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Abstract: Understanding the spatiotemporal distribution of future droughts is essential for effective
water resource management, especially in the Mediterranean region where water resources are
expected to be scarcer in the future. In this study, we combined meteorological and hydrological
drought indices with the Soil and Water Assessment Tool (SWAT) model to predict future dry years
during two periods (2035–2050and 2085–2100) in a typical Mediterranean watershed in Northern
Morocco, namely, Bouregreg watershed. The developed methodology was then used to evaluate
drought impact on annual water yields and to identify the most vulnerable sub-basins within the
study watershed. Two emission scenarios (RCP4.5 and RCP8.5) of a downscaled global circulation
model were used to force the calibrated SWAT model. Results indicated that Bouregreg watershed
will experience several dry years with higher frequency especially at the end of current century.
Significant decreases of annual water yields were simulated during dry years, ranging from −45.6%
to −76.7% under RCP4.5, and from −66.7% to −95.6% under RCP8.5, compared to baseline. Overall,
hydrologic systems in sub-basins under the ocean or high-altitude influence appear to be more
resilient to drought. The combination of drought indices and the semi-distributed model offer a
comprehensive tool to understand potential future droughts in Bouregreg watershed.

Keywords: drought indices; SWAT; spatiotemporal assessment; water yield; Bouregreg watershed

1. Introduction

The global climate has changed relative to the pre-industrial period, with many forms of evidence
showcasing the impacts on organisms and ecosystems, as well as human systems and well-being [1–4].
Besides the increase in land and ocean temperatures, the manifestations of global climate change
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include the increase in frequency, intensity, and/or amount of extreme weather events (such as heavy
precipitation and drought) [1,4].

Due to observational uncertainties and difficulties in distinguishing decadal-scale variability in
drought from long-term trends, scientists are always cautious about the attribution of changes in
drought to anthropogenic influence [5]. Nevertheless, most of the recent research assumes that climate
change has led to an increase of frequency and intensity of droughts in some areas (Mediterranean,
West Asia, South America, Northeastern Asia, etc.) [6,7].

Drought is generally defined as a “prolonged absence or marked deficiency of precipitation”,
a “deficiency of precipitation that results in water shortage for some activity or for some group”,
or a “period of abnormally dry weather sufficiently prolonged for the lack of precipitation to cause
a serious hydrological imbalance” [8]. All these definitions of drought highlight the importance of
precipitation, evapotranspiration, and runoff and their interactions in drought caused by climatic
factors [9]. Water deficit during droughts generally affects the whole hydrological cycle, reducing
the volume of water at many levels (water bodies, streamflow, and groundwater); water quality may
decline too due to low-flow regimes and water temperature increase under drought conditions [10].
By affecting water availability and quality, drought can have significant effects on many other vital
systems and services (drinking and sanitation water supply, food security, health and well-being,
economic development, etc.) [11]. Effective water resource management under drought risks relies on
forecast and the good understanding of characteristics and features of potential droughts [12].

For drought monitoring and understanding, many statistical probability-based indices have been
created and have been continually developed until nowadays [13–15]. The usefulness of drought
indices in forecasting, tracking, and measuring the recovery from droughts is confronted, in some
situations, to the need for a large series of multi-variables over large areas [16,17]. The lack of
consideration of interactions between many physical components [18] and the failure to include
characteristics of some region-specific factors [10] might lead to weaknesses in investigating droughts.
Under these situations, combining drought indices and distributed hydrological modeling offers
a more complete methodology base to scrutinize hydrological drought [10,16,19–21]. Many recent
studies used this combination to understand past droughts and to project future water resources under
potential drought impacts in many regions worldwide. Hoerling and Eischeid [22] used large scale
hydrological models and drought indices and have investigated future droughts and the impact of
climate change on droughts in the southwestern and the central United States. Leng et al. [23] used
the Variable Infiltration Capacity (VIC) model [24] in order to investigate future changes in China in
terms of hydrology, and then they assessed climate change impact on drought patterns from many
perspectives by calculating the SPI (Standardized Precipitation Index), SRI (Standardized Runoff Index)
and SSWI (Standardized Soil Moisture Index) through VIC help. Kang and Sridhar [16] confirmed
the ability of the Soil and Water Assessment Tool (SWAT) [25] and VIC models together with a set of
drought indices to forecast and study future drought evolution in a multi-purpose watershed in USA.

In the Mediterranean region, droughts are considered one of the most severe and frequent natural
hazards [26]. In terms of the future, most of the climatic models used in the last assessment report of the
IPCC (Intergovernmental Panel on Climate Change) predict an increase of aridity in the Mediterranean
region for the rest of the current century as fewer precipitations are expected throughout the whole
year, with a clear deficit in summer season [5,6].

Because of its location in the Mediterranean region, Morocco has always suffered from extreme
weather events such as drought. Although drought can occur in all climatic zones, arid and semi-arid
regions (such as several parts of Morocco) are the most vulnerable because of rainfall variability and
uneven temporal water distribution [27,28]. Many studies confirmed that the frequency of dry years
has increased since the early 1980s in Morocco [29]. The frequency of dry years has changed from
1year in 15 normal years in the 1930s, 1940s, 1950s, 1960s, and 1970s, 1one dry year in 3 normal years in
the last three decades [30,31].
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Many severe drought episodes have been recorded in the recent history of the country, with clear
impacts on many aspects of the environment, population well-being, and economic development [32].
For example, the drought that occurred in 1999–2000 was responsible for the decline in national
economic growth and around USD 900 million in losses, with more than 275,000 persons being
affected [29,31]. Other previous droughts in the 1990sled to a fall of national gross domestic product
significantly (from −1.5% to −7.6%), pushing the government to import more cereals as national crop
productions dropped down [31,33].

The Bouregreg watershed (BW) is located in the northwestern part of Morocco. With a total
population exceeding 2.4 million and various natural development assets, this watershed is considered
one of the most important watersheds in the country [34]. Medium and small urban centers are located
within the BW territory. Farming and forestry are the major activities that are held over the watershed,
with high economic as well as social importance for the local population [27]. The Sidi Mohammed
Ben Abdellah dam is located a few kilometers from the outlet of BW, being considered one of the major
five dams of Morocco as it secures most of drinking and sanitation water demand for all surrounding
urban centers, including Rabat, the capital [34,35].

BW is a typical Mediterranean watershed, with large development potentialities, and having
various challenges related to the growing water demand and uncertain climate in the future; however,
no previous studies with future drought impacts on water as core scope have been performed except
some isolate assessments of current water balance [36,37] and investigations of historic climate change
trends [35]. Therefore, a comprehensive and integrated assessment of potential future drought impacts
on water resources in BW is needed.

Thus, the primary objective of this study was to combine indices-based techniques and a large
hydrological modeling approach, for the first time in Morocco, in order to forecast potential reactions
of the hydrological system to future droughts in such a strategic watershed in Morocco. The specific
objectives of the present study are (1) to combine drought indices and a semi-distributed model
to forecast future drought episodes while taking into consideration the physical features of BW,
(2) to assess potential changes in the hydrological systems under droughts, and (3) to identify the
most vulnerable sub-basins of BW to drought impacts. This study aimed to highlight drought
evolution in time and space in the watershed unit under increasing demand for water and provide a
methodological basis for further water management systems under potential extreme weather events
in the Mediterranean region.

2. Materials and Methods

2.1. Study Area

The study watershed is one of the main catchments in Morocco, being well characterized by
topographic diversity, and hosting the main Moroccan climatic zones, as well as the main crops and
vegetation of the country. The Bouregreg watershed is located in the northwestern part of Morocco
(Figure 1), with a total surface area of 9656 km2. Topography of the BW is divided into three different
classes: mountainous area in the northeast (Oulmes area) with altitudes ranging from 1200 to 1726 m;
relatively medium altitude area in the central and southeastern part of the study watershed (800 to
1200 m); and the western part, which is the lowest plateau of the watershed (0 to 800 m) [34].
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this region as arid. The extreme northeastern part of the watershed, the highlands of Oulmes, is a 
mountainous sub-humid area that receives generally more than 600 mm rainfall, with a mean annual 
temperature of 15°C [37]. The annual potential water resources of the Bouregreg watershed is 720 
million m3, coming mostly from surface water (more than 90%). The Sidi Mohamed Ben Abdellah 
dam, located a few kilometers upstream of the watershed outlet, has a capacity of 1500 Million m3 
and secures 250 to 450 million m3 of sanitation and drinking water for Rabat city and all the 
surrounding urban areas. Water inflow in the watershed is very linked to the rainfall regime, which 
is highly non-uniform due to variance between flood periods (December to April) and dry season 
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The stream network of Bouregreg watershed is quite developed, being organized around three 
main rivers: Korifla, Grou, and Bouregreg rivers. Both of the two major rivers (Bouregreg and Grou) 
have origins from the same area, M’riret, which is located at the base of Middle Atlas Mountains 
[34,39](Figure 1).  

In terms of land use (Figure 2), bare lands and oak forests cover, respectively, 14% and 24% of 
the total area of the study watershed. Farming activity (28%) is very important, with the dominant 
crops being cereals, olive trees, and pulse crops (broad beans), in addition to minor parcels where 
some irrigated vegetables and grape crops are grown. Range and pasture lands (30%) are distributed 
across the watershed as husbandry is an important economic activity in the area [34,40]. 

Figure 1. topography, and streamflow network of Bouregreg watershed (BW) and the used
gauging stations.

BW is considered a Mediterranean watershed with different climatic zones and a clear ocean
influence. The extreme western part of the watershed receives a generally cumulative rainfall of
500 mm with a mean annual temperature of 18 ◦C, which makes this area a sub-humid climate
region. The central part of the basin is considered a semi-arid region and receives an annual rainfall
of less than 400 mm with an annual mean temperature of 18 ◦C. The southeastern part is under a
continental influence with a cumulative rainfall of 400 mm and an annual mean temperature of 15 ◦C,
classifying this region as arid. The extreme northeastern part of the watershed, the highlands of
Oulmes, is a mountainous sub-humid area that receives generally more than 600 mm rainfall, with
a mean annual temperature of 15 ◦C [37]. The annual potential water resources of the Bouregreg
watershed is 720 million m3, coming mostly from surface water (more than 90%). The Sidi Mohamed
Ben Abdellah dam, located a few kilometers upstream of the watershed outlet, has a capacity of
1500 Million m3 and secures 250 to 450 million m3 of sanitation and drinking water for Rabat city and
all the surrounding urban areas. Water inflow in the watershed is very linked to the rainfall regime,
which is highly non-uniform due to variance between flood periods (December to April) and dry
season (summer) [34,38].

The stream network of Bouregreg watershed is quite developed, being organized around three
main rivers: Korifla, Grou, and Bouregreg rivers. Both of the two major rivers (Bouregreg and Grou)
have origins from the same area, M’riret, which is located at the base of Middle Atlas Mountains [34,39]
(Figure 1).

In terms of land use (Figure 2), bare lands and oak forests cover, respectively, 14% and 24% of the
total area of the study watershed. Farming activity (28%) is very important, with the dominant crops
being cereals, olive trees, and pulse crops (broad beans), in addition to minor parcels where some
irrigated vegetables and grape crops are grown. Range and pasture lands (30%) are distributed across
the watershed as husbandry is an important economic activity in the area [34,40].
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2.2. Hydrological Model

For this study, the SWAT model (Soil and Water Assessment Tool) was used to simulate the
hydrological system and its reaction under baseline and future drought conditions in the study
watershed. This model offers wide possibilities by integrating different modules (rainfall–runoff,
plant growth, sediment transport, pesticides transport, etc.) in a physically based approach and with
planning and management change possibilities [41]. This guarantees more reliable scenario simulation
in the future and better confidence in the study conclusions in such a complex watershed [42].

A distributed rainfall–runoff model, such as SWAT, divides a watershed into smaller discrete units
for which spatial variation of the major physical properties are limited and the hydrological processes
can be treated as being homogenous [43]. In the specific case of SWAT, HRUs (Hydrologic Response
Units) are formed from the combination of soil types, land use classes, and slope ranges. All processes
covered by SWAT (runoff, crops yields, sediment yield, etc.) are estimated at the HRU scale [44].

SWAT relies on the Soil Conservation Service curve number method [45] to capture the
rainfall–runoff relationship. The daily water balance simulated by the SWAT model is based on
the following equation [25]:

SWt = SW0 +
(
Rday −Qsurf − Ea −Wseep −Qgw

)
(1)

where
SWt: the daily final soil water content (mm H2O);
SW0: the initial soil water content on day i (mm H2O);
t: the time (days);
Rday: the amount of precipitation on day i (mm H2O);
Qsurf: the amount of surface runoff on day i (mm H2O);
Ea: the amount of evapotranspiration on day i (mm H2O);
Wseep: the amount of water entering the vadose zone from the soil profile on day i (mm H2O);
Qgw: the amount of return flow on day i (mm H2O).

The SWAT version used in this study is the 2012 edition; calibration and sensitivity analysis
processes were performed using the SWAT auxiliary program SWAT CUP [46].
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SWAT CUP is a calibration, validation, and sensitivity analysis tool for SWAT and can be
freely downloaded. This public program offers different choices in terms of optimization programs.
In this study, the SUFI-2 (Sequential Uncertainty Fitting Version 2) was used. In SUFI-2, uncertainty
in parameters, expressed as ranges (uniform distributions), accounts for all potential sources of
uncertainties, such as variables (rainfall, temperatures, etc.), conceptual model, and parameters [47].

Before proceeding with SWAT calibration over BW, global sensitivity analysis tests were carried out
using the SUFI-2 algorithm. The objective relies on identifying the most influential model parameters
on both hydrology and plant growth in the study watershed. SWAT CUP uses a t-test to identify the
relative significance of each parameter on objective function change [46]. For this study, parameters to
be tested and their ranges were selected on the basis of professional knowledge on local processes
and literature.

During streamflow (m3/s) calibration through SWAT CUP, we looked at three statistical indicators
to confirm a maximal concordance between observed and predicted water budget components:
the Nash–Sutcliffe coefficient, the determination coefficient, and the percent bias.

With

NSE = 1−

∑n
i=1(Oi − Pi)2∑n

i=1

(
Oi −Oavg

)2 (2)

and

R2 =


∑n

i=1

(
Oi −Oavg

)
(Pi − Pavg)[∑n

i=1

(
Oi −Oavg

)2 ∑n
i=1 (Pi − Pavg)

2
]0.5


2

(3)

and

PBIAS =

∑n
i=1(Oi − Pi)100∑n

i=1 Oi
(4)

where
Oi: the observed streamflow for time period I;
Pi: the simulated value for the same period;
Oavg: the mean of observed streamflow per time period;
Pavg: the mean of simulated values for the same period;
n: the number of time periods.

The Nash–Sutcliffe coefficient (NSE) value can range from −∞ to 1, and a perfect fit between the
simulated and observed data is reached when NSE value is close to 1 [47]. The determination coefficient,
R2, indicates how well the variance of observed values are replicated by the model simulations and
can vary from 0 to 1, where 0 indicates no correlation and 1 represents the perfect correlation [48].
The percent bias (PBIAS) identifies average tendency of simulated data to be greater or lesser than
their recorded counterparts. PBIAS starts indicating satisfactory simulation performance when its
absolute value is less than 25% [48]. These goodness-of-fit indicators form the objective function for
calibration tests and were supervised during the automatic modification of the sensitive parameters of
SWAT modules in the Bouregreg watershed.

For optimal performances of the SWAT model over BW, and due to the importance of farming in
the study watershed and its potential influence on water balance, we made specific efforts to calibrate
the plant growth module of SWAT in addition to the rain–runoff module. The determination coefficient
(R2) was adopted as a statistical indicator of goodness-of-fit between simulated and observed annual
crop yields while amending the most influencing parameters on the plant growth process. SWAT
calibration helper command was used to perform this task by modifying the influential crop parameters
of the concerned crops in the HRUs where this crop is grown.
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2.3. Drought Indices

According to Sun et al. [9], there are four different drought categories: meteorological, hydrological,
agricultural, and socioeconomic droughts. Meteorological drought is generated by rainfall deficit
over a region for a period of time [49]; hydrological drought is related to below-normal supply of
water in rivers, water bodies, and groundwater [50]; agricultural drought is marked by a period with
very low (to null) soil moisture levels leading to crops stress [50,51]; and socioeconomic drought is
linked to the impact of drought conditions on the regular fluxes and mechanisms of a given economic
commodity [49].

Depending on the scope, drought can be monitored through various statistical probability indices
that have been developed for each scope perspective. The Standardized Precipitation Index (SPI) [52]
and percent of normal precipitation [53] are some of the widely used meteorological drought indices.
Palmer Hydrological Drought Index [54], Baseflow Index [55], and the recently developed Streamflow
Drought Index (SDI) [56] are some of the common hydrological drought indices. Although precipitation
deficiency is the root-cause of all types of droughts, hydrological drought is generally lagging behind the
meteorological drought [57]. This is mainly because it takes some time before insufficient precipitation
appears in the various subsurface component of the hydrological system [57,58]. In this study, the SPI
was chosen for describing meteorological drought and the SDI was chosen for hydrological drought.

The SPI is probably the most popularly used meteorological drought index where the precipitation
data is fitted to gamma distribution [51,59]. Further description of the SPI calculation description is
reported by MacKee et al. [52].

SPI is a flexible index that can be calculated at multiple timescales: 3, 6, 9, and 12 months [51];
for example, the SPI-3 reflects the short and medium term moisture conditions, and the SPI-12 reflects
the long term precipitation patterns used to monitor streamflow, reservoir, and groundwater [60].
For this study, and since the hydrological systems is the core focus, the SPI-12 was calculated for BW
using monthly precipitation.

The SDI is a “simplistic” hydrological index proposed by Nalbantis [56], and it keeps the advantage
of effectiveness found in meteorological drought indices such as SPI; the monthly streamflow data is
the unique requirement to compute SDI.

This index assumes that a time series of monthly streamflow volumes Qi,j is available, where i
denotes the hydrological year and j the month within that hydrological year. In the Mediterranean
region, the typical hydrological year begins by October.

Then,

Vi,j =
3k∑

j=1

Qi, j, i = 1, 2, . . . j = 1, 2, . . . , 12 k = 1, 2, 3, 4 (5)

where Vi,j is the cumulative streamflow for the i-th hydrological year and k-th reference period, k = 1 for
October–December, k = 2 for October–March, k = 3 for October–June, and k = 4 for October–September.

On the basis of cumulative streamflow volumes Vi,j, the Streamflow Drought Index is defined for
each reference period k of the i-th hydrological year as follows:

SDIi,k =
Vi,k −Vk

Sk
i = 1, 2, . . . , k = 1, 2, 3, 4 (6)

where Vk and Sk are, respectively, the mean and the standard deviation of cumulative streamflow
volumes of reference period k, as these are estimated over a long period of time [56].

For both SPI and SDI, a drought starts in the month when their values fall below −1 and it ends
when they return to positive values. In Table 1, we show the SPI and SDI classes as suggested [52,56].
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Table 1. Drought classes definition and their corresponding SPI (Standardized Precipitation
Index)/Streamflow Drought Index (SDI) values.

SPI and SDI Value Class

Value ≥ 2.0 Extremely wet
1.5 ≤ value < 2.0 Very wet
1.0 ≤ value < 1.5 Moderately wet
−1.0 < value < 1.0 Normal
−1.5 < value ≤ −1.0 Moderately dry
−2.0 ≤ value < −1.5 severely dry

value ≤ −2.0 Extremely dry

2.4. Datasets

2.4.1. Projected Climate Variables

In order to force the SWAT model to simulate the future hydrology in BW, we used dynamically
downscaled output data from the Global Climate Model CNRM-CM5 (used in the fifth version of the
Coupled Model Intercomparison Project (CMIP5)) [61] in this study. Data from the CNRM-CM5 model
were successfully used in climate change studies in the area, with low uncertainty risks [33,62,63].

The Bias-Corrected Spatial Disaggregation (BCSD) method [64] and Global Land Data Assimilation
System (GLDAS) data at 25km resolution were used to bias correct and spatially downscale CNRM-CM5
simulations. The BCSD method is a two-step procedure that is based on a statistical bias correction
and spatial disaggregation to transform bias-corrected future model simulations from coarse-scale to
fine-scale [65]. In addition to the reduction of rainfall distribution biases at the GCM scale, the main
advantage of this method is its ability to bring up more realistic variability at finer resolution than
simpler spatial interpolation techniques [62]. On top of these advantages, the selection of this method
was motivated by its previous use under similar climate and physical conditions [66–68].

GLDAS (Global Land Data Assimilation System) is a NASA (National Aeronautics and Space
Administration) project to ingest satellite- and ground-based observational data products to generate
optimal fields of land surface states and fluxes through advanced land surface modeling and data
assimilation techniques [69]. Due to its high grid density over BW (guaranteeing optimal representation
of climate variability) and its integration of ground observations, GLDAS data offered good compromise
to reduce uncertainty related to future climate projection. Generally, satisfactory bias correction results
are obtained when GLDAS data are used to downscale projected climate, including in complex and
limited scale regions [70,71]

GLDAS-based baseline data were from January 1985 to December 2005, and for future datasets
both the periods of 2030–2050 and 2080–2100 were considered. The first 5 years of both baseline
and future periods of modeling process were exclusively dedicated to model warm up and were not
considered in different comparisons and analysis.

Two Representative Concentration Pathways (RCPs) were selected: RCP4.5, described as an
“intermediate” scenario, and RCP8.5, the worst-case climate change scenario. Emissions are expected to
peak around the mid-century under RCP4.5,whereasthey are supposed to keep rising throughout the
21st century under RCP8.5 [5].These two scenarios have been selected for this study as they are believed
to uncover climate change dynamics in both future modeling periods (2035–2050 and 2085–2100).

2.4.2. SWAT Inputs

Due to the physical diversity of BW and the importance of the performance of SWAT model in
predicting reaction of hydrology to droughts in the study watershed, we dedicated large amounts of
effort in collecting quality input datasets and calibrating the model.

Digital Elevation Model data of BW were obtained from the Shuttle Radar Topography Mission
(SRTM) of NASA’s Space Endeavour flight; the resolution of the DEM data used was 30m. A soil
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map of the study watershed has been obtained from the latest version of the Harmonized World Soil
Database (HWSD V1.21) [72]. It is a 1km resolution database that was designed by IIASA (International
Institute for Applied Systems Analysis) and FAO (Food and Agriculture Organization) in partnership
with other institutions: ISRIC (International Soil Reference and Information Centre), ESBN (European
Soil Bureau Network), and ISC-CAS (Institute of Soil Science–Chinese Academy of Sciences).

Due to the major role played by land cover in hydrologic modeling, we developed a specific 30 m
resolution’ land cover map for the study area (Figure 2). The analysis and classification of different land
cover classes were performed using three high-quality Landsat 8 OLI/TIRS satellite images. Landsat
8 is an American Earth observation satellite launched on 11 February 2013; OLI (Operational Land
Imager) and TIRS (Thermal InfraRed Sensor) are the last improved sensors developed for the Landsat
8 satellite. The images were downloaded on 21 March 2019 from the Earth Explorer database of
U.S. Geological Survey. ERDAS IMAGINE 2015 software was used for classification and all image
processing. Supervised classification was performed in order to come up with the different classes.
In addition to expertise on the ecology of the study area, field visits were carried out (during the third
week of March 2019) to collect reference point coordinates of some spots where the dominating land
cover classes are located. The aim was to develop spectral signatures of the major land cover classes to
help the software in assigning the signatures to other equivalent pixels across the watershed map with
high confidence. The land cover classification accuracy was assessed using a confusion matrix and the
kappa coefficient of agreement. The kappa coefficient of BW’s land cover classification was 0.86, which
showed an acceptable precision according to Congalton [73].

Observed daily rainfall and temperature (max and min) series for 21 hydrologic years since
1990/1991 were provided by local authorities in charge of climate and hydrology monitoring from
11 different recording stations within the watershed territory. Since only air temperature and rainfall
were available as observed climate data for BW, we used the Hargreaves method [74] to calculate the
evapotranspiration in this study. The Hargreaves method is widely used and gives accurate results in
evapotranspiration estimation over semi-arid conditions (including in Morocco) [75].

For calibration and validation, recorded monthly discharge data from the four different gauging
stations (Figure 1) from 1990 to 2005 were confronted to the simulated discharge data at the same four
streamgauges; similarly, average annual yields of major crops in many sub-basins (wheat, broad beans,
and olive trees) recorded from 1992 to 2005 were compared to simulate annual crops yields.

2.4.3. Drought Indices Inputs

In this study, SWAT was used to compute the input variables for both adopted drought indices.
The main objective behind using SWAT to generate input data for drought indices calculation is for the
benefit of the spatial and physical interpolation capabilities of such a semi-distributed and physically
based tool over such a large heterogeneous watershed.

For instance, the simulated monthly precipitation data over BW (from 2035 to 2050, and from
2085 to 2100) under both scenarios (RCP4.5 and RCP8.5) were used to derive 12-month SPI over the
simulation periods, whereas the estimated runoff data under both scenarios and along both study
periods were used to compute 12-month SDI over BW. Similarly, and for historic SDI-12 and SPI-12
calculations, simulated monthly runoff and rainfall along the baseline period (1990–2005) by SWAT
were used.

2.5. Methodology

Figure 3 describes the different milestones to forecast future droughts and to evaluate their
potential impacts on hydrologic processes in the study watershed.



Water 2020, 12, 2333 10 of 24

Water 2020, 12, x FOR PEER REVIEW 10 of 24 

 

 
Figure 3. Research methodology flowchart. 

Due to the good compromises between a good correlation with recorded climate variables, a 
higher grid density (compared to observation stations), and the similar statistical intensity 
distribution to bias-corrected CNRM-CM5 data, we used GLDAS 25 km reanalysis data to run SWAT 
throughout the baseline period. Then we used the downscaled CNRM-CM5 scenarios (RCP4.5 and 
RCP8.5) to simulate water balance during the periods of 2035–2050 and 2085–2100. After deriving the 
required data to compute historical SDI-12 and SPI-12, both hydrological and meteorological drought 
indices were calculated and tested for correlation with the baseline streamflow data to assess their 
reliability in predicting future drought. Future drought indices were then estimated for 2035–2050 
and 2085–2100 periods under RCP4.5 and RCP8.5 scenarios. To assess the capabilities of both drought 
indices in capturing droughts, we used the method of simple linear regression with least squares 

For hydrological process monitoring under identified dry years, we picked the Total Water Yield 
(TWYD) parameter, which is simulated by the SWAT model as the sum of surface runoff, lateral flow, 
and groundwater contribution net of transmission losses. The advantage of this parameter is that it 
offers the possibility to quantify most of the hydrologic components with high importance for water 
resource use systems in the study area. To evaluate the spatial extent of droughts over BW, we 
compared TWYD values (in each sub-basin) under the identified droughts to the average of baseline 
water yields. 

3. Results and Discussion 

3.1. SWAT Performance 

The SWAT model was initially set up and run throughout January 1985 to December 2005. The 
first 5years were allocated to the model warm-up process. Sensitivity analysis of the hydrological 
module at the four streamgauges revealed that the most influential parameters on BW’s hydrology 
were CN2 (initial SCS runoff curve number for moisture condition II), SOL_AWC (available water 
capacity of the soil layer), ESCO (soil evaporation compensation factor), and GWQMN (threshold 
depth of water return in shallow flow to occur). All the four parameters were adjusted accordingly 
at the four streamgauges to reach the best reproduction of recorded streamflows. 

Figure 3. Research methodology flowchart.

Due to the good compromises between a good correlation with recorded climate variables, a higher
grid density (compared to observation stations), and the similar statistical intensity distribution to
bias-corrected CNRM-CM5 data, we used GLDAS 25 km reanalysis data to run SWAT throughout
the baseline period. Then we used the downscaled CNRM-CM5 scenarios (RCP4.5 and RCP8.5)
to simulate water balance during the periods of 2035–2050 and 2085–2100. After deriving the
required data to compute historical SDI-12 and SPI-12, both hydrological and meteorological drought
indices were calculated and tested for correlation with the baseline streamflow data to assess their
reliability in predicting future drought. Future drought indices were then estimated for 2035–2050
and 2085–2100 periods under RCP4.5 and RCP8.5 scenarios. To assess the capabilities of both drought
indices in capturing droughts, we used the method of simple linear regression with least squares

For hydrological process monitoring under identified dry years, we picked the Total Water Yield
(TWYD) parameter, which is simulated by the SWAT model as the sum of surface runoff, lateral
flow, and groundwater contribution net of transmission losses. The advantage of this parameter is
that it offers the possibility to quantify most of the hydrologic components with high importance for
water resource use systems in the study area. To evaluate the spatial extent of droughts over BW, we
compared TWYD values (in each sub-basin) under the identified droughts to the average of baseline
water yields.

3. Results and Discussion

3.1. SWAT Performance

The SWAT model was initially set up and run throughout January 1985 to December 2005. The first
5 years were allocated to the model warm-up process. Sensitivity analysis of the hydrological module
at the four streamgauges revealed that the most influential parameters on BW’s hydrology were
CN2 (initial SCS runoff curve number for moisture condition II), SOL_AWC (available water capacity
of the soil layer), ESCO (soil evaporation compensation factor), and GWQMN (threshold depth of
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water return in shallow flow to occur). All the four parameters were adjusted accordingly at the four
streamgauges to reach the best reproduction of recorded streamflows.

Taking into consideration that R2 and NSE coefficient start to indicate acceptable goodness-of-fit at
the value 0.5, where in the PBIAS value needs to be ±25% [48,76], the monthly streamflow calibration
and validation results indicated a satisfactory model performance for hydrological processes over all
three rivers in BW (Table 2).

Table 2. R2 and Nash–Sutcliffe coefficient (NSE) values during calibration and validation at different
gauging stations.

Aguibate Ezziar Ras Fathia S.M.Chrif Ain Loudah

Calibration
R2 0.69 0.73 0.77 0.71

NSE 0.7 0.63 0.87 0.69
PBIAS 12% 6% −10% −9%

Validation
R2 0.72 0.69 0.52 0.67

NSE 0.62 0.51 0.46 0.5
PBIAS 8% 15% −8% −11%

The R2 values in calibration and validation periods were all higher than 0.5 for all four gauges,
ranging from 0.69 to 0.77 in the calibration period and from 0.52 to 0.72 in the validation period (Table 2).
The NSE values were all ≥0.46 for all gauges, ranging from 0.63 to 0.87 in the calibration period and
from 0.46 to 0.62 in the validation period. As per PBIAS, all absolute values ranged from 6% to 15%,
which represents satisfactory goodness-of-fit (Table 2).

SWAT performance over hydrologic processes in BW is similar to other similar watersheds with
equivalent conditions [77–79].

Hydrographs of simulated and observed discharges at the four gauging stations (over the three
rivers) showed that the SWAT model succeeded in tracking the recorded flow overall (Figure 4). Most of
peak and low flows were fitted well with the observed data along the simulation periods at all the four
gauging stations.
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Similarly to the hydrologic module, results of the calibration and validation of plant growth
module were satisfactory also. Four different parameters were influential on yields of the three major
crops in BW: HVSTI (harvest index for optimal growing conditions), BLAI (maximum leaf area index),
BIO_E (radiation use efficiency), and EXT_COEF (light extinction coefficient). All the four parameters
were subject to adjustments in sub basins where each of the three crops are grown while monitoring
the adopted goodness-of-fit indicator R2. All R2 values were higher than 0.5 when recorded annual
yields of the three major crops were compared to the simulated ones by SWAT over the simulation
period (Table 3).

Table 3. R2 coefficient values during calibration and validation of plant growth module of SWAT.

Wheat Broad Beans Olive Trees

Calibration 0.67 0.64 0.67
Validation 0.86 0.68 0.8

The R2 values ranged from 0.67 to 0.86, which confirms the capabilities of the SWAT model to
simulate crop performance in BW under the baseline conditions and all related processes (such as soil
moisture mechanisms, transpiration, percolation, etc.) [48].

3.2. Future Climate

To come up with future trends during 2035–2050 and 2085–2100 periods under both scenarios
(RCP4.5 and RCP8.5), we assessed consolidated precipitation and temperature projections via the
SWAT model over the whole study watershed, taking into consideration the 1990–2005 period as
reference (baseline).

3.2.1. Temperature

Figure 5 represents the daily averages of maximum, minimum, and mean temperatures under
different scenarios over the Bouregreg watershed, with their standard deviation values shown.
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Figure 5. Averages of daily temperatures during simulation periods under baseline, RCP4.5, and
RCP8.5, as well as values of year-to-year standard deviation.

A clear increase of temperatures was expected during both study periods under both scenarios
compared to baseline averages. The increase values of mean temperatures during the 2035–2050 period
were +1.3 ◦C and +1.44 ◦C under RCP4.5 and RCP8.5, respectively, and +1.82 ◦C and 2.73 ◦C during
the 2085–2100 period under RCP4.5 and RCP8.5, respectively.

Regarding the year-to-year variability, the interannual standard deviation values were higher in
both periods under both scenarios in comparison to the baseline, indicating more fluctuations of mean
temperatures on a year-to-year basis.
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3.2.2. Precipitation

Figure 6 represents annual averages of total rainfall for baseline and all scenarios during both
study periods, along with standard deviation values of interannual rainfall.
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Figure 6. Annual rainfall averages under baseline and both Representative Concentration Pathways
(RCPs), as well as standard deviation values.

Overall, we expect an equivalent cumulative annual rainfall under RCP4.5 compared to baseline,
but with different interannual variability. Standard deviation values were, respectively, 99.1 mm,
152.2 mm, and 161.2 mm for baseline, 2035–2050, and 2085–2100 periods.

Under RCP8.5, it is expected that there will be slightly equivalent cumulative yearly rainfall during
the 2035–2050 period and less (327 mm) at the end of the century. The highest standard deviation
values were found under this scenario: 186 mm during the 2035–2050 period and 171.3 mm for the
2085–2100 period.

The high standard deviation values under both scenarios (in comparison to the baseline) suggest
high interannual rainfall variability, which may lead to a succession of dry (drought) and moist
(flooding) periods with higher frequency.

This result is confirmed by the comparison between the evolution of annual TWYDs under
baseline and future scenarios (Figure 7). High fluctuation can be clearly observed on TWYD graphics
of both RCPs.
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Figure 7. Annual distribution of mean precipitation averages under both RCPs during (a) 2035–2050
and (b) 2085–2100 periods in comparison to baseline (1990–2005).

3.3. Droughts Characteristics

3.3.1. Historic Drought Propagation

The historic time series of SPI-12 and SDI-12 and the historic annual TWYD in BW (Figure 8) show
that both indices followed an identical trend along the baseline period. On the basis of these data, BW
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experienced two severely dry years. In these specific hydrologic years, the lowest average annual
TWYDs in BW have been recorded: 79 mm in 1992–1993 and 65 mm in 1999–1900.
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Figure 8. Annual distribution of historical Total Water Yield (TWYD), SPI-12, and SDI-12.

In 1992–1993, SPI-12 and SDI-12 values were −1.86 and −1.92, respectively, whereas in 1999/2000,
their values were −1.96 and −2, respectively. According to observation authorities in charge of tracking
extreme weather events in Morocco, the study region underwent severe drought in both years (similarly
to most of other regions in Morocco). According to El Khatri and El Hairech [29] and Bouignane [80],
Morocco was meant to manage a clear deficit in water resources during both years and to import more
cereals to cope with internal demand.

To confirm the ability of both indices to capture droughts, we assessed a simple regression test
between recorded historic flow (TWYD) and the computed drought indices. Figure 9 represents the
correlation between SPI-12 and annual historic TWYD, and similarly the SDI-12 with historic TWYD.
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Figure 9. Scatter plot for correlation tests between annual historical TWYD and historical (a) SPI-12
and (b) SDI-12.

Correlation values for SPI-12 and SDI-12 when compared to historic annual TWYDs were0.566
and 0.522, respectively, indicating that there was a (moderate) correlation between the both drought
indices and the evolution of TWYD on an annual basis. As both indices were equivalently correlated
to the selected hydrological indicator (TWYD) for this study, we considered both SPI-12 and SDI-12 to
analyze future droughts under both scenarios (RCP4.5 and RCP8.5) in BW.

3.3.2. Future Droughts

Figure 10 shows future time series of SPI-12 and SDI-12 for 2035–2050 and 2085–2100 periods
under both scenarios.
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Future drought simulation over BW revealed that the watershed will experience several droughts
with different severity levels under both climate change scenarios. Most of dry years were detected
by both indices, except in the moderately dry years 2044–2045 and 2048–2049 (Figure 10a) that were
identified only by SDI-12 = −1.01 (while SPI-12 = −0.73) and the moderately dry year 2042–2043
(Figure 10b) that has been described by SPI-12 = −1.27 (while SDI-12 = −0.89).

Figure 11 describes the distribution of different severity classes in comparison under each scenario
including the baseline.

Water 2020, 12, x FOR PEER REVIEW 15 of 24 

 

3.3.2. Future Droughts 

Figure 10 shows future time series of SPI-12 and SDI-12 for 2035–2050 and 2085–2100 periods 
under both scenarios. 

 
(a) (b) 

(c) (d) 

Figure 10. Annual distribution of SPI-12 and SDI-12 (a) under RCP4.5, (b) under RCP8.5 for the period 
2035–2050, (c) under RCP4.5, and (d) under RCP8.5 within the window 2085–2100. 

Future drought simulation over BW revealed that the watershed will experience several 
droughts with different severity levels under both climate change scenarios. Most of dry years were 
detected by both indices, except in the moderately dry years 2044–2045 and 2048–2049 (Figure 10a) 
that were identified only by SDI-12 = −1.01 (while SPI-12 = −0.73) and the moderately dry year 2042–
2043 (Figure 10b) that has been described by SPI-12 = −1.27 (while SDI-12 = −0.89). 

Figure 11 describes the distribution of different severity classes in comparison under each 
scenario including the baseline. 

  
(a) (b) 

Figure 11.Distribution of dry years by severity classes according to (a) SPI-12 and (b) SDI-12. 

On the basis of the SPI-12 index, and similarly to the baseline situation, there will be two dry 
years during 2035–2050 (under each RCPs).The difference to baseline situation is that one year should 
be moderately dry and the second one should be severely dry. During the last 15 years of the present 
century, it has been predicted that under a realistic scenario, BW should undergo two moderately 
dry years and one extremely dry year (2098–2099), whereas under the RCP8.5 scenario, three 
moderately dry years and one severely dry year were simulated. 

Figure 11. Distribution of dry years by severity classes according to (a) SPI-12 and (b) SDI-12.

On the basis of the SPI-12 index, and similarly to the baseline situation, there will be two dry years
during 2035–2050 (under each RCPs). The difference to baseline situation is that one year should be
moderately dry and the second one should be severely dry. During the last 15 years of the present
century, it has been predicted that under a realistic scenario, BW should undergo two moderately dry
years and one extremely dry year (2098–2099), whereas under the RCP8.5 scenario, three moderately
dry years and one severely dry year were simulated.

According to SDI-12 index, and during the 2035–2050 period, BW will experience two moderately
dry years and one extremely dry year (2049–2050) under RCP4.5, and one moderately dry year and
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severely dry year under RCP8.5. During the 2085–2100 window, it was predicted that under RCP4.5,
there will be one moderately dry year and two severely dry years. However, under the RCP8.5, there
will be four severely dry years. In overall, around 60% of dry years were predicted for the last 15 years
of the century.

All these results confirm the findings of Gudmundsson and Senvirane [26], as they reported
that enhanced greenhouse forcing has contributed to increased drying in the Mediterranean region
(including Northern Africa), and that this trend will keep increasing over the century, especially under
high levels of global warming. In the technical summary of the fifth Assessment Report of the IPCC,
many experts relied on various indicators (such as soil moisture drying that is of key importance to
many hydrologic and agronomic processes) to conclude that the Mediterranean region (in addition
to southwestern USA and southwestern Africa) should experience several droughts (and extreme
heatwaves) with more frequency toward the end of the 21st century [4].

3.4. Droughts Impacts

3.4.1. Temporal Distribution

To understand water resource vulnerability in BW to drought, we focused on the evolution of
annual TWYD along the study periods (2035–2050 and 2085–2100) with a particular focus on the
identified dry years by SPI-12 and SDI-12.

Figure 12 shows future time series of annual TWYD averages along with the average decrease
(in comparison to average TWYD of baseline situation) during dry years.
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Hydrological modeling in BW watershed under future emission scenarios revealed that water
resources in this watershed will show strong inter-annual variability under the previously described
year-to-year variability of climate variables.

In the 2035–2050 period, a significant decrease of TWYD value was simulated in the dry years as
all the identified dry years recorded very low TWYD values in comparison to baseline. The decrease
ranged from −45.6% to −76.6% in comparison to the 1990–2005 period. The largest change under
droughts should happen under the RCP8.5.

During 2085–2100 window, a dramatic TWYD decrease is expected too during the driest years.
All the identified dry years using drought indices showed very low water yields. Annual TWYD drops
during this period ranged from −65% to −95.6% in comparison to average TWYD in the baseline period.

These results are in line with the general forecasts that are formulated for this region and for
the Mediterranean area in general. Despite the aforementioned “equivalent” averages of future
precipitation to baseline, some years are expected to cumulate excessive water yields with flooding
risks (such as 2041–2042 and 2088–2089 under RCP4.5, and 2035–2036 under RCP8.5). On the other
hand, there will be several years with an alarming drop of water yield values in BW (such as 2042–2043
under RCP4.5 and 2091–2092 under RCP8.5). The impact is expected to be more severe under the
pessimistic scenario (RCP8.5), as the average of TWYD decrease (over both study periods) under this
scenario was found to be−82% (vs.−61% under the RCP4.5).

Regarding the possible difference between drought impact on water yield in the two simulation
periods, the simulated drought around the end of the century had a significantly higher impact on
water (average −81%) than the predicted impact for 2035–2050 period (average −59%). This difference
between the two windows in this study conforms to findings of most specialists about the increasing
impacts of climate change in the long term, mainly under pessimistic scenarios (no efficient actions
being performed to mitigate greenhouse gas emissions).

In other similar climate change hotspots around the world, Koch and Cherie [81] found that
streamflow of the Blue Nile River Basin (in Ethiopia) might drop by−61% during the 2090sunder climate
change impacts, as very dry years will be experienced by the study watershed. Abouabdillah et al. [82]
predicted high occurrence rates of droughts with high intensities in a Tunisian watershedin2070,
leading to potential drop of TWYD by −69% in some years.

For further investigations of the contribution of both droughts (meteorological and hydrological)
to such effects on hydrological regime in BW, we performed correlation tests between both drought
indices (SPI-12 and SDI-12) and future annual TWYD. The monitoring of correlation results (Table 4)
showed that both indices were consistent with respect to changes of the considered hydrological
indicator. Correlation values ranged from to 0.81 to 0.91, indicating strong abilities of both indices to
track annual water yield evolution.

Table 4. Values of correlation coefficients between annual TWYDs and the indices.

2035–2050 2085–2100

RCP4.5 RCP8.5 RCP4.5 RCP8.5

SPI-12 0.81 0.89 0.85 0.81
SDI-12 0.78 0.92 0.87 0.86

The previous analysis of future climate in BW revealed that there will be temperature and
precipitation increase (overall) in comparison to historic averages. Precipitation becomes runoff and
soil moisture and other TWYD components through the interaction with various factors such as
temperature, soil, and vegetation [9]. The increasing trend in precipitation has a direct impact on
soil moisture and runoff, but its expression in the hydrological regime is generally linked to other
factors. The use of both indices (meteorological and hydrological) was (initially) worthy; however,
their equivalent correlations with water yields in historic and future projections can be explained by
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low importance of underground components of the hydrological system in BW and the high ratio of
land cover classes that promote superficial flow components.

Although there was a good correlation between both drought indices and future TWYD, their
limitation in accurately considering the interactions between many mechanisms (such as potential
evapotranspiration, plant water demand, etc.) is to be taken into consideration. Furthermore, water
budget in some situations should be addressed physically, hence the use of the SWAT model and
a comprehensive water budget indicator such as TWYD to understand drought impact on water
resources. An example of the justification of this “cautious” approach are the inconsistent rates
of TWYD reduction in 2089–2099 (RCP4.5) and in 2097–2098 (RCP8.5) with the computed dryness
severities during both years. Although 2098–2099was revealed as dryer than 2097–2098 (Figure 10c,d),
the reduction of water yield was less than in 2097–2098(Figure 12c,d).

3.4.2. Spatial Extent

The previous results help to describe the future occurrence of droughts and to evaluate the potential
reaction of water resources during drought years in the whole BW. However, further understanding of
the study watershed vulnerability at the individual sub-basin level is needed to put in place appropriate
drought planning systems.

Four different dry years (one year by scenario and by time period) were selected to investigate the
local impacts of drought on water yield by sub-basin during these specific years (in comparison to
baseline). All the four dry years were identified jointly by both drought indices with different drought
intensity levels. Table 5 shows the selected dry years along with dryness classes.

Table 5. The selected dry years for spatial drought analysis.

2035–2050 2085–2100

RCP4.5 RCP8.5 RCP4.5 RCP8.5
SPI-12 2049–2050 2045–2046 2098–2099 2097–2098
SDI-12 2049–2050 2045–2046 2098–2099 2097–2098

Extreme Severe Moderate

≤−2 −2 to −1.5 −1.5 to −1

The spatial distribution of TWYD reduction by sub-basin (in comparison to baseline) revealed an
uneven response to droughts, suggesting different levels of vulnerability (Figure 13).

A significant decrease of water yield values was simulated at most of the BW sub-basins for the
selected dry years. The decrease ranged from −10% to −33% in 2049–2050 (RCP4.5) and from −20%
to −79% in 2045–2046 (RCP8.5). A more dramatic decrease of annual water yields is expected in the
simulated drought years within the 2085–2100 period. The change to baseline ranged from −40% to
−86% in 2098–2099 (RCP4.5) and from −60% to −89% in 2097–2098 (RCP8.5).

Besides the variability in terms of range reduction from one dry year to another, some sub-basins
showed a consistent response to drought overall. In fact, sub-basins 1, 3, 5, 8, 9, and 13 were the least
vulnerable to droughts across the four dry years; the other sub-basins recorded the highest decrease of
TWYD in comparison to baseline.

In our perspective, the strong variability in sub-basin vulnerability to drought impact could be
explained by the interaction of different biophysical factors related to regional differences in terms of
climate, land use, topography, and proximity to the Atlantic Ocean.



Water 2020, 12, 2333 19 of 24

Water 2020, 12, x FOR PEER REVIEW 19 of 24 

 

 
Figure 13.Water yield changes (to baseline average) by sub-basin during the dry years: (a) 2049–2050 
under RCP4.5, (b) 2045–2046 under RCP8.5, (c) 2098–2099 under RCP4.5, and (d) 2097–2098 under 
RCP8.5. 

In addition to the potential impacts of climate on the land ecosystem functioning, land use has 
many ways to affect the atmosphere and thereby climate and weather [5].For example, bare lands 
with dry soil conditions will lead to reduced evapotranspiration, which will strengthen the heat wave 
during dry season [6].Moreover, evaporation exceeds rainfall in oceans, which leads to moisture 
transport from the ocean to exposed lands through the atmosphere. Such a phenomenon might 
moderate meteorological drought in the land phase [83]. In BW, the sub-basins 1, 3, 5, 8, and 9 host 
annual crops, forest, and pasture lands; the elevation from sea level is the lowest in BW, as most of 
the terrains are plains and are located in front of the ocean. All these elements means that these sub-
basins area taking advantage from the ocean effect to mitigate the drought impact. The situation of 
sub-basin 13 is different; even that it is not directly exposed to the ocean. This sub-basin is the one 
with the highest altitudes in the study watershed with a sub-humid climate, which makes this specific 
sub-basin less vulnerable to drought. Deshmukh and Singh [84] and Stewart [85]argue that in such 
climatic contexts, watersheds with high altitude bands are generally less sensitive to warm climate 
extremes since their high portions are unaffected by warming. In BW, the sub-basin 13 still benefits 
from the moderating effect from the ocean from the West and is high enough to “escape” the warm 
air masses coming from the South and the East. 

The vulnerable group of sub-basins (2, 4, 6, 7, 10, 11, 12, 14, 15, 16, and 17) is expected to be less 
resilient to droughts, making all processes and activities (such as farming, drinking, and sanitation 

(b) 

(d) 

(a) 

(c) 

Figure 13. Water yield changes (to baseline average) by sub-basin during the dry years: (a) 2049–2050
under RCP4.5, (b) 2045–2046 under RCP8.5, (c) 2098–2099 under RCP4.5, and (d) 2097–2098 under
RCP8.5.

In addition to the potential impacts of climate on the land ecosystem functioning, land use has
many ways to affect the atmosphere and thereby climate and weather [5].For example, bare lands with
dry soil conditions will lead to reduced evapotranspiration, which will strengthen the heat wave during
dry season [6].Moreover, evaporation exceeds rainfall in oceans, which leads to moisture transport
from the ocean to exposed lands through the atmosphere. Such a phenomenon might moderate
meteorological drought in the land phase [83]. In BW, the sub-basins 1, 3, 5, 8, and 9 host annual crops,
forest, and pasture lands; the elevation from sea level is the lowest in BW, as most of the terrains
are plains and are located in front of the ocean. All these elements means that these sub-basins area
taking advantage from the ocean effect to mitigate the drought impact. The situation of sub-basin 13 is
different; even that it is not directly exposed to the ocean. This sub-basin is the one with the highest
altitudes in the study watershed with a sub-humid climate, which makes this specific sub-basin less
vulnerable to drought. Deshmukh and Singh [84] and Stewart [85] argue that in such climatic contexts,
watersheds with high altitude bands are generally less sensitive to warm climate extremes since their
high portions are unaffected by warming. In BW, the sub-basin 13 still benefits from the moderating
effect from the ocean from the West and is high enough to “escape” the warm air masses coming from
the South and the East.
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The vulnerable group of sub-basins (2, 4, 6, 7, 10, 11, 12, 14, 15, 16, and 17) is expected to be less
resilient to droughts, making all processes and activities (such as farming, drinking, and sanitation
water services) in these areas vulnerable also. These insights might help in the prioritization of any
drought risk management and planning strategies with a region-specific approach.

4. Conclusions and Summary

Morocco, like many countries in the Mediterranean region, has undergone many drought
episodes with clear impacts on water resources and all the related activities. Bouregreg watershed
is a representative Mediterranean hydrological entity with a highly strategic “role”, diversified
development base, and various climate change-related risks (such as droughts). In order to manage
future drought risks, reliable and context-adapted drought forecasting methodologies are needed.
The 2035–2050 and 2085–2100 projections of climatic variables over BW revealed that the study
watershed will experience temperature increase with equivalent precipitation averages to the baseline
(overall). The interannual variability is expected to be higher in the future, suggesting the occurrence
of future droughts. This has been confirmed by the 12-month SPI and SDI, which identified several
dry years with different severity levels. Drought frequency has been shown to be higher in the last
16 years of this century.

Annual water yield averages are expected to be affected during the simulated dry years. BW
sub-basins expressed different vulnerability levels to future droughts according to their properties
(elevation, proximity to the ocean, etc.). These results support the necessity to take regional and local
approaches in planning drought priorities.

Using multiple indices and a semi-distributed hydrological model provided a valid approach
to forecast and to evaluate drought conditions in a Mediterranean context, and would contribute to
enhancing drought risk management since multiple factors influencing the persistence and recovery
from drought (land use, elevation, ocean effect, climatic zone, etc.) could be considered also.

Taking into consideration the complexity of drought phenomena and the various factors interfering
in arid and semi-arid contexts, we recommend the exploration of more drought indices and further
physical interpolation approaches to identify the best fit in terms of drought monitoring tools. There is
also a need to measure the impact of future droughts on crops and other natural components of the
Mediterranean ecosystem to provide inclusive and sustainable solutions to potential droughts.

It is evident that addressing drought phenomena is challenging, but the combination of multiple
approaches at high resolutions is very promising to provide fundamental insights on the evolution of
future droughts; thus, the drought modeling method suggested in this study can be useful for drought
risk forecasting and drought mitigation strategies.
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