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Abstract: Farmers in the temperate zone of southern Chile have started to irrigate historically rainfed
pastures during recent years to reduce dairy productivity losses against increasingly severe summer
droughts. The lack of information on pasture water requirements (i.e., evapotranspiration), however,
hampers the implementation of efficient irrigation programs. Here, we use in-situ observations to
evaluate the skill of four remote sensing Surface Energy Balance (SEB) models and two satellite-based
global evapotranspiration products (PML_V2 and GLEAM) to estimate actual evapotranspiration
(ETa) of pastures in southern Chile during 2014–2017. Daily ETa measured at an evaluation site over
the period ranges between 1.2 mm and 6.2 mm day−1 during the growing season (October–March),
with an annual maximum of about 4.8 mm day−1 in January and a minimum 0.6 mm day−1

in June. Only the Simplified SEB (SEBS) model and its operational variant (SSEBop) and the
PML_V2 global evapotranspiration product perform well, capturing 63–79% of the variance of in-situ
evapotranspiration with an error between 0.75 mm day−1 and 1.1 mm day−1. The readily available
PML_V2 product can be used as a convenient way to determine average water footprint of pastures
and the two SEBs models can be implemented to monitor irrigation requirements in near-real time
from field to regional scales. These results demonstrated a high potential of satellite observations for
monitoring evapotranspiration and quantify the water footprint of pastures in southern Chile for a
sustainable irrigation practice.
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1. Introduction

The mid-latitude westerly storm tracks in southern South America are shifting poleward with
anthropogenic climate change [1], exposing the temperate region to progressively drier summer
conditions that are prevalent at lower latitudes under a drier Mediterranean-like climate regime.
This ongoing regional drying is part of a much larger scale drying trend across the southeastern
Pacific and is expected to continue into the future [2]. The intensification of summer droughts [3–6],
particularly during 2015 and 2016, has produced severe drops in pasture productivity (see Figure 1b) and
large losses to the dairy industry. Water management programs for pastures have been implemented
for the first time in the region to maintain productivity levels during the critical dry period of the austral
summer. These traditionally rainfed pastures cover about 1.32 million hectares in the lowlands [7]
and sustain major agricultural and dairy production in the country [8]. Accurate evapotranspiration
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estimates and timely monitoring of pasture water requirements are necessary for the implementation
of efficient irrigation programs, although this information is difficult to obtain at regional scale because
of the scarcity of in-situ measurements for evapotranspiration retrievals over this large region.
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Figure 1. Study region and view of pastures at Oromo calibration site during the drought of the
austral summer 2014–2015. (a) Temperate pastures in southern Chile (green shading), location of the
agrometeorological monitoring stations (circles) and the Oromo calibration site (red triangle). (b) View
of the monitoring station in Oromo and surrounding pastures during the middle and later part of the
summer drought of 2014–2015.

Quantifying evapotranspiration is crucial for determining irrigation needs and the water footprint
of pasture landscape systems [9–13]. A widely used approach to determine crop water consumption
for irrigation management is through the estimation of ETa from the surface energy balance (SEB)
based on high-resolution satellite observations of the land surface and meteorological data [14–17].
The SEB models can be categorized as one-source, two-layer, two-patch, dual-source, multi-patch,
and multi-layer models. One-source models avoid the distinction in the aerodynamic resistance
(rah) contribution between soil and vegetation [18]. The two-layer models consider the individual
contribution of soil and vegetation to the total heat flux [19]. In contrast, the two-patch models
estimate heat fluxes on the soil and vegetation component independently [20]. Hybrid models of
dual source originate from the combination of the patch and layer approaches, resulting in a hybrid
dual-source model [21]. The multi-patch models consider a greater spatial heterogeneity within each
cell by dividing the surface into multiple patches, while the multi-layer models consider the vertical
heterogeneity of surface conditions [22,23].

One-source models such as SEBAL (Surface Energy Balance Algorithm for Land),
METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration), SEBS (Surface
Energy Balance System) and SSEBop (Operational Simplified Surface Energy Balance) have been widely
used to estimate ETa. These models have shown good performance over terrestrial ecosystems and
crops [24–27]. The ETa estimated by SEB models at basin or regional scales can be spatialized by remote
sensing techniques, which allow to monitor different crops using currently available satellite data
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from platforms such as the Copernicus Program, Earth Resources Observation System (EROS), and
the recently launched ECOSTRESS [28,29]. These products provide a range of frequent and spatially
continuous images of surface biophysical variables that influence ETa [30]. The resulting ETa retrievals
can be directly validated using site-level in situ measurements of evapotranspiration from a range of
field methods (e.g., Bowen ratio system, eddy covariance, scintillometry, etc.) to provide an accurate
operational monitoring at larger regional scales for optimal water crop irrigation [31,32]

SEB models could provide an efficient approach to estimate and monitor water consumption of
pastures in southern Chile to face the prospects of increasing water scarcity and uncertain sustainability
of current pasture production systems. Here, we evaluate the performance of four SEB models
(SEBS, SEBAL, METRIC and SSEBop) to estimate regional ETa from remote sensing observations.
Their performance is compared to that of the readily available Global Land Evaporation Amsterdam
Model (GLEAM 3.2b; [33,34] and Penman-Monteith-Leuning (PML_V2; [35–37] satellite-based global
products. The structure of the paper is detailed as follows: Section 2 presents the data used and the
study area, Section 3 describes the methodology, Section 4 presents the results and analysis, Section 5
presents the discussion and Conclusions.

2. Study Area and Datasets

2.1. Study Area

The study region includes all the temperate pastures in southern Chile, covering a surface area of
1,324,335 hectares between 39◦20′ and 43◦30′ S across Los Ríos and Los Lagos Districts (Figure 1a).
This region includes the lowlands along the central depression of mainland Chile and the large island
of Chiloé in the southwest. According to the Koppen–Geiger classification system, the regional climate
corresponds to marine west coast (Cfb), with an average annual temperature of 10 ◦C and annual
rainfall of 2100 mm [38]. The wet season extends from March to November but most precipitation falls
in winter (44%) when the mid-latitude austral storm tracks move northward into the region. A dry
season develops during the austral summer due to a southward expansion of the Mediterranean-like
regional circulation system prevailing year-round to the north, with minimum seasonal soil moisture
levels and frequent drought conditions occurring during February and early March (Figure 1b).

2.2. Satellite and Ancillary Data Used to Drive the Models

A total of 125 images of the Surface Reflectance product (Level 2-A) and the digital numbers
(ND) of thermal bands were processed from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and
Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) [39,40] for the period
2014–2017 (available at https://earthexplorer.usgs.gov). All images were filtered by cloud cover using
the C Function of Mask (CFMask) algorithm [41] and then resampled to the spatial resolution of the
Landsat 8 thermal band (100 × 100 m).

Land surface emissivity (ελ) was obtained from the ASTER Global Emissivity Dataset (ASTER
GED). This product has global coverage and includes the five thermal bands from the ASTER sensor
between 2000 and 2008 [42,43]. The topography of the study area was derived from the SRTM (Shuttle
Radar Topography Mission) Digital Elevation Model product [44]. Surface land cover types for the
region were extracted from a land cover product based on Landsat 8 imagery at a spatial resolution of
30 m [7].

The Atmospheric Correction Parameter Calculator (ACPC) [45] was used in order to obtain
atmospheric downward radiance (Ld), ascending radiance (Lu) and transmittance (τ) for land surface
temperature (Ts) retrievals over the study area. These parameters were obtained for the center latitude
and longitude of each Path and Row of Landsat during the study period from July 2014 to December
2017. Earlier work demonstrated the capability of ACPC for Ts retrievals over the study region in
relation to MOD07 and AIRS datasets [46].

https://earthexplorer.usgs.gov
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2.3. Global Evapotranspiration Products

The Global Land Evapotranspiration model from Amsterdam (GLEAM 3.3b) and
Penman-Monteith-Leuning global ETa products were used to evaluate our implementation of the
four-remote sensing SEB ET models. The GLEAM model estimates daily terrestrial evapotranspiration
components and root-zone soil moisture from satellite data at 0.25◦ spatial resolution [33].
Potential evaporation (ET0) is estimated using the Pristley–Taylor equation for the land fractions of
bare soil, tall canopy and short canopy. Then, ETa is obtained by multiplying ET0 with an evaporative
stress factor based on microwave Vegetation Optical Depth (VOD) and satellite-based estimates of
root-zone soil moisture. The Penman–Monteith–Leuning (PML_V2) product uses estimates of surface
conductance (Gs) to describe the canopy-soil conductance to water flux at a moderate resolution of
500 m [37]. Actual evapotranspiration in PML_V2 relies mainly on the Gs retrieval from remotely
sensed land cover, Leaf Area Index (LAI) and Gross Primary Productivity (GPP).

2.4. Ground Data

Air temperature (Ta), Relative Humidity (RH) and Wind speed (u) measured at 2 m above the
surface were obtained from 20 agrometeorological stations of the Chilean Agricultural Research
Institute (INIA; available at: http://agromet.inia.cl/. Moreover, the automated weather station at Oromo
Calibration Site (OCS) from LAB-Net [47] was used to validate surface temperature (Ts) and actual
evapotranspiration (ETa) estimates. Unlike the agrometeorological stations, this station also records
radiative variables of the surface energy budget such as infrared temperature (TIR), Net Radiation (Rn)
and soil heat flux (G). The OCS data can be freely obtained from http://biosfera.uchile.cl/ln_oromo.html.

3. Methods

3.1. Surface Temperature (Ts) Estimation

The Ts was calculated for ETM+ and TIRS through the single-channel algorithm [48,49]

Ts = γ

[
1
ελ

(ψ1Lsen +ψ2) +ψ3

]
+ δ (1)

where Lsen [W m−2 sr−1 µm−1] is the radiance of the sensor in the thermal spectrum obtained by the
radiometric calibration of the digital numbers of band 6 from ETM+ and band 10 from TIRS. ελ was
obtained from ASTER GED. The ψ1, ψ2 y ψ3 variables are atmospheric functions, which depend on τ,
Ld (W m−2 sr−1 µm−1) and Lu (W m−2 sr−1 µm−1]). The γ and δ are parameters that depend on Lsen

and the brightness temperature of sensor (Tb) (K). The validation of Ts was carried out following the
method proposed by Guillevic et al. [50].

3.2. Net Radiation Estimates

The SEB models used in this work rely on the spatialized net radiation flux (Rn) as a key variable
for ETa retrievals because Rn is partitioned into sensible heat flux (H), latent heat flux (λE) and soil
heat flux (G). Rn was obtained using Equation (2):

Rn = (1−α)Rswd + ελRlwd − ελσT4
s (2)

where α is the surface albedo, Rswd (W m−2) is the descending short-wave radiation, Rlwd (W m−2) is
the long-wave descending radiation and σ is the Boltzmann constant. The α calculation was done
following the method proposed by [51]:

αsw = 0, 356αb + 0, 130αr + 0, 373αnir + 0, 085αsw1 + 0, 072αsw2 − 0.0018 (3)

http://agromet.inia.cl/
http://biosfera.uchile.cl/ln_oromo.html


Water 2020, 12, 3587 5 of 16

where αsw is the broadband surface albedo for the shortwave spectrum and αb, αr, αnir, αsw1 and
αsw2 are the narrowband surface albedo values for the blue, red, near infrared and shortwave
infrared spectrum, respectively. Although the albedo estimate requires the Bidirectional Reflectance
Distribution Function (BRDF), it has been shown that for evapotranspiration retrievals bi-directional
surface reflectance derived from satellite can be used for ETa maps [52]. Rswd was computed
following the method of [53], using extraterrestrial radiation (RA) and Inverse Distance Weighted
(IDW) interpolated near-surface air temperature (Ta), maximum daily temperature (Tx) and daily
minimum temperature (Tn):

Rswd = RA

(
A
(
1− exp(−B∆T)C

))
(4)

The values of A, B and C were derived from the constant proposed by [53]. Then, Rlwd was
calculated through Stefan–Boltzmann equation. Atmospheric emissivity was estimated with the
method proposed by [54] using Ta and actual vapor pressure (e) as input.

Rlwd = 1.24
( e

Ta

) 1
7
σTa

4 (5)

Finally, Rn was validated against ground measurements in the Oromo calibration site at the same
time of the satellite overpass.

3.3. Surface Energy Balance Models and Eapotranspiration Modelling

The SEBS, SEBAL, METRIC and SSEBop models are all based on the surface energy balance
(Equation (5)):

Rn = H + λE + G0 (6)

where Rn is net radiation [W m−2], H is the sensible heat flux [W m−2], λE to the latent heat flux
[W m−2] and G0 is the soil heat flux [W m−2], which is negligible for daily values [55].

The SEBS model uses meteorological and remote sensing data in order to estimate ETa and
evaporative fraction (Λ), which is adjusted to the sensible heat flux by the Monin–Obukhov
similarity [56] and energy balance under dry and wet limits.

Λr = 1−
H−Hwet

Hdry −Hwet
(7)

where Λr is the relative evaporative fraction, Hwet is sensible heat flux at the wet limit through a
combination equation similar to the Penman–Monteith equation, and Hdry is the sensible heat flux at
the dry limit condition (Hdry = Rn − G0). In this way, the latent heat flux was estimated as:

λE = Λr·λEwet (8)

Daily ETa [mm day−1] was estimated as:

ETa =
λE
λ

86400Cdi (9)

where λ is the latent heat of vaporization and Cdi is the ratio of daily and instantaneous net radiation [57].
SEBAL is a physical model which estimates H by the parametrization of the vertical difference

between the aerodynamic temperature and the air temperature close to the surface (dT), assuming a
linear relationship between Ts and dT.

H = ρCp
dT
rah

(10)

To calibrate dT, it is necessary to select anchor pixels for each image under extreme conditions
(dry and wet). The pixel of the dry limit is generally a bare agricultural field where H is maximum
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(Hhot = Rn − G0). The cold pixel can be found in water bodies or well-irrigated fields where Hcold = 0.
Therefore, ETa is estimated daily through Equation (8).

METRIC is a variant of the SEBAL model. The main difference lies in the “self-calibration” done
in each image, since METRIC applies on the ‘cold-pixel’, the λE estimation based on a reference ET
over a well-watered alfalfa field (ETr) from hourly weather information. In this way just like SEBAL,
H is calibrated by correcting the buoyancy and parameterizing dT based on the anchor pixels for
extreme conditions.

Finally, SSEBop is a simplified surface energy balance model. It estimates ETa (Equation (10))
from ET0, Λ and a coefficient k that scales the reference grass vegetation experiencing maximum ET by
an aerodynamically rougher crop.

ETa = ΛkET0 (11)

where k = 1, assuming a reference grass cover. The evaporative fraction was computed (Equation (11))
through Ts and reference land surface temperature under dry and wet conditions (Thot, Tcold) based on
Ts and Tx.

Λ =
Thot − Ts

dT
=

Thot − Ts

Thot − Tcold
(12)

dT was estimated using a reference value of rah and maximum H for bare soil surface, where rah = 110
[s m−1] [58] and H = Rn − G0.

dT =
110Rn

ρaCp
(13)

The SEBS, SEBAL, METRIC and SSEBop models were evaluated by comparing the estimated
pixels over the Oromo calibration site with in situ pasture evapotranspiration (ETc).

ETc = kcET0 (14)

where kc is the crop coefficient, obtained from a linear function from Normalized Difference Vegetation
Index (NDVI) from Landsat data over Oromo site. The ET0 was estimated using the standardized
Penman–Monteith equation [59]:

ET0 =
0.408∆(RN −G0) + γ

900
Ta

+ u2(es − ea)

∆ + γ(1 + 0.34u)
(15)

where u is wind speed [m s−1], es is the saturation vapor pressure (kPa), ea to the actual vapor pressure
(kPa), and ∆ is the slope of the vapor pressure [kPa ◦C−1]. Modeled ETa was compared to measured
ETc at the Oromo calibration site using the coefficient of determination (R2), root mean square error
(RMSE or RMSD), the standard deviation of the residual values (σ), the bias of residual values and the
mean absolute error (MAE) statistics.

4. Results

4.1. Estimated Surface and Meteorological Fields

The spatial patterns of estimated Ts for selected spring and summer days over the study domain
are shown in Figure 2 along with a pixel-level validation against ground observations at the Oromo
calibration site. The latitudinal temperature gradient is weaker than variations associated with
vegetation cover and elevation. There is a clear contrast between warmer pastures in the interior
lowlands and colder rainforests in the Andean and Coastal mountains to the eastern and western parts
of the domain, respectively.
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Figure 2. Estimates of surface temperature and comparison with in-situ measurements.
(a) Satellite-based estimates of Ts for the study area during selected spring and summer days. White gaps
in the images represent regions with cloud cover. (b) Local comparison with in-situ measurements at
the Oromo calibration site.

The region experienced a pronounced warming during 2016, with most of the pastures exceeding
25 ◦C (Figure 2a). The estimated high temperatures (>300 K) for this period compare well with in-situ
measurements at the Oromo calibration site (Figure 2b). Atmospheric moisture demand increased
rapidly, and pasture productivity declined (Figure 1b), leading to many farmers to irrigate these
historically rainfed systems to maintain productivity levels. Satellite-based temperature estimates
show a good linear fit with in-situ measurements (r2 = 0.92) but have a cold bias of −1.26 K (Figure 2b).

Cloud cover can significantly reduce data availability during the wet and even the dry summer
season, resulting in substantial spatial gaps in satellite-based radiation and surface temperature fields
(e.g., summer 2015 in Figure 3). The interpolated meteorological fields of air temperature, instantaneous
solar radiation and relative humidity capture the large-scale patterns of variation reasonably well but
show substantial uncertainties at the pixel level due to the sparseness of the underlying network of
agrometeorological stations (Supplementary Materials Figure S1). Pixel-level validation at our Oromo
calibration site shows RMSE values of 6.12 [%] for relative humidity, 248 [W m−2] for global radiation,
0.90 [K] for air temperature and 1.15 [m/s−1] for wind speed (Supplementary Materials Figure S2).

Instantaneous net radiation for summer days averages 575.02 ± 91.84 [W m−2]. As expected,
Rn was homogeneous over grasslands during clear sky-days such as 11 Oct 2015 and 31 January 2016
(Figure 3a). Under cloudy conditions, such as in 13 February 2015 and 6 March 2017, Rn values are
lower (~ 300 [W m−2]) and more spatially variable. At the Oromo calibration site, the linear fit of
satellite-based Rn is 0.70 with an RMSE of 208.38 [W m−2] and a substantial overestimation (BIAS of
175.25 [W m−2]) due to the retrieved surface albedo for grasslands (Figure 3b). Indeed, the estimated
surface albedo (α= 0.16) is 9% lower than the average albedo measured in Oromo (α= 0.27). In addition,
the presence of clouds, as indicated by the high variability of in situ measurements, is associated with
greater departures between satellite estimates and in-situ measurements.
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Figure 3. Estimates of net radiation and comparison with local measurements. (a) Satellite-based
estimates of instantaneous net radiation [W m−2] in pastures during selected spring and summer days.
Note that the images correspond to the same dates than those shown in Figure 3 for surface temperature.
(b) Local comparison against in-situ measurements at the Oromo calibration site.

4.2. In-situ and Modeled Grassland Evapotranspiration

Annual in situ precipitation and evapotranspiration in Oromo averaged 1178 and 517 mm
over the study period, respectively (Table 1). This results in a positive net water flux into the
surface on a yearly basis (661 [mm year−1]) as annual evapotranspiration amounts to 44% of annual
precipitation. However, during dry summers with precipitation under 100 [mm] (e.g., 2015 and
2016), evapotranspiration can exceed precipitation for up to 100 and 200%. For instance, during the
extremely dry summer of 2015 rainfall reached a historical low of only 46.7 [mm] and soil moisture
fell to 14–15%, but evapotranspiration was maintained at near average levels and reached 148.2 [mm]
(Table 1). Seasonally, evapotranspiration reaches a maximum during spring (216.4 [mm]) when
soils are wet and radiation is near its seasonal peak, and then it decreases towards the summer
(166.8 [mm]), autumn (60.6 [mm]) and winter (48.2 [mm]) as water and then energy become limiting.
The evapotranspiration estimates of the PML_V2 global product also follow the same pattern than the
observations in Oromo and provide a longer record (Table 1).

The SEBS and SSEBop models produce similar spatial patterns of grassland evapotranspiration
during summer days (Figure 4). In contrast, the SEBAL and METRIC models simulate substantially
higher spatial variability in evapotranspiration. During the severe summer drought that affected the
region in 2014–2015, soil moisture levels in the Oromo station by 13 February 2015 reached some of
the lowest levels (0.15 [m3 m−3]) on the 2014–2017 record and surface temperatures exceeded 295 [K]
(Figure 5b–c). During this hot summer drought day, the SEBS and SSEBop models estimated an
evapotranspiration flux of 4.38 ± 1.0 and 4.03 ± 0.9 [mm day−1], respectively (Figure 4). For the
same day, the SEBAL and METRIC models estimated an evapotranspiration flux of 3.89 ± 1.75
and 4.24 ± 2.49 [mm day−1], respectively. The estimated evapotranspiration flux under drought
conditions is about 30% lower than the estimates for a similar date (31 January) during the following
summer in 2016, when SEBS and SSEBop suggest an evapotranspiration flux of 5.59 ± 0.86 and
5.79 ± 0.87 [mm day−1], respectively.

Figure 5 shows a comparison between time series of evapotranspiration obtained from the SEB
models and estimates from global ET products and in situ estimates at the Oromo calibration site.
Persistent cloud cover precluded evaluating the performance of the models during winter. The
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estimates from the SSEBop model closely follow in-situ evapotranspiration, particularly during autumn
and summer (Figure 5a). The rest of the models strongly overestimate evapotranspiration during
summer. The magnitude of the overestimation in SEBAL, METRIC and SEBS models exceeds 100% in
January and February. However, the SEBS model matches SSEBop during autumn.

Table 1. Seasonal evapotranspiration (mm), precipitation (mm) and soil moisture (%) in Oromo over
the period 2014–2017. In-situ evapotranspiration (bold) and the corresponding estimate from the
PML_V2 global product (brackets) are given for annual and austral spring (September–November),
summer (December–February), autumn (March–May) and winter (June–August) seasons.

2014 2015 2016 2017 Mean

Evapotranspiration
(mm)
Spring [222.8] [227.8] 238.5 [239.5] 194.3 [242.8] 216.4 [233.3]

Summer [176.8] 148.2 [170.8] 189.2 [226.1] 163.1 [254.9] 166.8 [204.9]
Autumn [71.2] 59.7 [63.8] 70.4 [75.9] 61.7 [79.0] 60.6 [69.4]
Winter [71.9] 27.7 [65.9] 64.4 [71.4] 52.6 [68.2] 48.2 [72.5]
Annual [542.8] [528.4] 562.2 [612.9] 471.8 [635.9] 517.0 [580.0]

Precipitation (mm)
Spring 130.8 150.6 231.6 228.8 185.5

Summer - 46.7 81.7 222.8 117.1
Autumn - 442.2 183.2 537.1 387.6
Winter 490.7 543.8 371.9 509.9 487.9
Annual 621.5 1183.3 868.4 1498.6 1178.0

Soil moisture 7 cm (%)
Spring 32.2 29.8 31.1 32.4 31.3

Summer - 14.3 13.9 22.6 16.9
Autumn - 35.9 30.5 36.1 34.2
Winter 45.9 42.2 41.3 41.9 43.0

Soil moisture 20 cm (%)
Spring 30.7 28.2 29.8 30.2 29.3

Summer - 15.7 16.3 24.3 18.8
Autumn - 28.6 27.9 34.1 30.3
Winter 38.2 35.6 35.5 37.1 36.6
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Precipitation (mm)      

Spring 130.8 150.6 231.6 228.8 185.5 

Summer - 46.7 81.7 222.8 117.1 

Autumn - 442.2 183.2 537.1 387.6 

Winter 490.7 543.8 371.9 509.9 487.9 
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Soil moisture 7 cm (%)      

Spring 32.2 29.8 31.1 32.4 31.3 

Summer - 14.3 13.9 22.6 16.9 

Autumn - 35.9 30.5 36.1 34.2 

Winter 45.9 42.2 41.3 41.9 43.0 

Soil moisture 20 cm (%)      

Spring 30.7 28.2 29.8 30.2 29.3 

Summer - 15.7 16.3 24.3 18.8 

Autumn - 28.6 27.9 34.1 30.3 

Winter 38.2 35.6 35.5 37.1 36.6 
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daily evapotranspiration. Measured ETc in Oromo (blue line) is compared with estimates by SEB 

models (points) and GLEAM 3.3b (yellow line), and PML_V2 (turquoise line) products for the 

nearest pixel to the station. (b) Daily rainfall (blue bars) and soil moisture (purple, turquoise lines) in 

Oromo. (c) Net daily radiation (purple) and surface temperature (orange) measured in Oromo. 

 

Figure 4. Comparison of evapotranspiration maps for pastures during summer days produced by each
model (SEBS, SSEBop, SEBAL, METRIC). (a) 13 February 2015. (b) 31 January 2016. (c) 6 March 2017.
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Figure 5. Evapotranspiration estimates and daily surface meteorology at the Oromo calibration site
(OCS) between August 2014 and December 2017. (a) Comparison of satellite-based and measured daily
evapotranspiration. Measured ETc in Oromo (blue line) is compared with estimates by SEB models
(points) and GLEAM 3.3b (yellow line), and PML_V2 (turquoise line) products for the nearest pixel to
the station. (b) Daily rainfall (blue bars) and soil moisture (purple, turquoise lines) in Oromo. (c) Net
daily radiation (purple) and surface temperature (orange) measured in Oromo.

The performance of the global evapotranspiration product GLEAM 3.3b at the Oromo site contrasts
strongly during the spring-summer and autumn-winter periods (Figure 5a). The increase in local
evapotranspiration with rising temperature and radiation during the spring and early summer is well
captured, but evapotranspiration during late summer and autumn is systematically overestimated
by around 2 [mm day−1]. The poor performance in autumn is likely related to a mixing of land
cover types and misrepresentation of local vegetation phenology in this product due to its coarse
resolution (~25 km). The higher-resolution PML_V2 product has a better performance than GLEAM
3.3b and follows more closely in-situ evapotranspiration through the year, although there is some
systematic underestimation (<0.5 [mm day−1]) during summer (Figure 5a). The PML algorithm is
likely overestimating moisture limitation to evapotranspiration during summer, when surface soil
moisture typically falls below 20% (Figure 5b).
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Large differences between SEBAL and METRIC models during spring and autumn were observed
in Oromo when soil moisture peaked following rainfall events, causing an underestimation of H at the
anchoring pixels and thus increasing the uncertainty of estimated ETa. During summer 2017, a strong
rainfall event increased soil water availability and increased ETa at Oromo from 2 to 5 [mm day−1]
(Figure 5a,b). In addition, this event was also revealed by SSEBop, which matches in-situ estimates and
other models such as SEBS and METRIC. The rest of the models did not show the impact of rainfall
during summer under drought conditions.

The relative performance of SEB and global models against Oromo measurements is shown in
Figure 6. SSEBop and SEB are by far the best models in terms of error and correlation with observations,
followed by the global evapotranspiration product PML_V2 (Figure 6a). These products are able to
explain between 63 and 79% of the variance (R2) of the in-situ observations (Figure 6b). The SEBS model
accounted for 74% of the variance in observed evapotranspiration (ETa), with relatively low error
(RMSE 1.08 [mm day−1] and MAE of 0.85 [mm day−1]; Figure 6b) but slight underestimation when
estimated instantaneous Rn is lower than 300 [W m−2] (bias: 0.41 [mm day−1]). SSEBop performed
slightly better than SEBS (R2: 0.79, RMSE: 0.68 mm day−1, MAE: 0.55 [mm day−1]) with the lowest
bias (0.09 [mm day−1]). In contrast, SEBAL presents a low statistical fit (R2: 0.24) in addition to
high error, with a RMSE of 2.46 [mm day−1] and MAE: 2.01 [mm day−1] mainly due to its high bias
(1.22 [mm day−1]) during summer. METRIC had the poorest performance, with maximum RMSE
of 2.57 [mm day−1], high dispersion of estimated values (σ: 2.11 [mm day−1]) and close to null
correlation with Oromo measurements (R2: 0.05). Therefore, the values estimated by METRIC are
not representative over the study area. GLEAM shows an overall overestimation, with a bias up
to 0.75 [mm day−1] and consequently low R2 (0.35) and high RMSE 1.45 [mm day−1]). In contrast,
PML_V2 shows a better agreement with in situ observations (R2: 0.63, RMSE: 0.88 [mm day−1]) than
GLEAM but it is the only model that underestimates (bias −0.28 [mm day−1]) high evapotranspiration
values (Figure 6b).
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Figure 6. Performance of SEB models and global evapotranspiration products in Oromo. (a) Taylor
diagram of evapotranspiration models in relation to the in-situ observations. The dashed green line
denotes the root mean standard deviation (RMSD), while the dashed blue line indicates the correlation
coefficient with the observations. (b) Scatterplots comparing estimated (ETa) and measured (ETc)
evapotranspiration in Oromo. The worst performing models SEBAL and METRIC are not shown.
The dashed red line represents the identity function, and the black line denoted the slope of the
linear regression of each model. GLEAM and PML_V2 comparisons are shown as density scatterplots,
with red and blue colors denoting high- and low-density areas, respectively.
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5. Discussion and Conclusions

Summer evapotranspiration is becoming a crucial indicator for irrigation plans and drought
management in the Chilean temperate pastures. A suite of four remote sensing surface energy balance
(SEB) models and two readily available global evapotranspiration products were validated using
ground observations. Surface temperature (Ts) was validated in a single point in the study area and the
results are satisfactory, with an RMSE of 2.66 [K] for 42 days with data availability between 2014–2017.
However, this validation could be improved by new measurement campaigns and equipping additional
stations to measure Ts and determine in-situ emissivity, considering the phenology of grasslands
under moisture limitation. Variations in phenology affect the emissivity by up to 3% due to surface
moisture [60,61] and therefore impact the proportion of soil and vegetation cover. Our results provided
the first validation of surface temperature in southern Chile at high spatial resolution to estimate
accurately crop water demand at regional scale.

The models SSEBop and SEBS do not solve the dT under the selection of anchors pixels and
probably the assumption of H and Rn can be more adaptable for retrievals at smaller spatial scales.
The models SEBAL and METRIC require the selection of an extreme condition to estimate H and
λE. This selection procedure affects the performance of those models over temperate pastures in the
southern Chile. Previous studies have shown that the assumption of extreme conditions lead to
uncertainties in ETa due to the subjectivity of pixel selection and range of soil moisture conditions in
the study domain [62–64]. However, if the application of these models in the study region is limited to
smaller areas, their performance might improve substantially. SEBS evapotranspiration estimates are
well correlated with the observations in Oromo (R2 = 0.83) but the high sensitivity of the model to Rn

results in an overestimation.
The global evapotranspiration products showed marked differences in their performance.

GLEAM does not represent well ETa at the local scale (RMSE over 1.45 [mm day−1]) and overestimates
it during autumn and winter, likely because of mixed land covers in the coarse pixel of 25 km.
The PML_V2 model, which is based on moderate-resolution biophysical estimation of ETa coupled with
GPP, showed high accuracy over southern grasslands, with a correlation coefficient of 80% and RMSE
lower than 1 mm day−1. A spatial comparison between SSEBop and the global products resampled to
the same resolution (Supplementary Materials Figure S3) showed that GLEAM does not have a good
performance, reaching on average a R2 of 0.4. In contrast, PML_V2 had an overall R2 = 0.8 at exception
of Chiloé Island, where the spatial correlation is lower (R = 0.3 to 0.5). This finding indicates that
PML_V2 can be used as a high-quality reference for evapotranspiration at the scale of 500 m over the
vast continental grasslands across Los Ríos and Los Lagos regions.

Annual precipitation is twice annual evapotranspiration in the region (Table 1), but summer
evapotranspiration exceeded precipitation during recent droughts. For this reason, validating actual
evapotranspiration at regional scale for grasslands of southern Chile using satellite and meteorological
data is essential to accurately determine the actual water consumption of grasslands. Using this
information, it is possible to promote efficient irrigation programs that can correct the water deficit
during the critical spring-summer period. This can effectively reduce the water footprint of regional
pastoral systems, avoiding the extra irrigation of grasslands and promoting better practices to reduce
energy and water consumption. In addition, these data would facilitate the implementation of
ETa monitoring aimed at reducing risk of water stress during the increasingly recurrent summer
drought periods.

Taken together, our combined analysis and validation of the four remote sensing evapotranspiration
models and the two global evapotranspiration products showed that the SEBS and SSEBop models
can provide an accurate (R2: 74–79 and RMSE < 1 [mm day−1]) field-scale estimate of grassland
evapotranspiration in the region, which can be complemented by readily available weekly estimates
at 500 m from the global PML_V2 product. This finding is encouraging for the implementation of
a near-real time monitoring tool for evapotranspiration in the region for the timely application of
effective irrigation programs during the recurrent summer droughts. However, widespread irrigation
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might increase the pressure on already limited water resources, and thus the practice has to be
properly regulated and considered within a framework of sustainable agriculture and adaptation to
climate change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/12/3587/s1:
Figure S1. Meteorological data for the study area. (A) is the wind speed [m s−1], (B) air temperature [K],
(C) instantaneous global radiation [W m−2] y (D) relative humidity [%]. The meteorological information is on a
topography layer of the región represented in gray. Figure S2. Validation of relative humidity (RH), global radiation
(Rx), air temperature (Ta) and wind speed (u). (A). Scatterplot of RH, Rx, Ta and u in Oromo Calibration Site
(x-axis) and spatially interpolated variables (y-axis). (B) Evaluation of bias, sigma and RMSE at pixel scale over
OCS. Figure S3. Spatial correlation between global models (GLEAM and PML) and SSEBop model.
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