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Abstract: Stream restoration for mitigation purposes has grown rapidly since the 1980s.
As the science advances, some organizations (Chesapeake Bay Program, North Carolina Department
of Environmental Quality) have approved or are considering providing nutrient credits for stream
restoration projects. Nutrient treatment on floodplains during overbank events is one of the least
understood processes that have been considered as part of the Chesapeake Bay Program’s Stream
Restoration Nutrient Crediting program. This study analyzed ten years of streamflow and water
quality data from five stations in the Piedmont of North Carolina to evaluate proposed procedures
for estimating nitrogen removal on the floodplain during overbank flow events. The volume of
floodplain flow, the volume of floodplain flow potentially treated, and the nitrogen load retained on
the floodplain were calculated for each overbank event, and a sensitivity analysis was completed.
On average, 9% to 15% of the total annual streamflow volume accessed the floodplain. The percentage
of the average annual volume of streamflow potentially treated ranged from 1.0% to 5.1%. Annually,
this equates to 0.2% to 1.0% of the total N load retained/removed on the floodplain following restoration.
The relatively low nitrogen retention/removal rates were due to a majority of floodplain flow occurring
during a few large events each year that exceeded the treatment capacity of the floodplain. On an
annual basis, 90% of total floodplain flow occurred during half of all overbank events and 50% of
total floodplain flow occurred during two to three events each year. Findings suggest that evaluating
only overbank events may lead to undervaluing stream restoration because treatment is limited
by hydrologic controls that restrict floodplain retention time. Treatment is further governed by
floodplain and channel size.

Keywords: floodplain reconnection; flow frequency; flow separation; nutrient retention

1. Introduction

Stream restoration has expanded rapidly over the last four decades into a billion-dollar industry,
with thousands of streams restored annually in the U.S. [1]. The increase in restoration projects is
primarily driven by the regulatory requirements of Section 404 of the Clean Water Act. Section 404
requires compensatory restoration for construction or development projects that impact perennial
and intermittent stream ecosystems. Beyond federal regulatory requirements, stream restoration is
also viewed as a tool to reduce nutrient and sediment loading, improve water quality [2,3], reduce
flooding and enhance habitat [1]. Because of the potential water quality benefits, some organizations
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have adopted or are developing nutrient credits for stream restoration to help meet watershed nutrient
reduction goals (e.g., the Chesapeake Bay Program (CBP) and the North Carolina Department of
Environmental Quality). Nutrient credit programs provide a mechanism for municipal or industrial
entities to achieve their individual nutrient load limits [4] or new development projects to mitigate for
not meeting the nutrient load limits set by regulatory agencies [5]. Nutrient credit programs are diverse
across states with regard to trading or purchase options and allowing for credit through restoration
activities (e.g., riparian buffers, wetlands or streams). For example, the CBP considers three components
that contribute to nutrient reduction/removal credits for stream restoration: (Protocol 1) a reduction
in sediment loads as a result of bank stabilization, (Protocol 2) treatment in the stream hyporheic zone
during baseflow and (Protocol 3) treatment on the floodplain during overbank events resulting from
floodplain reconnection. While the benefits of a reduction in sediment loading due to bank stabilization
and treatment in the hyporheic zone are well-studied and relatively quantifiable, there is a lack of
information on the capacity of stream restoration projects to treat nitrogen on the floodplain during
overbank flow events.

Previous research provides strong evidence that stream restoration can improve nitrogen removal.
Kaushal et al. [6] reported significantly greater mean denitrification rates in a restored reach compared
to an unrestored reach. Based on a review of over 50 studies, Lammers and Bledsoe [7] reported that
floodplain reconnection provides an additional pathway for nitrogen removal in restored streams.
Floodplain treatment primarily occurs through wetland-related functions including (1) deposition
of particulate organic nitrogen, (2) denitrification and plant uptake from floodwater retained
in depressional wetland areas on the floodplain following storm events, and (3) deposition of
sediment-bound nitrogen [8]. While it is well established that floodplain wetland features have
the potential to improve water quality [9,10], caution should be employed when extrapolating areal
nutrient retention/transformation potential or treatment efficiency rates to include all overbank flow
that makes contact with the floodplain.

Because of short retention times—measured in minutes or hours—during overbank events,
not all floodplain flow is treated. Floodplains act as supplemental conduits with minimal contact
time during high-intensity events [11–13]. In contrast, stormwater wetlands are sized to capture
and retain influent loads for two to five days. For urban floodplains to achieve retention times
similar to those of stormwater wetlands, and in turn provide the increased treatment of storm flows, a
substantial floodplain area would be required. Nonetheless, some degree of nitrogen treatment will
occur in riparian zones adjacent to streams during overbank events.

For Protocol 3 of the CBP methodology, hydrologic modeling is used to estimate the rainfall depth
that would trigger overbank flow to the floodplain. Recognizing that not all flow on the floodplain will
be treated, a treatment volume is then calculated by assuming a maximum 30-cm water storage depth.
Treatment efficiency is conservatively set at 20% based on research by Jordan [11]. Total nitrogen (TN)
removal versus rainfall curves were then developed based on historical rainfall data to estimate average
annual TN removal efficiency. This method, which assumes a great deal of uncertainty, is meant
as a tool to estimate potential removal; consequently, there are no documented cases of credit being
awarded for the CBP Protocol 3 as of February 2020 [14].

Because of the uncertainty associated with floodplain-based nitrogen treatment, and proposed
methodologies for quantifying this removal, an analysis of high frequency streamflow data
was performed to evaluate (1) the occurrence of overbank flow events and (2) the associated proportion
of flow exposed to floodplains in order to better estimate nitrogen treatment potential. The results
of this analysis were then used to evaluate the premise of CBP Protocol 3 and help guide future
development of stream restoration related nutrient credits.
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2. Materials and Methods

2.1. Site Selection

Five U.S. Geological Survey (USGS) gage stations were selected to evaluate the frequency
and volume of flow that inundates a floodplain (Table 1, Figure 1). Ten years of discharge data
(January 2008–December 2017) were evaluated for each station. Three of the gage sites, Rocky Branch,
Sandy Creek and Torrence Creek, were located downstream of previously restored stream reaches.
For these sites, both pre- and post-restoration conditions were analyzed to assess change in overbank
flow frequency and volume resulting from restoration efforts. Marsh Creek and Swift Creek gage
stations were located on un-restored streams. These sites were selected as each included the presence of
a wide forested floodplain adjacent to the stream and a moderate degree of incision, which was similar
to the pre-restoration condition of the other three study sites. Floodplain inundation frequency
and the volume of flow at these un-restored sites were evaluated using a theoretical stream restoration
approach of reconfiguring the channel and excavating a new floodplain at a lower elevation to improve
floodplain connection. All five study sites were evaluated to determine the changes in the frequency
of floodplain flow, floodplain flow volume and associated nitrogen treatment that could be realized
through floodplain reconnection via stream restoration.

Table 1. Basic watershed and channel characteristics for five U.S. Geological Survey (USGS) stream
gages analyzed for floodplain flow frequency and potential nutrient treatment.

Stream Location Watershed
Area (km2)

Percent
Impervious

Channel
Width (m) *

Pre-Restoration
BHR **

USGS Station
Number

Marsh Creek Raleigh, NC, USA 17.7 25% 13.1 2.0 0208732885
Rocky Branch Raleigh, NC, USA 2.5 40% 7.1 3.0 0208735012
Sandy Creek Durham, NC, USA 4.5 17% 7.3 3.2 0209722970
Swift Creek Apex, NC, USA 54.4 16% 19.1 1.6 02087580

Torrence Creek Charlotte, NC, USA 9.3 16% 8.1 1.9 0214265808

* Top of bank channel width prior to restoration, ** bank height ratio (BHR) = low bank height/max bankfull depth.
Post-restoration BHR is equal to one for all sites.
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2.2. Bankfull and Top of Bank Discharge Determinations

The top of bank discharge (QTOB) and bankfull discharge (QBKF) were used to compare
floodplain flow frequency and flow volume from pre- to post-restoration conditions. In the case
of the un-restored streams—Marsh and Swift creeks—field-identified bankfull stage, published
hydraulic geometry regional curves [15], flood frequency analysis of USGS reported annual peak
flows, and hydraulic modeling were conducted to select a design QBKF. Marsh Creek and Swift
Creek gage sites were visited and the top of bank and bankfull stage were identified in the field.
A riffle cross-section was measured to determine the top of bank (ATOB) and bankfull (ABKF) channel
cross-sectional areas and the streambed longitudinal profile was surveyed to determine the channel
slope. Manning’s equation was then used to calculate top of bank (QTOB) and bankfull (QBKF)
discharges. Annual peak discharges for the entire gage record were downloaded and used to analyze
the flood frequency. QBKF was compared to published bankfull discharge values and to the one-year
return interval discharge estimated from the flood frequency analysis. For Sandy and Torrence
Creeks, QBKF and QTOB were obtained from restoration design documents. Finally, for Rocky Branch,
annual mitigation monitoring reports, including field measured cross-sectional area and channel slope,
were used to calculate QBKF using Manning’s equation.

To further evaluate bankfull and top of bank discharge at each stream reach, the effective
Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was obtained from
the NC Flood Risk Information System [16] for Swift, Marsh, Torrence and Sandy creeks. An effective
model was not available for Rocky Branch. Using HEC-RAS 5.0 [17], each hydraulic model was executed
at various discharges to identify the flow that would fill the existing channel without overtopping its
banks. This discharge was set as the top of bank discharge. The pre-restoration QTOB for Sandy Creek
and Rocky Branch was calculated using Manning’s equation based on cross-section and longitudinal
surveys of the creeks conducted prior to restoration by North Carolina State University and by
engineering consultants contracted by Duke University, respectively.

Because the gage is located a considerable distance downstream of the restoration projects at
Sandy and Torrence creeks, (approximately 2.1 and 1.3 km, respectively), hydraulic models were used
to determine the discharge at the gage location that corresponds to the bankfull channel of the upstream
restored reach when flowing full.

2.3. Annual Flow Volume Interacting with the Floodplain

Total volume of flow that passed the gage and the volume of flow during each time increment
when total discharge exceeded either QBKF (post-restoration) or QTOB (pre-restoration) were calculated
to determine the fraction of flow volume that contacted the floodplain annually. To calculate
the floodplain flow volumes, high frequency flow data (5-min or 15-min, depending on the site) were
downloaded for each USGS gage. Flow data were filtered to only include flows exceeding QBKF

and QTOB, as floodplain flow was calculated as any discharge in excess of QBKF and QTOB. For example,
if the QBKF was 10 cm for the restored stream, any Q greater than 10 cm (e.g., 11 cm) was considered to
have a flow that was in contact with the floodplain. Figure 2 illustrates the flow partitioning approach
for storm events at Rocky Branch and Swift Creek.

Next, the cumulative volume of floodplain flow (VFLOOD
i) for each storm event (i) that exceeded

QBKF or QTOB was calculated. The annual flow volume on the floodplain (VFLOOD) was calculated by
summing the flow volumes (VFLOOD

i) for each storm event. Because of occasional gaps in the high
frequency flow data, the total annual flow volume (VTOTAL) at each USGS gage was calculated
from the daily mean flow measurements. The percentage of flow volume on the floodplain on an
annual basis was then calculated as the ratio of VFLOOD to VTOTAL. For Rocky Branch, some of
the high-frequency observations were missing during bankfull events so the event flow volume could
not be calculated. The missing flow volumes were infilled by fitting a quadratic regression of daily
maximum floodplain flow versus total floodplain flow volume for all storm events recorded at this gage
(r2 = 0.74).
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2.4. Nutrient Processing and Retention on the Floodplain

Mean total nitrogen (TN) concentrations (NMEAN) were calculated using measured water quality
data to estimate TN loads delivered to each study reach. Water quality data were obtained from the City
of Raleigh for Marsh Creek and Rocky Branch, from the City of Charlotte for Torrence Creek, from USGS
for Swift Creek and from Duke University [18] for Sandy Creek. Overall site mean concentrations were
used because infrequent data collection did not allow for the separation of baseflow and stormflow.
However, this is a reasonable approach as previous research has shown similar TN concentration
in baseflow and stormflow in urban areas of Maryland [19] and in Minnesota [20]. Overall site mean
concentrations were multiplied by VTOTAL to obtain annual N loads (LTOTAL) delivered in kilograms
(Equation (1)).

LTOTAL = VTOTAL × NMEAN (1)

Not all flows exceeding QBKF will be treated by floodplain functions, as high flow events can
overwhelm floodplain treatment zones, leading to minimal hydraulic retention times and treatment [12,21].
For this study, a floodplain treatment depth of 30 cm was used to estimate a treatment flow volume
(VTREAT) (see Figure 3). The area of the available floodplain (FA) for the restored stream or for
the stream reach at the USGS gage was measured using ArcGIS Desktop 10.5 software [22]. To calculate
the available VTREAT, the assumed 30 cm treatment depth was multiplied by the FA (Equation (2)).
Overbank flows with depths exceeding 30 cm on the floodplain were not included in the calculation
of VTREAT. This treatment depth limitation follows the general methodology used to calculate nutrient
removal for the CBP Protocol [23]. Thirty cm is the assumed maximum depth of water that could be
retained in floodplain depressions and microtopographic storage and treated during overbank events.
While this assumption may oversimplify the hydrologic and biogeochemical processes that occur during
overbank flows and inter-event low flows, using 30 cm is conservative (with regard to treatment potential)
as it is likely on the high end of the potential storage depth.

VTREAT = FA × 30 cm (2)
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The load of suspended and dissolved N in the water column that could be potentially treated
(LTREAT) was calculated by multiplying the total annual nitrogen load by the percentage of flow volume
that could potentially be treated on the floodplain (Equation (3)). The potential retention of total
nitrogen (LRETAIN) on the floodplain was then calculated by multiplying the load subject to treatment
by a treatment efficiency (EF) (Equation (4)). Twenty percent was used by Schueler and Stack [23] for
the CBP Protocol and was implemented for this analysis for comparison purposes.

LTREAT = LTOTAL × VTREAT/VTOTAL (3)

LRETAIN = LTREAT × EF (4)

2.5. Treatment Depth and Treatment Sensitivity Analysis

The calculation of floodplain nitrogen treatment is dependent on the assumed 20% treatment
efficiency and the floodplain treatment depth of 30 cm recommend in the CBP protocols. To better
quantify the uncertainty associated with these parameters, a sensitivity analysis was conducted on
nitrogen treatment efficiency and floodplain treatment depth. Overall nitrogen retention/removal
was calculated for treatment efficiencies of 10 to 100% and treatment depth of 15 cm to 60 cm. In addition,
the impact of reducing channel size (1/4 to 1/2 QBKF) to increase the frequency of overbank flow events
on the floodplain was also evaluated.

3. Results and Discussion

3.1. Annual Flow Volume

Watershed areas (WA), floodplain areas, floodplain to watershed ratios and available treatment
volumes for each site are summarized in Table 2. Overall, the ratios of FA to WA were low, with only
one site exceeding 1%; however, this was not correlated with the available VTREAT.

Table 2. Post-restoration floodplain area, floodplain area/watershed area ratio, and VTREAT summary.

Stream Watershed Area
(km2)

Floodplain Area
(km2)

Floodplain Area/Watershed
Area

Available VTREAT
(m3)

Marsh Creek 17.7 0.07 0.4% 20,969
Rocky Branch 2.5 0.03 1.3% 10,361
Sandy Creek 4.5 0.03 0.7% 9990
Swift Creek 54.4 0.17 0.3% 50,942

Torrence Creek 9.3 0.02 0.2% 6414

Mean 17.7 0.06 0.6% 19,735

QBKF, QTOB, %VFLOOD, %VTREAT and the number of events inundating the floodplain annually
are presented in Table 3. For the pre-restoration scenario, only Swift Creek experienced flood events
exceeding QTOB during the ten-year period from 2008 to 2017. Post-restoration, the mean number of
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storm events that inundated the floodplain ranged from 4.6 at Swift Creek to 18.7 at Rocky Branch
with an average of 12.1 events per year exceeding QBKF across all sites. These QBKF or greater events
resulted in a mean of 11% of total annual flow being exposed to the floodplain with a range of 9.0% at
Torrence Creek to 14.6% at Rocky Branch. These results were similar to an analysis of 5800 streamflow
gages across the U.S. that noted floodplain flow volume ranged from 4% to 12.3% of overall annual
flow volumes [24]. The range of annual %VTREAT was 1.0% at Swift Creek to 5.1% at Rocky Branch with
a mean of 2.3%, which was a substantial decline from VFLOOD (11%). Overall, the average percentage
of floodplain volume likely to receive treatment in a given year (VTREAT/VFLOOD) ranged from 13% at
Swift Creek to 41% at Rocky Branch.

Table 3. Summary of the average annual number of storm events resulting in floodplain flow
and the percent of the average annual total flow volume that is exposed to and potentially treated by
the floodplain from 2008–2017. Bracketed numbers are the ranges of annual values.

Stream QTOB
1

(cm)
Events >

QTOB

QBKF
2

(cm)
Events >

QBKF

% VFLOOD
(%)

% VTREAT
(%)

VTREAT/VFLOOD
(%)

Marsh Creek 65.1 0 8.5
9.1 11.9 2.0 22

(5–15) (3.1–25) (1.2–3.0) (7–38)

Rocky Branch 9.5 0 3.7
18.7 14.6 5.1 41

(14–23) (6.6–25) (3.3–7.0) (18–72)

Sandy Creek 32 0 4.2
10.9 10.1 1.5 27

(6–16) (1.1–21) (0.7–2.2) (9–69)

Swift Creek 42.5 2.3 18.7
4.6 9.0 1.0 13

(2–8) (4.4–14) (0.6–1.4) (4.3–23)

Torrence Creek 10.6 0 2.0
17.2 9.4 1.9 23

(8–23) (5.2–23) (1.0–2.8) (12–44)

Mean 31.9 0.5 7.4 12.1 11% 2.3% 25%
1 QTOB represents flows that overtopped the channel prior to restoration, 2 QBKF represents flows that overtop
the bankfull channel post restoration.

The relatively low VTREAT (1.0% to 5.1%) for these study sites is due to the majority of VFLOOD

exceeding the floodplain treatment depth (30 cm); on average, only 25% of VFLOOD is potentially
treated annually (Figure 4). This is the result of the majority of VFLOOD occurring during a few large
overbank events each year as shown in Figure 4. On average, 90% of the VFLOOD occurred during
about half the overbank events and 50% of VFLOOD occurred during two to three large events each
year that far exceed the treatment capacity of the floodplain. Figure 5 illustrates an example of this for
Torrence Creek in 2010. The majority of VFLOOD (95%) occurred in just four overbank events that all
substantially exceeded VTREAT.Water 2020, 12, x FOR PEER REVIEW 8 of 14 
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These results support previous research [12,13,21] showing that a few large flood events deliver
the majority of the annual floodplain flow volume and N load, during which the retention/removal
capacity of the floodplain is overwhelmed, and the floodplain acts primarily as a conveyance system.
In the future, a trend towards even more overbank flow occurring during only a few storms is likely
as intense rainfall events are projected to increase in the southeastern U.S. due to climate change [25].

3.2. N Retention on the Floodplain

The mean TN concentration for each site is included in Table 4. Nitrogen loads delivered to each
site in VTREAT ranged from 50 to 180 kg/year (see Table 4); however, with the 20% treatment efficiency
applied, the resulting N load retained (LRETAINED) ranged from 10 to 36 kg/year with an average of
22 kg/year for all five streams. This equates to a TN retention/removal rate of 0.2–0.4% at each site
except Rocky Branch, which retained 1.0%. For most of the sites, this is equivalent to the change
in the reduction from pre- to post-restoration conditions, as no overbank flow (thus no N load on
the floodplain) was observed for four of the five sites for the pre-restoration scenario.

Table 4. Summary of average annual floodplain nitrogen retention by site. Bracketed numbers are
the range in annual values.

Stream Mean TN
(mg/L)

LTOTAL
(kg/year)

LFLOOD
(kg/year)

LTREAT
(kg/year)

LRETAIN
(kg/year) % N Retained (%)

Marsh Creek 0.78
6680 791 135 27 0.4

(5132–8486) (227–1602) (87–231) (17–46) (0.2–0.6)

Rocky Branch 1.83
3516 531 180 36 1.0

(2820–4525) (198–1121) (100–232) (20–46) (0.7–1.4)

Sandy Creek 0.84
4581 483 68 14 0.3

(2691–7440) (35–1039) (23–114) (5–23) (0.1–0.4)

Swift Creek 0.62
11,720 1102 118 24 0.2

(6976–16,960) (348–2123) (61–214) (12–43) (0.1–0.3)

Torrence Creek 0.56
2612 255 50 10 0.4

(1892–3417) (101–623) (20–74) (3.9–15) (0.2–0.6)

Mean 0.92 5822 632 110 22 0.5%
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While hydrology was the primary driver of treatment potential, there was some uncertainty
associated with other assumptions that impacted the N retention/removal estimates. The 20% treatment
efficiency used in this study was based on the CBP Protocol [11,23] and is believed to be a conservative
approach. However, a TN treatment efficiency of 20% for the floodplain may overestimate actual
treatment of overbank flow on the floodplain because stormwater inflow from adjacent culverts may
fill up any floodplain wetlands and depressional storage prior to overbank flow occurring, thus
reducing the capacity of the floodplain to provide treatment during large flow events. In contrast,
during lower volume, less intense overbank events the floodplain could potentially treat the majority
of the floodplain flow.

There is a wide range of reported TN removal rates for wetlands. For example, the U.S.
Environmental Protection Agency (US EPA) reported 28% removal efficiency for stormwater
wetlands [26], while Lee et al. [27] documented 45% removal of TN. Most stream restoration projects
do incorporate pocket wetlands on the floodplain; however, the entire floodplain does not function
like a wetland. Therefore, reported higher treatment rates are not likely to be achieved.

3.3. Sensitivity Analysis

The results of the sensitivity analysis for each stream are provided in Figure 6. These results
clearly illustrate the importance of the hydrologic and hydraulic controls on floodplain treatment
potential, as substantially increasing the treatment efficiency and treatment depth provides only a
marginal increase in TN retention/removal. For example, doubling the treatment depth to 60 cm
and assuming 100% treatment efficiency (both unlikely), would result in 2–3% TN retention/removal
for four of the five sites.Water 2020, 12, x FOR PEER REVIEW 10 of 14 
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The Rocky Branch floodplain produced the highest potential TN retention/removal rates (>7%)
due to a small watershed size combined with high percent impervious cover (40%), which produces
the highest annual rate of flows exceeding the QBKF. However, there is reason to doubt whether
this level of treatment could be achieved given that the floodplain at Rocky Branch is fairly confined
with limited storage volume. In reality, treatment depths may be lower than 30 cm, which would
generally limit TN treatment to less than 1.5% (3–4% for Rocky Branch), even for a very high treatment
efficiency (e.g., 80–90%). For more reasonable treatment efficiencies (e.g., <40%) and lower treatment
depth (<30 cm), overall TN treatment would be less than 1% (<~1.5% for Rocky Branch).

Even if higher retention/removal rates are assumed, the sensitivity analysis shows that only
a marginal increase in overall TN load could be achieved due to a majority of the flow occurring
during baseflow and moderate discharge events (<QBKF). Therefore, the uncertainty associated with
treatment efficiency has minimal impact on the low N retention/removal on the floodplain, which
was similar to a recent study that reported TN retention/removal of 0.7% to 2.7% on floodplains [28].
Similarly, Craig et al. [29] reported that the greatest potential for nitrogen removal in restored streams
occurs during low to moderate discharge, reinforcing the hypothesis that floodplain treatment through
overbank flow is not a major contributor to overall TN removal.

Overall, this sensitivity analysis shows that even if a larger portion of the overbank flow is treated
and a higher treatment efficiency is assumed, TN retention/removal on the floodplain is limited by
hydrology and hydraulics because only a small fraction of the overall flow volume (and TN load)
accessed the floodplain on an annual basis.

In addition to treatment depth and efficiency, channel size has an impact on the frequency of
overbank flow events [30] and thereby the potential nitrogen treatment. If the five stream channels
were 1/2 to 1/4 of the size of the QBKF, then nitrogen removal would increase by 37% to 275%, assuming
a 20% treatment efficiency and a 30 cm treatment depth. However, this would still equate to less
than 1% of the total N load retained/removed for three of the five streams. Total N retention/removal
would be 1.2% for Marsh Creek and 2.3% Rocky Branch (see Figure 7). Despite a substantial increase
in the number of overbank events, the treatment potential for these five streams is still limited by
floodplain size since FA/WA is less than 1% for all except Rocky Branch. Filoso and Palmer [31]
found that lowland streams that were converted to stream–wetland complexes that facilitate spillover
of stream flow onto adjacent floodplains and wetlands were most effective, removing about 5% of
the nitrogen inputs to the watershed. Targeting a smaller channel size combined with maximizing
floodplain area and incorporating wetlands will help to enhance treatment.
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3.4. Comparison to CBP Protocol and Limitations

For comparison to the CBP protocols for estimating nitrogen removal resulting from
floodplain reconnection, Doll et al. [32] reported similar TN removal rates of 0.2% (versus 0.3%
to 0.4% in this study) for both Sandy and Torrence Creeks using CBP Protocol 3 guidance [23]. The CBP
protocols were also applied to a proposed stream restoration in northern Virginia with a similar FA/WA
ratio (0.38). This analysis yielded an even lower removal rate of 0.04% [33]. These results indicate
that no matter the protocol applied, using flood flows to quantify water quality benefits of stream
restoration projects will indicate only marginal treatment value.

While beyond the scope of this study, there are other important factors that affect the treatment
provided by floodplains during overbank events such as the nitrogen speciation in the stream.
For example, if nitrate accounts for a majority of the overall TN, there may be a greater potential for
removal via denitrification, but this will be limited by retention time. Alternatively, if organic nitrogen
(ON) makes up most if the TN, then the potential for retention may be limited to particulate ON
that accumulates in sediments on the floodplain. Van der Lee et al. [28] attributed the low removal
rate they observed (0.7% to 2.7%) to N speciation; over 90% of the TN was in the form of dissolved
nitrate. Floodplain denitrification was limited due to a short duration of floodplain inundation
and low hydraulic retention time. In addition, some N removal may only be temporary; herbaceous
plant uptake will only sequester N during the growing season [8] and some of the retained N could
remobilize during subsequent events. Another consideration for potential floodplain treatment is
the ambient TN concentration in the stream. The observed site mean TN concentrations in this study
ranged from 0.56 to 1.83 mg/L (mean TN concentrations were less than 0.85 mg/L at four of five
sites). With the exception of Rocky Branch, these values are near background concentrations for
reference streams [34,35]. While there is temporal variation in concentration, mean TN concentrations
near typical background levels may indicate these concentrations are approaching irreducible levels
and there is limited potential for TN retention/removal [12]. Nutrient crediting protocols for restoration
should consider ambient conditions where possible, and reduce the credit if there is limited potential
for further nutrient removal.

4. Conclusions

Overall, the results of this study indicate that the potential for nitrogen treatment on
the floodplain during overbank flow events, as the result of stream restoration, is limited in the urban
environment because of hydrologic regimes that limit retention time and route flow though
the floodplain with minimal contact time. Some of the main findings include:

• On average, 11% of the total flow volume accessed the floodplain;
• A large majority of this volume occurred during only a few large events, which largely overwhelm

the treatment potential of the floodplain. In total, 90% of the floodplain flow occurred during half
of all overbank events, while 50% of overbank flow occurred in only two to three events each year;

• Using flow separation analysis, TN retention/removal ranged from 0.2% to 1.0% across these
five sites;

• Sensitivity analysis showed that, even if treatment efficiency was high (90%) and treatment depth
was doubled to 60 cm, TN retention/removal would still be less than 3% for all but one site.

Rather than focusing on N retention/removal on the floodplain, more substantial benefits
gained from floodplain reconnection are likely related to floodplain treatment of surface flow
from upland or stormwater outflows during smaller storm events (<QBKF), decreased streambank
erosion, deposition of sediment and sediment-bound nutrients (N and P) on the floodplain and other
important ecosystem services such wildlife habitat and flood attenuation [36]. Recent research
indicates the deposition and retention of sediment-bound nutrients during overbank events can lead
to substantial nutrient retention on the floodplain (20–30% of the floodplain sediment load) [37].
In addition, floodplain reconnection raises groundwater levels in riparian areas, which creates
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favorable conditions for denitrification [29]. Therefore, the CBP and other crediting entities should
focus their efforts on assigning credit to reducing streambank and streambed erosion, N treatment
in the hyporheic zone and sediment deposition on the floodplain. In addition, stream restoration efforts
that apply floodplain reconnection should maximize the floodplain area, include floodplain depressions
and establish dense vegetation. Targeting a smaller channel size (<QBKF) to ensure frequent
floodplain inundation during small to moderate flows can also enhance the treatment potential [29].
Overall, while the literature indicates that restored floodplains can treat nitrogen, evaluating only
overbank events may lead to undervaluing stream restoration, meaning that this is not an appropriate
method for gauging overall treatment potential.
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