pumping well to demonstrate relationships with other
wells. The relationship over the pumping period (blue line) and the restoring period (red line) between
well P03 and other wells are shown in Figure 4. K-means clustering of the Pearson correlation coefficient
(PR) for 28 observation wells (Figure 5) is drawn to clarify the relationship. Four clusters (clusters #1,
#2, #3, and #4) are divided based on the value of the Pearson correlation coefficient. The first cluster
(cluster #1) includes observation wells P01, P02, P03, O13, O14, O15, O17, and O01, which have the
higher PR (over 0.75) with pumping well P03. The second cluster (cluster #2) consists of wells O03,
O18, O19, O21, O04, O06, O11, O07, and O08, with the correlation ranging from 0.44 to 0.64. The PR in
the third cluster (cluster #3) for observation wells O02, O10, O16, O24, and O09 varied from 0.16 to
0.32. Observation wells O23, O25, O22, O20, O05, and O12 are attributed to the fourth cluster (cluster
#4), with a PR less than 0.10. Observation wells with higher PR values basically surrounded the three
pumping wells. It should be noticed that observation wells with relatively higher PR values (cluster
#2) did not always surround three pumping wells. For example, wells O11 and O08 are a little farther
away from the pumping wells; observation wells for cluster #3 and #4 are progressively farther away
from the pumping wells. The high PR value suggests that the hydraulic connections for the wells in
cluster #1 are perfect.

3.3. Predictions of Drawdowns within Pumping Wells

Drawdowns within pumping wells are direct responses of groundwater pumping. Under the
condition of a constant pumping rate, drawdowns within wells will be progressively increased.
The ARIMA method is used to predict the change of the drawdown. For validating the accuracy
of the ARIMA model, a hypothetical confined aquifer satisfying the Theis model is first established.
Any parameters in the Theis model can be assumed. Pumping rate, the thickness of the aquifer,
hydraulic conductivities, storativities, and the radial distance away from the pumping well in the
Theis model for an observation well is set as 100.00 m3/d, 20.00 m, 0.50 m/d, 10−6 m−1, and 5.00 m,
respectively. The relative error, defined as the ratio of the absolute error between the simulated and
analytical drawdowns to the analytical solutions, was only 0.86% after about 1.37 × 109 years of
pumping for the hypothetical Theis model (Figure 6a), suggesting that the ARIMA method can be used
to accurately predict changes of the drawdown with time. After making the time series stationary and
training the ARIMA model with a p-value less than 10−3, changes of the drawdown in three pumping
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wells P01, P02, and P03 could be obtained (Figure 6b). After 1000 days, the predicted maximum
drawdown in wells P01, P02, and P03 after 3 years was 64.53 m, 52.50 m, and 92.88 m, respectively.
It should be noticed that the observed drawdowns in well P03 had an abrupt increase from 51.00 m to
56.00 m during the period from about 20 days to 25 days, which may be caused by the assumption
of a linear aquifer system in the ARMA model [26,27]; thus, the predicted drawdown also shows an
obvious increasing trend.
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Figure 6. Train and forecast of drawdowns within pumping wells, (a) the Theis model; (b) the
autoregressive integrated moving average (ARIMA) model.

3.4. Predictions of Drawdowns in Observation Wells

The pumping tests here were carried out in the period from the dry season to the wet season. As a
result, changes of the drawdown in observation wells were mainly subject to the combined influences
of precipitation conditions, the pumping rate of three wells, and aquifer properties. Independent
variables include the precipitation and the drawdown in three pumping wells. The dependent variable
is the drawdown for each observation well. The ANN, RF, and SVR methods were all applied to
predict the drawdowns for 25 observation wells. Both the first and second hidden layer of the ANN
model were set as 10, the number of trees in the RF method was set at 500, the radial basis function (rbf )
was used as the kernel function of the SVR model, and the regularization parameter c was set as 10,000.
Changes in simulated drawdowns over time from ANN, RF, and SVR methods are shown in Figure 7.
All three methods can simulate the trend of groundwater level changes well. The average RMSE
value for the 25 observation wells for the ANN, RF, and SVR methods is 0.51 m, 0.13 m, and 0.13 m,
respectively, suggesting that the RF and SVR methods show relatively better results than the ANN
method. Li et al. [28] applied RF, ANN, and SVM to forecast lake water level variations, and also found
the RF model exhibits the best performance, which is consist with the findings in this study.
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4. Discussion

As discussed earlier, the PR coefficient only demonstrates the relationship of groundwater level
changes for two wells. The k-means cluster using three variables (PR coefficient, drawdown, and well
depth) is further divided to find the hydraulic connections between these wells. It can be clearly
observed from Figure 8a that cluster #1 (wells P01, P02, P03, O02, O03, O05, O14, O15, O17, O20,
and O23) is located at a depth ranging from 250 m to 350 m, suggesting the hydraulic connection
are perfect at such a depth. The clustering was projected to a two-dimensional (2D) map (Figure 8b),
and it was found that the axis of maximum drawdown was along the line AA’ from the southwest
to the northeast. Furthermore, the drawdown south of line AA’ is better than that north of the line,
which is importantly caused by the fact that the existing syncline, which makes an aquifer with perfect
permeability, extends from the northwest to the southeast (Figure 1b), and thus the permeability at the
southeastern part is better than that in the northwest.
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Established ANN, SVR, and RF models can accurately predict the change of the drawdown for
25 observation wells; however, the parameters in these models may have certain influences on the
model results. Well O15 with big drawdowns (cluster #1) and well O19 with small drawdowns (cluster
#2) were selected to evaluate the influences of parameters on model results. Table 3 lists the value of
parameters, RMSE, and average relative errors in the three models for wells O15 and O19. The relative
error here is defined as the average ratio of absolute error between simulated and observed drawdown
to the observed drawdown for all observed results.

Figure 9 reveals the influences of model parameters on model bias, which is the difference between
the simulated and the observed drawdown. For the ANN model, with the increase of the hidden layers,
the model bias will be gradually reduced, and when the number of the first and second hidden layers
is over 5, RMSE is less than 0.88 m and 0.20 m for wells O15 and O19, respectively, but the average
relative errors for well O15 and O19 are about 15% and 85%, respectively. For the SVR model, results
using the rbf kernel function give better predictions than those using the linear kernel function, and the
higher value of parameter c will improve the accuracy of the models. However, when the value of c is
greater than 100, the models with the rbf kernel function results are not improved significantly for
wells O15 and O19, with RMSEs over 0.53 m (average relative error about 1.90%) and 1.08 m (average
relative error about 96.87%), respectively. Meanwhile, the change of the drawdown for well O19 was
less sensitive to the parameter c than that for well O15. The sensitivities to parameters in the RF model
for both well O15 and well O19 were less than those from the ANN and SVR models: RMSE values
were about 0.18–0.25 m, with a relative error about 11.00–14.00% for well O15, and 0.039–0.055 m,
with average relative error about 13.38–22.01% for well O19. Considering RMSE and average relative
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error, the RF model gives the most accurate results and has fewer sensitivities to parameters; thus,
is the most appropriate model in this study.

Table 3. List of root mean square error (RMSE) values and average relative error in ANN, SVR, and RF
methods for wells O15 and O19.

Models Parameters
RMSE (m) Average Relative Error (%)

Well O15 Well O19 Well O15 Well O19

ANN Model
number of the first

and the second
hidden layers

(2, 2) 5.1972 0.3516 90.64 220.01

(5, 5) 0.8717 0.1834 9.66 195.83

(10, 10) 0.5844 0.1998 16.30 84.34

(100, 100) 0.5085 0.1237 10.56 89.60

SVR Model

kernel function
(the radial basis

function (rbf ) and
linear) and
parameter c

rbf, c = 10 1.1462 0.0941 76.40 96.87

rbf, c = 100 0.0926 0.0941 1.90 96.87

rbf, c = 1000 0.0926 0.0941 1.90 96.87

linear, c = 1000 2.6271 5.4130 58.95 2443.24

RF Model number of trees (n)

n = 5 0.2429 0.0551 14.13 22.01

n = 50 0.2071 0.0468 11.57 13.38

n = 500 0.1842 0.0416 11.17 14.84

n = 5000 0.1853 0.0394 10.91 15.17
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O15 and O19: (a–c) represent the results from ANN, SVR, and RF methods for well O15, respectively;
(d–f) represent the results from ANN, SVR, and RF methods for well O19, respectively.
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One of the important objectives of pumping tests is to estimate aquifer properties. ML methods
lack the mechanics of groundwater flow, and cannot directly estimate hydraulic conductivity like
analytical solutions. From the Theis model, the relationship between the drawdown and the logarithm
time since the start of pumping become linear when time is long enough and the model satisfies the
assumption of a Theis model. Therefore, wells O15, O03, O23, O19, O16, O20, and O11, which had
relatively higher PR coefficients with the pumping rates, were chosen to establish the linear regressive
model (Figure 10). The slope of the linear regressive model has a negative relationship with the value
of the hydraulic conductivity, and thus can be used to estimate the hydraulic conductivity like the Theis
model. Well O03 had the highest slope (almost 10), and estimated average hydraulic conductivity from
well P03 to O03 was about 0.15 m/d, given that the pumping rate was about 2800 m3/d and the average
aquifer thickness was about 330 m. It was noticed that well O11 had the lowest slope (about 0.21) and
was the furthest distance away from the pumping wells among these wells; in addition, the estimated
hydraulic conductivity may have reached about 7.00 m/d if the average aquifer thickness was set as
350 m. The estimated average hydraulic conductivity for wells O13, O23, O19, O16, and O20 was about
1.23 m/d, which is at the same magnitude as in previous studies (0.65 m/d) on this region.
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5. Conclusions

Pumping tests are very important means for investigating aquifer properties; however, common
analytical solutions become invalid for interpreting the data when aquifers are anisotropic and
heterogeneous. The paper explored the potential of ML methods for analyzing pumping test
information in a field site. The study area is located at a mine area that has a pumping test with three
pumping wells and 28 observation wells, over the period of about 32 days. Results found that ML
methods can be successfully applied to simulate groundwater level changes induced by pumping
and retrieve the relationship of groundwater levels between wells. Improving our understanding of
pumping tests using ML methods requires (1) providing the fast and visual pictures of drawdowns
between pumping wells and observation wells; (2) forecasting the changes of drawdowns in the
observation wells, as well as in the pumping wells; (3) inferring the possible pathways of hydraulic
connections in complex geology formations; (4) estimating average hydraulic conductivities. The main
conclusions include:

(1) Rather than the mere contour map of the maximum drawdowns, the relationships of the
drawdown over the period of pumping tests between wells provide a visual picture using ML
methods, and the cluster of Pearson correlation coefficient shows the hydraulic connections
between wells;

(2) The ARIMA method can be used to effectively predict the time-series changes of drawdowns in
three pumping wells. In the hypothetical Theis model, the relative error of drawdowns is only
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0.86% after 1.37 × 109 years. The predicted maximum drawdown in well P01, P02, and P03 after
3 years is 64.53 m, 52.50 m, and 92.88 m, respectively;

(3) Trained ANN, SVR, and RF models can reasonably capture the change of drawdowns in 25
observation wells induced by pumping; however, SVR and RF models provide better estimates,
with average RMSE values for drawdowns of 0.13 m;

(4) K-means clustering using the Pearson correlation coefficient, the maximum drawdown, and well
depth visually shows a preferable pathway, with the good permeability under depths ranging
from 250 m to 350 m;

(5) Model parameters have certain influences on the simulated drawdowns for ANN, SVR, and RF
models, but the RF model shows the least sensitivity to the value of the parameters, and has the
best performance when compared with observed results;

(6) With the assumption of the Theis model, the linear regressive method may be used to roughly
estimate the value of hydraulic conductivity, and the results in this paper are consistent with the
previous studies.

The radius of influence (ROI) [29] in pumping tests is not discussed in this paper, but will be in
future work when considering the combined influences of groundwater level and groundwater quality.
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