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Abstract: Accurate prediction of water quality indicators plays an important role in the effective
management of water resources. The models which studied limited water quality indicators in
natural rivers may give inadequate guidance for managing a canal being used for water diversion.
In this study, a hybrid structure (WA-PSO-SVR) based on wavelet analysis (WA) coupled with support
vector regression (SVR) and particle swarm optimization (PSO) algorithms was developed to model
three water quality indicators, chemical oxygen demand determined by KMnO4 (CODMn), ammonia
nitrogen (NH3-N), and dissolved oxygen (DO), in water from the Grand Canal from Beijing to
Hangzhou. Modeling was independently conducted over daily and monthly time scales. The results
demonstrated that the hybrid WA-PSO-SVR model was able to effectively predict non-linear stationary
and non-stationary time series and outperformed two other models (PSO-SVR and a standalone
SVR), especially for extreme values prediction. Daily predictions were more accurate than monthly
predictions, indicating that the hybrid model was more suitable for short-term predictions in this
case. It also demonstrated that using the autocorrelation and partial autocorrelation of time series
enabled the construction of appropriate models for water quality prediction. The results contribute to
water quality monitoring and better management for water diversion.

Keywords: water quality modeling; time series prediction; wavelet analysis (WA); support vector
regression (SVR); particle swarm optimization (PSO) algorithms

1. Introduction

Due to intensified human activities and growth in living standards, many cities around the world
are facing challenges of critically deteriorating water quality [1,2]. Water quality is a description of the
chemical, physical, and biological characteristics of water with respect to its suitability for intended
uses [3,4]. Reliable forecasting of water quality allows for the identification of future contaminant
problems, and/or the initiation of effective countermeasures to prevent water pollution and protect
public health. In China, the South-to-North Water Diversion Project is a major undertaking designed to
resolve water shortage problems in northern China. The east route of the project uses an old artificial
canal, known as the Grand Canal, which extends from Beijing to Hangzhou, as a diversion structure.
Unlike some natural rivers, this artificial canal is usually characterized by a slow flow rate and irregular
changes in water flow, as the canal occasionally opens and closes sluices to transfer a large amount
of water. The water quality of the Grand Canal is a critical problem for the water diversion project,
and predicting the degree of pollution along the canal is essential to guarantee water quality safety.
In the past, a lot of forecasting models have been used in natural rivers, and they performed very
well [5,6]. These models usually focused on only dissolved oxygen or the turbidity and salinity of water,
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but gave less attention to organic pollutants and nutrients pollutants [7,8]. Several previous studies
have examined the spatial and temporal variations in water quality along the Grand Canal [9,10].
However, predicting water quality in the canal and this area has been comparatively scarce; even more
rare and difficult is forecasting water quality using data with different measurement frequencies.

Many research efforts over the past decade have been aimed at developing and improving water
quality prediction models [11,12]. Statistical models of time series data have become particularly
popular in water quality [13,14]. A popular and widely used one is the autoregressive integrated
moving average (ARIMA) model, which has already shown its capability in water quality prediction [5].
Statistical modeling of water quality possesses many advantages, including simplification of complex
of relations between water quality indicators, and the identification of similar temporal and spatial
characteristics patterns among water quality indicators [15,16]. However, accurately describing
nonlinear characteristics of a data series is a significant shortcoming of the approach, because the
statistical models are usually based on temporal linear correlations within the modeled dataset.

To overcome this shortage, machine learning is widely used to address a range of nonlinear
prediction problems, recently including the prediction of water quality [17–19]. A support vector
machine (SVM) is a typical model that represents an advanced form of machine learning and shows
remarkable performance. SVM is well-known for its ability to improve classification and regression
analysis [20,21]. Using kernel techniques as a part of a time series prediction provides for a more
accurate estimation of the data, even where the data series are nonlinear, non-stationary, and not
characterized a priori [22]. In the recent years, the particle swarm optimization (PSO) algorithm has
been applied to the optimization approach [23]. It is also a good way to optimize model parameters
when using SVM models [24].

Currently, hybrid models have been extensively applied in a wide range of fields including
environmental pollution forecasting and hydrology [25–27]. Wavelet analysis is also a popular
recent approach to data analysis and can distinguish between noise and useful signals information.
Wavelet analysis is able to capture the non-stationary characteristics of data series and has been
applied successfully to forecasting activities [28]. Najah et al. [28] used wavelet analysis and Adaptive
Neuro-Fuzzy Inference System to predict the electrical conductivity, the total dissolved solids and
turbidity in a river. Liu and colleagues made dissolved oxygen prediction in crab culture based on
wavelet analysis and least squares support vector machine [29]. However, there is a lack of studies on
other water quality indicators, as well as in the different hydrological environment.

With the important position of the Grand Canal in the water diversion project and the national
requirements of monitoring the water quality to guarantee water safety, this study tried to examine the
efficiency of a hybrid model in predicting three organic pollutants and nutrients water quality indicators
for this manually controlled canal. In this study, a wavelet analysis-support vector regression approach
with particle swarm optimization algorithms (WA-PSO-SVR) over different time scales was established.
The analyzed data include: (1) daily data collected over a period of one year (1 April 2015 to 1 March
2016), and (2) monthly data obtained over a period of about twelve years (January 2005 to November
2016). Three water quality indicators were modeled, including chemical oxygen demand determined
by KMnO4 (CODMn), ammonia nitrogen (NH3-N), and dissolved oxygen (DO). The performance of
the models developed for both time scales were compared and assessed. In addition, to assess the
potential advantages of using the WA-PSO-SVR model, its results were compared to the results from a
simple support vector regression with particle swarm optimization model (PSO-SVR) and a standalone
SVR model, which were developed for the datasets.

This research demonstrates the reliability and suitability of the hybrid model in forecasting
water quality indicators in situations. The results are helpful for (1) providing an effective method
of water quality prediction for water diversion in the region towards better governance policies in
daily management, (2) adding more research materials for the hybrid model applied in different water
quality indicators and hydrological environment, and (3) contributing to the fields of non-linear water
quality data prediction modeling over different time scales.
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2. Materials and Methods

2.1. Study Area and Data Used

Xuzhou City is located in Jiangsu Province, China, and is one of the cities positioned along the
east route of the South-to-North Water Diversion Project. The first stage of the east route project
was constructed from 2005 to 2013, and water transmission started from the end of 2013. To ensure
the water quality safety requirements of water diversion, six state-controlled water quality monitor
sites (i.e., Zhanglou, Linjiaba, Shanjizha, Shazhuangqiao, Lijiqiao, and Shajixizha) were established in
Xuzhou. Since 2013, five auto-monitoring systems at these monitor sites (except Shanjizha) were set up
successively. The Zhanglou sampling site (34◦15′58” N, 117◦59′33” W), where the data for this study
were collected, is located within the Huai River basin along the main channel of the Grand Canal,
which extends from Beijing to Hangzhou (Figure 1).
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Water quality data from rivers often exhibit periodicity, which is commonly related to annual or
seasonal variations in system hydrology and environmental conditions. The most recent research has
considered only a single time scale. For example, Kisi and Parmar [30] compared three models using ten
years of monthly COD data. Another nearly twenty-year monthly dataset was studied by Barzegar and
colleagues [31,32]. In this study, the performance of predictive models over different time scales was
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analyzed to obtain a better understanding of their predictive capabilities. These models independently
used daily and monthly water quality data collected from the Zhanglou monitoring site. The daily
data consisted of a total of 366 auto-monitoring datasets obtained from 1 April 2015 to 31 March 2016
from the auto-monitoring system. The monthly data included 143 records that were based on manually
collected monitoring data obtained from January 2005 to November 2016. These data were collected
by the Xuzhou Environmental Monitoring Centre. Previous research has shown that the water quality
in the Xuzhou area was influenced strongly by industrial and urban activities; nutrient concentrations
in the water body are particularly high [10]. For example, because Xuzhou is a mining city, it possesses
several mining and metallurgical industries. In addition, Xuzhou, with a population of 10.29 million
(up to 2015), has long supported agriculture. Given the high concentrations of organic pollutants and
nutrients, three indicators, i.e., chemical oxygen demand determined by KMnO4 (CODMn), ammonia
nitrogen (NH3-N), and dissolved oxygen (DO), were selected for analysis. These parameters were
selected because (1) they provide a general overview of the degree to which organic pollutants and
nutrients have contaminated the river, and (2) the measurement and control of these pollutants is one
of the primary tasks inherent in the operation of the water diversion [33,34]. Thus, CODMn, NH3-N,
and DO were selected as the target indicators used to develop and test the predictive models in this
study. A statistical summary of these three water quality indicators for both daily and monthly time
scales is presented in Table 1. Table 1 also includes information on whether the time series are stationary.
Water was not transferred daily or on a regular pattern. Rather, transfers depended on the demand
for water in northern areas, which were usually conducted in winter or spring. As a result, the water
flows tended to significantly change on transferring days. With regards to the monthly data series,
significant efforts to control waste water and non-point source pollution led to a slight decrease in the
pollution level within the region.

Table 1. Descriptive statistics for the measured water quality indicators at the Zhanglou site.

Indicators Unit Data Group Max. Min. Median Std. Dev. Skewness Kurtosis Stationarity 1

CODMn mg/L Daily 6.63 1.94 3.51 0.92 0.60 −0.01 N
Monthly 8.20 0.80 3.60 1.05 0.47 1.87 S

NH3-N mg/L Daily 3.97 0.06 0.16 0.41 6.00 43.06 S
Monthly 4.10 0.11 0.50 0.46 4.17 25.98 N

DO mg/L Daily 20.81 2.24 9.18 3.36 0.29 −0.53 N
Monthly 13.80 2.90 8.40 1.85 0.06 −0.20 N

1 The stationarity of time series was assessed using the Augmented Dickey–Fuller (ADF) test; N refers to
non-stationary series, S refers to stationary series.

For the generation of the daily model, the first 305 sets of auto-monitoring data were used for
model training. The remaining 61 sets of data were used to evaluate the performance of the established
models. Generation of the monthly model used 119 sets of manually collected monitoring data for
training, and 24 sets of data for testing. The basic methods used in this study are described below.

2.2. Wavelet Analysis (WA)

Wavelet transforms are efficient for data analysis, picture and signal processing, resolution
reconstruction, and information detection [35,36]. They have been shown to be a useful and powerful
mathematical tool for the analysis and processing of non-stationary time series [37,38]. While the
wavelet transform theory is similar to the Fourier transform, wavelet transforms allow the signal to be
dilated and translated, and time-frequency features can be extracted through a completely flexible
window function called the mother wavelet [39]. Continuous wavelet transform (CWT) is a formal
tool that provides an overcomplete representation of a signal x(t) by letting the translation and scale
parameter of the wavelets vary continuously. The wavelet is defined as:

W(τ, a) =
1
√

a

∫
x(t)Ψ

( t− τ
a

)
dt (1)
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where Ψ(t) represents a continuous function in both the time domain and the frequency domain called
the mother wavelet, a is the scale or frequency factor, and τ is the time shifting factor.

The discrete wavelet transform is more commonly used than the successive wavelet transform,
due to its lower computational time requirements and simpler development process [40]. Based on the
decomposition of the original signal into different signal channels at various levels, a discrete wavelet
transform (DWT) can be derived from a CWT by expanding the orthogonal basis of scaling and wavelet
functions. The signal x(t) can be represented by scaling coefficients m0k and wavelet coefficients n jk:

x(t) =
∞∑

k=−∞

m0kϕ jk(t) +
∞∑

j=1

∞∑
k=−∞

n jkΨ jk(t) (2)

DWT uses both a high-pass and a low-pass filter to separate the frequency-bands of the signal.
The structure of a four-layer multi-resolution analysis is illustrated in Figure 2 after decomposition.
The high-pass filter g(t) produces several sets of detail coefficients, cD j, which are associated with the
wavelet function, while the low-pass filter h(t) produces the approximation coefficients, cA j, which are
associated with the scaling function (Figure 2). These coefficients can be represented as:

cA j+1(t) =
∑

h(n− 2t)cA j(n) (3)

cD j+1(t) =
∑

g(n− 2t)cA j(n) (4)

where n is the number of samples and j is the last decomposition level.
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2.3. Support Vector Regression (SVR)

The support vector machine (SVM) proposed by Vapnik [41,42] is a supervised learning model
that analyses data used for classification and regression analysis. Based on the principle of structured
risk minimization, SVM uses a suitable kernel function to construct an optimal separating hyperplane,
which simultaneously maximizes the geometric margin and minimizes the upper bound of the
generalization error, instead of the empirical error [43]. Additionally, SVM is extended to solve
regression problems by applying a set of high dimensional linear functions. The regression function of
an SVM (SVR) can be formulated as follows:

d = wTx + b (5)
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where w is the weight vector, b is the bias, and d and x belong to the training sample J = {xi, di}
N
i=1.

With the introduction of an ε-insensitive loss function, the coefficients w and b are estimated by
minimizing the risk functional:

1
2
‖w‖2 + C

N∑
i=1

∣∣∣yi − di
∣∣∣
ε

(6)

which is subjected to the following constraints (Equations (7)–(10)): for i = 1, 2, . . . , N

di − yi ≤ ε+ ξi (7)

yi − di ≤ ε+ ξi
′ (8)

ξi ≥ 0 (9)

ξ′i ≥ 0 (10)

In (Equation (6)), C is a constant that determines the trade-off between the training error and
the penalization term ‖w‖2, and yi is the estimator output. The ξi and ξ′i (Equations (9) and (10)) are
two sets of nonnegative slack variables. To solve this optimization problem, Lagrange multipliers are
introduced, and the minimization formula can be expressed as follows:
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where αi and α′i are the Lagrange multipliers. Then, by calculating the partial derivatives of w, b, ξ and
ξ′, and setting the resulting derivatives equal to zero, the original problem can be conversed to its dual
problem. Finally, the SVR can be expressed as:

f (x) =
N∑

i=1

(
αi − α

′

i

)
(xi, x) + b (12)

In order to convert a problem to a nonlinear regression problem, a kernel function was introduced.
There are four suggested possible choices for the kernel function, namely linear, polynomial, radial
Gaussian, and sigmoid. Using K(xi, x) instead of (xi, x), the nonlinear SVR function can be presented
as follows:

f (x) =
N∑

i=1

(
αi − α

′

i

)
K(xi, x) + b (13)

During the SVR modeling process, the radial basis function (RBF) kernel was selected. As a kernel
function, it is a good default kernel and is widely used [44]. Two parameters, the penalty factor c and
the parameter gamma g in the RBF kernel, are important and need to be chosen by users. As for the
parameter c, if it is too large, the model may have a high penalty for non-separable points and overfit;
conversely, if too small, it would be underfit [45]. Gamma g is a free parameter of RBF, and a large
g means a Gaussian distribution with a small variance, implying the support vector does not have
wide-spread influence, which therefore leads to high bias and low variance models (and vice versa).
In practice, the parameters c and g were varied through a wide range of scales. Therefore, the PSO
method was introduced to optimize these parameters for the SVR models, as described below.
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2.4. Particle Swarm Optimization (PSO) Algorithms

The PSO algorithm is an optimization algorithm for improving candidate solutions that simulate
the movement of social behavior [46]. The technique includes a population of proposed solutions or
particles moving toward the optimal solution of the problem; a new population is obtained that shifts
the position of the previous population during each iteration.

The “particle” of the swarm Xi represents its position in the search space of possible solutions.
The particle position Xi0 and its velocity Vi0 can be obtained randomly and then adjusted dynamically
according to its historical behavior. The optimal local location of the particle is pl, whereas pg is the
optimum solution searched by the particle in the global space.

The basic mathematical expressions for PSO are as follows:

vi j(t + 1) = vi j(t) + c1r1
(
pl j(t) − xi j(t)

)
+ c2r2

(
pgj(t) − xi j(t)

)
(14)

xi j(t + 1) = xi j(t) + vi j(t + 1) (15)

where t is the iteration number, r1 and r2 are random variables obeying a uniform distribution of the
interval (0, 1), and c1 and c2 are acceleration constants.

The PSO algorithm guides particles to search for the optimal solution through individual
competition and cooperation among the community. An inertia weight w is introduced to control
the optimization performance. If ζ = ζ1 + ζ2, where ζ1 = c1r1 and ζ2 = c2r2, the equations can be
represented as:

v(t + 1) = wv(t) + ζ(s− x(t)) (16)

x(t + 1) = x(t) + v(t + 1) (17)

where s =
ζ1pl+ζ2pg
ζ1+ζ2

. The velocity recurrence relation at time t, t + 1, t + 2 is:

v(t + 2) + (ξ− 1−w)v(t + 1) + wv(t) = 0 (18)

2.5. Model Development

The wavelet analysis and SVR models have a unique advantage in capturing both linear and
nonlinear data characteristics. Thus, in this study, WA, SVR, and PSO components were constructed
together as a hybrid model to predict CODMn, NH3-N, and DO at the selected monitoring site.
The implemented steps used to predict the water quality indicators are shown in Figure 3 and included
the following:

1. Data pre-processing. Due to occasional inefficiencies of the auto-monitoring systems,
some auto-monitoring data were missing or erroneous. Thus, statistical outliers and structural
zeros were removed from the dataset. In the case of missing data, an exponential smoothing
method was used to estimate and replace the missing values.

2. Wavelet analysis. Wavelet analysis was used to decompose each time series into wavelet
sub-series. The choice of mother wavelets influences sub-series decomposition and construction.
Three mother wavelets that are commonly employed are the Daubechies, Symlet, and Haar.
The db3 wavelet is a function based on Daubechies extremal phase wavelets with a vanishing
moment of 3; it has often been successfully applied in water quality predictions [29,32]. Thus,
a db3 wavelet based on four layers was used herein for decomposing the water quality data
series. All the analyzed time series were found to possess five sub-series, one represents the
approximation series A4, and the other four are the detailed series from each layer, D1, D2, D3,
and D4.
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3. Data standardization. In order to remove dimensional effects which may bias the predictive
models, the data were standardized by scaling the input variables over their range of observation
prior to the modeling processes. The general formula for standardization is:

x′i =
xi − xmin

xmax − xmin
(19)

where x′i and xi express the normalized and raw observations of variable x, respectively; and xmin
and xmax refer to the minimum and maximum values of variable x, respectively. Based on the
characteristics of the different series and performance of the predictive models, the original data
series and approximation series ranged from 0 to 1, while the detail series were between −1 and 1.

4. PSO-SVR modeling. The hybrid model exhibits a multi-input single output structure. The relevant
and important input variables in the models were extracted using values from an autocorrelation
function (ACF) and partial autocorrelation function (PACF) from each time series, with the
criterion of the correlation coefficient set at the 95% confidence level. The PSO method was
then applied to deduce the optimal parameter values for the SVR models. For each data
series, five predictive models (one model for A4 and four models for D1 to D4) were run and
calculated separately.

5. Data reconstruction. After calculation, algebraic sums of the predicted values based on the five
sub-series (A4, D1, D2, D3, and D4) were obtained to generate the final forecasting results for each
data series.

In order to validate the performance of the proposed hybrid model, two other models were
developed. One was a standalone SVR model, which refers to developing SVR models of original
standardized data series and using basic cross validation to select the optimal model parameters
(Appendix A, Figure A1). The other model was a PSO-SVR model, which is similar to the SVR model,
but it uses PSO algorithms as the optimization method (Appendix A, Figure A2).Water 2020, 12, x FOR PEER REVIEW 8 of 22 
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2.6. Performance Assessment of the Models

The performance of the predictive models was evaluated by using four statistical indicators:
the root mean square error (RMSE), the mean absolute percentage error (MAPE), the coefficient of
determination (R2), and the Nash–Sutcliffe efficiency coefficient (NSE).

Higher R2 and lower RMSE and MAPE values indicate a more precise model. The Nash–Sutcliffe
efficiency coefficient (NSE), which ranges from −∞ to 1, can be used to assess the forecasting power of
hydrological models [47]. The closer the NSE model efficiency is to 1, the more accurate the model.
When NSE = 0, model predictions are as accurate as the mean of the observed data. In contrast,
when NSE < 0, the residual variance is larger than the observed data variance and the model is
unreliable. Equations (20)–(23) are the mathematical expressions used to calculate RMSE, MAPE, R2,
and NSE, respectively:

RMSE =

√√√
1
N

N∑
I=1

(ŷi − yi)
2 (20)

MAPE =
N∑

I=1

∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣× 100% (21)

R2 =

(∑N
i=1(yi − y)(ŷi − ỹ)

)2∑N
i=1(yi − y)2

·
∑N

i=1(ŷi − ỹ)2 (22)

NSE = 1−

∑N
i=1(yi − ŷi)

2∑N
i=1(yi − y)2 (23)

where N is the total number of data points being modeled, ŷi is the predicted value, yi is the observed
value, and ỹ and y are the average of predicted and observed values, respectively.

3. Results

This study employed a hybrid forecasting model based on wavelet analysis and SVR with PSO
algorithms for optimization to predict three water quality indicators at the Zhanglou monitoring site
along the Grand Canal. To assess the predictive ability of the hybrid model, both non-stationary
and stationary data series over two-time scales, daily and monthly, were considered. Based on the
structure of the hybrid model, all-time series were initially decomposed. Then, the selected input data
were used to train the established models and make predictions. Results related to each model are
presented below.

3.1. Models for Daily Prediction

The daily time series of CODMn, NH3-N, and DO were decomposed using the db3 wavelet
based on four layers (as described above). The sub-series after decomposition and reconstruction are
shown in Figure 4. These three series were all non-linear. All three parameters exhibited considerable
fluctuations during the summer wet season (from June to September) (Figure 4). This may be caused
by a large amount of precipitation during this period which accounted for more than 80% of the
annual precipitation.

Of the three original daily time series, NH3-N was stationary, while CODMn and DO were
non-stationary. The decomposed and reconstructed sub-series included both stationary and
non-stationary series. For the stationary series, the inputs for subsequent models were selected
using their autocorrelation coefficients. For non-stationary series, the inputs were selected by their
partial autocorrelation coefficients to obtain a high level of model performance [7]. Results related to
the three water quality indicators that were produced by the hybrid WA-PSO-SVR model and the two
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other contrasting models (i.e., the PSO-SVR and the standalone SVR which used cross validation as
optimization method) are presented in Figure 5.
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All of the three models predicted changes in trend and performed well as a whole (Figure 5).
The prediction of CODMn was better than for the other two indicators (NH3-N and DO). Each indicator
was more closely predicted by the WA-PSO-SVR model than by either the PSO-SVR or the single SVR
model, especially for the prediction of extreme values. Predictive results generated by the PSO-SVR
and the single SVR models were similar; in fact, the results nearly overlap for CODMn. The predication
of DO differed significantly among the three models. The performance of the standalone SVR model
was lower than that of the other two models when predicted and observed values are compared.
In addition, both the PSO-SVR and single SVR models possessed a one-day lag between observed
and predicted values, which led to larger model errors that can be seen in scatter plots (Figure 6).
The coefficient of determination (R2) for the WA-PSO-SVR models are about 0.9, while the values for the
other models are much lower. Although the prediction of DO was the worst (Figure 5), the R2 values
of predicting NH3-N were the lowest among the three indicators. The highest R2 value for NH3-N was
only 0.8837; it was calculated using the WA-PSO-SVR model. The PSO-SVR model possessed larger
errors than the standalone SVR model.
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Table 2 provides the statistical evaluation of daily CODMn by the three models. All three
models were efficient, with NSE values close to 1. During the testing period, NSE values for the
WA-PSO-SVR model were 10.73% and 11.04% higher than the PSO-SVR and standalone SVR model,
respectively. RMSE was calculated to be 46.76% and 47.23% lower, while MAPE was 40.77% and
42.86% lower, respectively.

Table 2. Statistical values of daily CODMn prediction in the training and testing phase.

Model
Training Testing

RMSE MAPE (%) NSE RMSE MAPE (%) NSE

WA-PSO-SVR 0.1103 2.085 0.9867 0.1420 2.333 0.9627
PSO-SVR 0.2929 4.530 0.9058 0.2667 3.939 0.8694

SVR 0.2879 4.501 0.9090 0.2691 4.083 0.8670

For the prediction of NH3-N (Table 3), the WA-PSO-SVR model performed well, while the other two
models had poor performances and were unreliable as they exhibited NSE values below 0. These results
illustrate that the hybrid model was the only one that can be used for daily NH3-N prediction.



Water 2020, 12, 1476 13 of 21

Table 3. Statistical values of daily NH3-N prediction in the training and testing phase.

Model
Training Testing

RMSE MAPE (%) NSE RMSE MAPE (%) NSE

WA-PSO-SVR 0.0571 13.24 0.9839 0.0089 6.791 0.8433
PSO-SVR 0.0853 15.43 0.9641 0.0228 17.32 −0.0351

SVR 0.1476 18.46 0.8924 0.0259 21.27 −0.3466

Table 4 shows that while RMSE and MAPE values are not high, the standalone SVR model was
unreliable. However, the WA-PSO-SVR model performed well, and the results possessed the highest
NSE value, exceeding 0.9. Compared with the PSO-SVR model, the hybrid model performed 58.16%,
63.87%, and 77.10% better, in terms of RMSE, MAPE, and NSE, respectively.

Table 4. Statistical values of daily dissolved oxygen (DO) prediction in the training and testing phase.

Model
Training Testing

RMSE MAPE (%) NSE RMSE MAPE (%) NSE

WA-PSO-SVR 0.7980 6.222 0.9204 0.2329 1.106 0.9190
PSO-SVR 1.4298 10.59 0.7444 0.5567 3.061 0.5371

SVR 1.3052 9.623 0.7870 0.9412 5.271 −0.3230

3.2. Models for Monthly Prediction

As done for daily predictions, the monthly time series of CODMn, NH3-N, and DO were initially
decomposed (Figure 7). NH3-N exhibited a declining trend, whereas CODMn and DO exhibited
constant trends with generally consistent fluctuations.

Given that the time series data for all three parameters were collected over a nearly twelve-year
period, the data possessed periodicity. In the case of DO, the periodicity was on a one-year cycle,
presumably because DO was correlated to seasonal water temperatures. Based on unit root testing
of the data during pre-processing, NH3-N and DO were found to be non-stationary series, whereas
the CODMn series was stationary. Following the selection of inputs for predictive models of each
sub-series, the estimated results of the three models were calculated (Figure 8).

The performances of monthly predictions exhibited some similar characteristics to the daily
predictions. The WA-PSO-SVR models of all three indicators performed much better than the other two
models. However, in contrast to the daily predictions, the prediction of DO was relatively satisfactory
over the monthly time-scale. The prediction of NH3-N exhibited the largest errors. The predicted
curves by the PSO-SVR and standalone SVR models for CODMn overlapped (as they did for the daily
predictions); the predictions of DO were also similar. The hybrid models were also better at predicting
extreme values. This was especially true for the prediction of maximum DO concentrations; the hybrid
model was the only one that accurately (closely) described changes in DO. The other two models even
predicted values that were opposite to the observed values. In addition, these two models produced
predictions that possessed a one-month lag delay in predicted indicators. The scatter plots in Figure 9
show that the WA-PSO-SVR models significantly outperformed the others. The prediction of NH3-N
was the worst; the highest R2 value was 0.8252. The prediction of NH3-N also exhibited the largest
differences between the hybrid model and the others. The PSO-SVR and standalone SVR models both
preformed extremely poorly in terms of NH3-N predictions.
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Comparison of observed and predicted CODMn data by the WA-PSO-SVR model during the
testing phase produced RMSE, MAPE, and NSE values of 0.2506, 5.126%, and 0.8941, respectively
(Table 5). These statistical values show that the model was able to make relatively accurate predictions
of monthly CODMn time series. In contrast, the PSO-SVR and SVR models had similar statistical
assessment values, with NSE values below 0, indicating they generated undesired predictive results.

Table 5. Statistical values of monthly CODMn prediction in the training and testing phase.

Model
Training Testing

RMSE MAPE (%) NSE RMSE MAPE (%) NSE

WA-PSO-SVR 0.3102 6.724 0.9071 0.2506 5.126 0.8941
PSO-SVR 0.7425 19.14 0.4679 0.8032 18.00 −0.0881

SVR 0.7395 19.00 0.4722 0.8136 18.15 −0.1166

The prediction of monthly NH3-N data was similar to CODMn (Table 6). Only the WA-PSO-SVR
model produced reliable results, although its MAPE value was much larger for NH3-N than for the
prediction of CODMn. RMSE, MAPE, and NSEs values calculated for the results of the other two
models illustrate that they all produced large errors and had difficulties in generating satisfactory and
accurate results.

Table 6. Statistical values of monthly NH3-N prediction in the training and testing phase.

Model
Training Testing

RMSE MAPE (%) NSE RMSE MAPE (%) NSE

WA-PSO-SVR 0.1333 20.10 0.8683 0.0730 14.68 0.8142
PSO-SVR 0.3549 42.74 0.0670 0.2062 55.17 −0.4802

SVR 0.3270 38.82 0.2082 0.2298 57.56 −0.8388

All three models were better able to predict NH3-N than the other parameters; the WA-PSO-SVR
model outperformed the other two models (Table 7). The WA-PSO-SVR model produced RMSE values
that were 50.23% and 48.96% lower in comparison to the results generated by the PSO-SVR and SVR
models, respectively. The MAPE values were 55.94% and 56.65% better, respectively, while the NSE
values of the WA-PSO-SVR model improved by 99.93% and 87.69% over the others, respectively.

Table 7. Statistical values of monthly DO prediction in the training and testing phase.

Model
Training Testing

RMSE MAPE (%) NSE RMSE MAPE (%) NSE

WA-PSO-SVR 0.4429 3.876 0.9422 0.5222 4.277 0.8587
PSO-SVR 1.1230 10.95 0.6286 1.0492 9.707 0.4295

SVR 1.0800 10.05 0.6565 1.0232 9.866 0.4575

4. Discussion

Because of the requirement of daily water transfer management, an available forecasting model
is essential to environmental governance. This model is mainly established for general changing
trend prediction helping long-term water pollution control, but not for giving accurate forecasting of
emergency or sudden changes caused by accident events, such as flooding or pollution leaks.

Regardless of whether daily or monthly time series data were predicted, the WA-PSO-SVR models
produced more accurate results for the three analyzed water quality indicators. The hybrid modeling
approach demonstrated to be a reliable approach for water quality prediction. Besides the similar
studies that have been done for DO in the river and pond or the turbidity and salinity of water [7,8,29],
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this study showed that the hybrid structure could be applied in more fields. During this study,
the performance of the WA-PSO-SVR models was better when modeling daily data than monthly
data, indicating that wavelet analysis, when applied to short-term forecasting, would produce more
accurate results. Previous studies led to similar conclusions in that hourly machine learning models
outperformed daily models when making DO predictions using wavelet-neural network models [26].

As mentioned above, of the six time series related to the three water quality indicators, only the
daily NH3-N and monthly CODMn series were stationary. However, the accuracy of the WA-PSO-SVR
modeling results was uncorrelated to whether the time series were stationary. For daily NH3-N and
monthly CODMn prediction, the hybrid models generated satisfying results, whereas both the PSO-SVR
and SVR produced unreliable results for them, as determined by negative NSE values. The PSO-SVR
and SVR have given satisfactory performances in some other studies [21]; however, these results
showed a possibility that the hybrid model was more suitable for stationary data than the PSO-SVR
and SVR models in this situation. Similar to the stationarity of the data series, when comparing the
WA-PSO-SVR and other two models, the model performances were also unrelated to the distribution of
data. Wavelet analysis could increase the accuracy of prediction, which was independent of Skewness
and Kurtosis values.

The PSO-SVR and SVR curves of observed and predicted values showed that there was a one-step
lag in predicted values (Figures 5 and 8). However, these models could effectively re-create changes in
parameter trends relatively accurately. This phenomenon has occurred in some studies [7,26]. Usually,
it means that the models had some drawbacks and deficient ability to provide accurate extreme values.
This may be caused by a lack of sufficient input information by considering only autocorrelation of
data series. A good way to solve this deficiency is by using a hybrid decomposition structure [7,27].
In this study, the hybrid WA-PSO-SVR models demonstrated their ability to predict extreme values
through time.

Moreover, regardless of the time scale modeled (i.e., daily or monthly data), the estimation of
CODMn was extremely good with the highest NSE values, followed closely by DO, and NH3-N was
the worst. However, when comparing the RMSE and MAPE values, the results were different. NH3-N
had the lowest RMSE, but DO had the lowest MAPE. In general, the prediction of NH3-N was more
difficult. The NH3-N models always had larger MAPE and lower NSE among three indicators. This is
related to the distribution of the data series. Although all of the original six data series did not have a
normal distribution, two NH3-N series had larger absolute values of Skewness and Kurtosis among
them, indicating that they were far from normal distribution than other series. Highly skewed and
imbalanced data is a reason that could lead to the poor performance of these models [48].

Because there are many indicators that can be used to assess the level of water quality pollution,
the prediction of water quality may rely on either multiple and single variable models. However,
multivariable models do not always perform better than single variable models because of strong
statistical autocorrelations of the water quality indicators [6]. In this study, all models were developed
based on their autocorrelation, including models of sub-series decomposed from wavelet analysis.
The WA-PSO-SVR modeling results illustrate that these simple models with a single variable had
the ability to provide reliable and accurate predictive outcomes. However, previous research has
found that models that do not consider autocorrelation can also produce good estimations [19]. Thus,
the cross-correlation between indicators or the spatial correlation between a single parameter collected
at different sample points is important. How these correlations influence a model’s performance
should be studied in the future.

However, as mentioned above, this approach leads to the limitation that the models were based
on historical trends of data series, and they were hard to give early warnings of abnormal values which
indicate the happening of emergent events. Models to be used for an emergency response is required
to account for all of the mechanisms and factors [49]. The warning system for water transfer is another
topic that needs to be studied next.
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5. Conclusions

The prediction of water quality is important in monitoring the changing trends of water quality
and managing water transfer better. A reliable predicting model can help the decision makers to do
daily management and reduce the adverse consequences resulting from the potential deteriorating
water quality. Therefore, in this study, a hybrid WA-PSO-SVR structure was developed to predict
daily and monthly water quality parameters in a canal. This hybrid model was successfully applied
to simulate the time series of three water quality indicators at Zhanglou Site along the Grand Canal.
In light of the results obtained above, the following general conclusions were drawn.

First, wavelet analysis is an efficient method to improve the performance of machine learning
models. The accuracy of models increased in all situations. Regardless of whether the times series were
stationary, the WA-PSO-SVR model always produced the best predictions. In contrast, the PSO-SVR
and standalone SVR models occasionally produced results exhibiting lower NSE values, indicating
that they were less reliable in this case. The hybrid model also had a strong ability to track fluctuations
in parameter trends and to predict extreme values. Second, a comparison of the performances of
all models developed for both daily and monthly data showed that daily or short-term predictions
were better than the longer predictions. With regards to the daily WA-PSO-SVR models, the NSE
values of CODMn, NH3-N, and DO reached up to 0.9627, 0.8433, and 0.9190, respectively, indicating
that the models were available to provide satisfactory predictions. Third, among the three indicators
in this study, CODMn and DO were effectively predicted for both daily and monthly timeframes,
but NH3-N showed the worst performances, as the data series much deviated to normal distribution.
Finally, this study shows that the prediction of water quality indicators using only a data series
(i.e., without considering other indicators) is possible. The autocorrelation of series data can identify
statistically significant lagged data and be used to construct appropriate predictive models for daily
management purposes.

This study provided a reliable method to track the changing trends of water quality in a canal.
The results presented in this study contribute to the knowledge for both short-term and long-term
water quality predictions which actively support environmental monitoring tasks. In particular,
the hybrid model would be applied in the east route of the South-to-North Water Diversion Project,
and is expected to help the decision makers to take timely actions towards a better water diversion
operation and environmental management, by predicting water quality more accurately.
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