Supplementary Information

Structural diversity in early-stage biofilm formation on microplastics depends on environmental medium and polymer properties

Anja FRM Ramsperger 1,4, Anja C Stellwag 1, Anja Caspari2, Andreas Fery2, Tillmann Lueders3, Holger Kress 4, Martin GJ Löder 1, and Christian Laforsch 1,*

1 Animal Ecology I, University of Bayreuth, Germany;
2 Institut für Physikalische Chemie und Physik der Polymere, Leibniz Institut für Polymerforschung Dresden e.V., Germany;
3 Ecological Microbiology, University of Bayreuth, Germany;
4 Biological Physics, University of Bayreuth, Germany;
* Correspondence: Christian.laforsch@uni-bayreuth.de;

Content:
Figures S1- S4
Figure S1: Photographs of the sampling sites for the incubation media. a) Freshwater from an artificial pond (49°55'44.1" N; 11°34'60.0" E) and b) saltwater obtained from a marine aquaria facility. Photo Credit: Anja C. Stellwag, University of Bayreuth.
Figure S2: Scanning electron microscopy images of the three polymer raw materials. Surfaces of the PA fragments are shown from a-c, PET surfaces from d-f and the slightly rougher surface of PVC from g-i. Scale bars: a, d, g = 100µm, b, c, e, f, h, i = 10µm.
Figure S3: Scanning electron microscopy images of the freshwater incubation medium after evaporation of water. Images show microorganismal and non-microorganismal structures occurring in the freshwater incubation medium. Scale bars 10µm.
Figure S4: Scanning electron microscopy images of the saltwater incubation medium after evaporation of water. Images show microorganismal and non-microorganismal structures occurring in the freshwater incubation medium. Scale bars 10µm.