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Abstract: A portion of the accumulated tailings in a tailings pond exhibits an unsaturated state.
The mechanical properties of unsaturated tailings affect the safety and stability of tailings dams.
To investigate the effect of moisture content on the deformation characteristics of unsaturated tailings
in the mesoscale, a special testing apparatus is applied to experimentally study the settlement defor-
mation and mesostructure evolution of unsaturated tailings under continuous load. The results show
that the mesostructure deformation of unsaturated tailings with different moisture contents under
load is the same and can be divided into four stages: pore compression, elastic deformation, structure
change, and further compaction. However, the critical pressures of the four stages are significantly
different; there is an optimal moisture content corresponding to the maximum deformation resistance.
Moreover, the influence of the liquid bridge regime on the mesostructure deformation of unsaturated
tailings is discussed in this paper.

Keywords: unsaturated tailings; mesostructure deformation; moisture content; confined compression
test; degree of saturation

1. Introduction

Tailings are granular solid waste generated from the production activities of metal and
nonmetal mines, which are generally stored by constructing tailings dams to form tailings
ponds [1,2]. A tailings dam failure causes serious damage to the surrounding environment
and ecosystem, and severe loss of lives and property of downstream residents [3–6]. For ex-
ample, the Feijão tailings dam in Brumadinho, Minas Gerais, Brazil, collapsed on 25 January
2019, causing 259 deaths and 11 missing person cases [7]. Furthermore, approximately 10
million cubic meters of tailings–water mixtures flowed into the surrounding streams and
rivers, causing serious ecological and environmental damage [8,9]. According to statistics,
there have been approximately 50 tailings dam accidents in the past 20 years, and the
frequency of accidents is on the rise [10].

Currently, China has more than 12,000 tailings ponds, of which approximately 95% are
constructed using upstream methods [11]. In this method, tailings slurry, a mixture of solid
tailings and tail water, is discharged into a reservoir from the crest of the dam, which forms
a deposited beach with a certain slope under the action of gravity. The part of the deposited
beach near the crest of the dam is called the dry beach, which is not covered by tail
water and becomes the foundation of the embankment in the next stage. Figure 1 depicts
a photograph of a tailings pond in southwest China that shows the different positions,
such as the embankment, dry beach, water pond, and dam crest, of a tailing dam.
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Figure 1. Tailings pond in southwest China.

Figure 2 shows a schematic of an upstream tailings dam structure. The accumulated
tailings are divided into unsaturated and saturated portions via the seepage line inside
the tailings dam. The mechanical parameters of rock and soil are related to the moisture
content (degree of saturation) [12]. The presence of water in the pores and fissures inside
the rock and soil weakens their strength. Several landslides and dam collapse accidents
are related to pore water. The investigations show that in a tailings dam constructed
using the upstream method, the unsaturated tailings above the seepage line account for
approximately 10% of the total accumulated tailings, with a high degree of saturation,
which generally exceeds 50% [13–15]. Moreover, after the tailings pond becomes inactive,
the unsaturated zone in the tailings pond is generally expanded further. The high degree
of saturation in the unsaturated zone of a tailings dam is mainly caused by the continuous
addition of water from the slurry discharge, as well as capillary rise and rainfall [13].
This significantly affects the stability of the tailings dam [16,17], particularly during earth-
quakes and vibrations caused by mining activities [18]. For example, the reduction in the
strength of tailings in unsaturated zones due to improper pore water management and
high and intense regional wet season rainfall is a primary reason for the Feijão tailings dam
disaster in 2019 [19]. Therefore, it is critical to study the influence of moisture content on
the mechanical properties of unsaturated tailings.
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Figure 2. Schematic of an upstream tailings dam structure.

Recently, several studies investigated the strength and deformation characteristics [20–22],
permeability [16,23,24], wave velocity [21], and water evaporation laws [25] of unsaturated
tailings. However, these studies were performed at a macroscale, regardless of whether the
method was employed in a laboratory experiment, field in situ experiment, or numerical
simulation. Particularly, the macroscopic properties of tailings are determined in nature on
a smaller scale, such as the connection structure of the particles. Tailings have significant
dispersion and uneven internal particle structure distribution. With the development of
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plasticity, the characteristics of discontinuous media are more prominent under load [26].
Conventional research on the macroscopic nature cannot reflect this characteristic. The re-
search scale of the tailing particle structure was called the microscale in the past. Presently,
the research scale for soil particle and pore structure morphology and evolution is widely
recognized as the mesoscale [27–31], which is between the macroscale (incremental stress
and strain) and microscale (contact force and contact displacement) [32,33]. A constant
rise in the tailings dam leads to a constant change in the stress conditions of the tailings
accumulated in the tailings pond. The changes in the mesostructure of the tailings un-
der load cause their macroscopic deformation and destruction as well as changes in the
mechanical properties, which are the predominant causes for tailings dam failure [34].
However, the existing studies on the mesoscopic nature of tailings were mainly performed
under saturated conditions using physical experiments [35–37] or discrete element method
(DEM) numerical simulations [38]. Few studies reported the mesostructure evolution of
unsaturated tailings particles under load.

In summary, the moisture content (degree of saturation) significantly affects the
mechanical properties of the tailings, which affect the safety and stability of tailings dams.
However, few studies investigate the influence of moisture content on the deformation
and structure evolution of tailings in the mesoscopic scale. The particle morphology
of tailings is significantly different from that of natural soils [39]. Thus, the particle
structure deformation characteristics of unsaturated tailings under load may be different
from those of the natural soils. We considered the studies regarding mesomechanics of
granular material [40] and used a special testing apparatus to experimentally study the
mesostructure deformation characteristics of tailings with different moisture contents.
The results are of vital for understanding the deformation and failure mechanisms of
unsaturated tailings under load.

Therefore, the objectives of this work are twofold: to study the settlement displacement
and mesostructure deformation of unsaturated tailings under continuous load; to examine
the influence of moisture content on the settlement characteristics and mesostructure
evolution law of tailings.

2. Test Materials, Equipment, and Method
2.1. Test Materials

As shown in Figure 3, the test tailings were the latest produced tailings collected from
the discharge pipe of the Huangcaoping tailings pond that belongs to Pingchuan Iron Co.,
Ltd., Sichuan Province, China. The tailings particle size distribution, shown in Figure
4, was determined using a S3500 light-scattering particle size analyzer (manufactured by
Microtrac, Inc., Montgomeryville, PA, USA). The parameters of particle size distribution
characteristic and certain other physical properties are listed in Table 1. The test tailings
can be classified as tailings silt according to the China National Standard GB50863 [41]
and sandy silty clay according to the American Society of Testing Materials Standard
D2487 [42].
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Table 1. Particle size distribution parameters and main physical properties of the tailings sample.

Specific
Gravity

Liquid
Limit
(%)

Plastic
Limit
(%)

Plastic
Index

Gravel
(%)

Sand
(%)

Silt
(%)

Clay
(%)

D50
(mm) Cu Cc

2.07 16.97 10.67 6.30 0 39.52 46.04 14.44 0.032 26.03 0.84

Note: D50 refers to the average particle size, Cu refers to the uniform coefficient, and Cc refers to the
curvature coefficient.

The mineralogical composition of the tailings was analyzed by the Smartlab X-ray
diffractometer (XRD) (manufactured by Rigaku Corporation, Tokyo, Japan). The results
are shown in Figure 5. The primary minerals in the tailings were quartz, calcite, dolomite,
magnetite, chlorite, apatite, and kaolinite.
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2.2. Test Equipment

The test equipment is a testing apparatus, developed by us, to observe the mesome-
chanics and deformation of tailings, as shown in Figure 6a. It is mainly composed of a
loading test machine, pressure chamber and accessories, as well as a mesoscopic observa-
tion system. Figure 6b shows a schematic of the device structure. Its composition structure
and technical parameters are described in detail in [36,37]. This study employs a confined
compression test under continuous load, and the loading equipment is an AG–250kNI
material testing machine (manufactured by Shimadzu Corporation, Kyoto, Japan).

2.3. Test Scheme

To study the effect of moisture content on the particle structure and mesomechanical
behavior of tailings, unsaturated tailings samples with moisture contents of 9%, 12%, 15%,
18%, and 21% were synthesized. The moisture contents were synthesized and verified with
the following steps:

(i) Preparation of the dry tailings. According to the geotechnical test technical specifi-
cation in China (GB/T 50123-2019), the tailings were placed in an oven at 105 ◦C to dry;
no longer changes in the weight of tailings indicated that it had reached a dry state.

(ii) Synthesis of wet tailings with different moisture content. A proper amount of
distilled water was mixed with the dry tailings and stirred evenly to synthesize wet tailings
with different moisture content. For example, for the sample with a moisture content of
9%, the mass of the distilled water was 9% of the mass of the corresponding dry tailings.
To ensure that the moisture content was uniform within the sample, the samples were
placed in a sealed bag for 24 h.

(iii) Verification of moisture contents. A small amount of synthesized wet tailings
were dried, and the moisture content was calculated; the calculated moisture contents
were compared with the required moisture contents to verify the moisture contents of
the samples.
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Figure 6. Observation apparatus for mesomechanics and deformation of tailings. (a) Photo: I. pressure chamber and
accessories; II. ring lamp; III. stereomicroscope and charge coupled device camera; IV. 3D movable observation support
frame; and V. observation window. (b) Schematic [36]: 1. loading indenter; 2. bottom plate; 3. stainless steel cylinder;
4. tempered glass cylinder; 5. tailing specimen; 6. pressure piston; 7. exhaust hole; 8. piston pressure head; 9. computer;
10. charge coupled device video camera; 11. stereoscopic microscope; and 12. 3D movable observation support frame.

According to the actual accumulation condition of tailings in the Huangcaoping
tailings pond, the dry density of the samples was set to 1.44 g/cm3. The degree of saturation
of a wet granular material can be calculated by dry density, specific gravity and moisture
content, and the calculation formula is as follows:

Sr =
ωGs

e
(1)

e =
ρwGs

ρd
− 1 (2)

where Sr is the degree of saturation, Gs is the specific gravity, ω is the moisture content, e is
the void ratio, ρd is the dry density of specimen, and ρw is the density of pure water at 4 ◦C
(1.00 g/cm3).

The corresponding degrees of saturation of the samples with moisture contents of
9%, 12%, 15%, 18%, and 21% were 42.6%, 56.8%, 71.0%, 85.2%, and 99.4%. During the test,
a continuous load was applied to the top surface of the specimens corresponding to the
pressure generated by the rising tailings dam.

2.4. Test Steps

(i) Specimen preparation. To ensure the uniformity of the test specimen, according
to the test scheme, the tailings samples with a moisture content of 9% were divided
into five parts and placed in the pressure chamber (a diameter of 100 mm and height of
200 mm) in sequence. According to the size of the pressure chamber and density of the
specimen, the mass and thickness of each layer were calculated to be 493 g and 40 mm,
respectively. After each layer of sample was placed in the pressure chamber, a special
wooden hammer was used to press the sample to the predetermined thickness. To ensure
a natural connection between the two layers of samples, a knife was used to shave the
surface of the previous layer of samples; then, the next layer of samples was added. The
synthesized specimen was placed in the closed pressure chamber for 24 h before starting
the test.

(ii) Pressure chamber and observation system installation. The pressure chamber
was placed on the test platform, and the position of the loading test machine indenter
was adjusted such that it touches the pressure piston. The stereoscopic microscope and
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charge coupled device camera were fixed on the 3D movable observation support frame,
and the support frame was moved to align the microscope lens and observation window
in the pressure chamber. The computer was connected, and the focal length of the lens
was adjusted to observe the tailing particles through the image analysis software. Thus,
the apparatus was readied for testing, as shown in Figure 6.

(iii) Loading and imaging. A clear observation point was selected, and the initial
image of the tailings particle structure in the selected area was imaged. Then, a continuous
load was applied at a rate of 0.5 mm/min, and the observation point was continuously
tracked by adjusting the observation support frame. Images were captured every 5 min
during the test. The maximum load was set to 650 kPa. During the loading process, the
exhaust hole remained open, allowing the pore water to drain after saturation. The testing
machine automatically stopped applying pressure when the maximum load was attained.

The continuous loading and mesoscopic observation tests of tailings with moisture
contents of 12%, 15%, 18%, and 21% were conducted in sequence as per the aforemen-
tioned steps.

3. Results and Analysis
3.1. Displacement Deformation Characteristics

The displacement curves of the tailings specimens with different moisture contents
under continuous load are shown in Figure 7. A continuous increase in the load causes a
nonlinear increase in the settlement displacement. Excluding the curve with 21% moisture
content, the behaviors of the pressure−displacement curves under the other four moisture
contents are the same. Considering the curve corresponding to 15% moisture content
(as shown in Figure 8), the pressure–displacement curve can be broadly divided into four
stages:
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Figure 7. Pressure−displacement curves of tailings specimens with different moisture under continuous load.

The OA segment is the first stage, where the tailings particles are in a loose accumu-
lation state. The settlement displacement increases almost linearly with an increase in
pressure. With an increase in displacement, the connection between the particles tightens
and cohesion force between the particles increases; however, almost no change is observed
along the direction of the particle arrangement.
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Figure 8. Pressure−displacement curve of tailings specimen with 15% moisture content under
continuous load. Points O, A, B, C, and D are the end points or critical points of the curve.

The AB segment is the second stage, where the displacement further increases linearly
with an increase in the pressure; however, the slope of the curve is significantly lower than
that of the previous stage. Here, the particles are tightly connected, and the cohesion and
friction forces between the particles are significantly increased, resulting in a significant
increase in the resistance to deformation in the specimen. Furthermore, for the moisture
contents of 9%, 12%, 15%, and 18%, the initial pressures are 15.06, 76.1, 48.6, and 31.1 kPa,
respectively. The next stage is observed after increments of 16.97, 26.5, 28.43, and 20.21 kPa.

The BC segment is the third stage, where the pressure–displacement curves for all four
moisture contents show a vertical steep wall with a length of approximately 1.5 mm. At this
stage, the small tailings particles are squeezed into the pores between the large particles,
and the particle structure changes, i.e., the relative position of the particles and direction
of the particle arrangements change. The initial displacement in this stage with moisture
contents of 9%, 12%, 15%, and 18% are 12.32, 17.32, 13.05, and 14.13 mm, respectively.
Here, the displacement continues to increase, but the pressure shows a slight downward
tendency, indicating that the small particles that squeezed into the large pores are not
tightly connected with the surrounding large particles. The friction force between the
particles is reduced.

The CD segment is the fourth stage, where the deformation and rate of deformation
gradually increase with an increase in the load. Under the action of load, the connections
between the rearranged tailings particles gradually tighten and the interaction force be-
tween the particles continues to increase, resulting in a gradual increase in the resistance to
deformation in the specimen.

As shown in Figure 7, the behavior of the pressure−displacement curve of the speci-
men with a moisture content of 21% is different from those of the other four specimens.
In this curve, there is almost no first stage as described in the aforementioned analysis.
The degree of saturation of this specimen was very high, at 99.4%. The specimen attained
saturation rapidly under load, and pore water seeping was observed from the exhaust
hole of the pressure chamber during the test. Due to the poor permeability of the tailings,
the pore water cannot be discharged in time, which leads to the formation of excess pore
water pressure. This further reduces the deformation rate and final deformation of the
specimen. However, it is possible to clearly observe the particle rearrangement stage where
small particles squeeze into the large pores.

The final settlement displacements of the tailings specimens with moisture contents
of 9%, 12%, 15%, 18%, and 21% are 57.43, 38.73, 33.93, 40.4, and 14.83 mm, respectively.
Although the specimen with 21% moisture content attained saturation rapidly during the
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compression process, because the pore water did not freely discharge, the final deformation
with 21% moisture content was the smallest. As shown in Figure 9, for tailings with a
moisture content in the range of 9% to 18%, as the moisture content increased, the final
displacement first decreased and then increased, and the final displacement reached the
minimum when the moisture content was 15%. Therefore, the specimen with 15% moisture
content had the strongest resistance to deformation, that is, 15% is the optimal moisture
content of the tailings.
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3.2. Particles Mesostructure Characteristics

During the continuous loading process, changes in the particle mesostructure of the
tailings specimen were observed in real time using a stereo microscope and CCD camera;
the mesostructure images at different moments were captured. Considering the sample
with a moisture content of 15%, the original and binary images of the mesostructure
of the tailings particles at different times are shown in Figure 10. The binary images,
where the black represents particles and white represents pores, were obtained using the
CF2000P polarized light analysis program (manufactured by Shanghai Changfang Optical
Instrument Co. Ltd., Shanghai, China). Due to certain unfavorable factors, such as the pore
water adhering to the inner wall of the observation window, the movement of particles
scratching the observation window, and observation window with a certain curvature
instead of a plane, the mesostructure image clarity was reduced.
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The evolution of the particle structure changes the contact force transfer net, viz.,
the force chain, in the particle system [32,43]. As shown in Figure 10a, when no load
is applied, the tailings particle structure presents a loosely dispersed state, the particles
are disorderly arranged, and large pores between the particles are clearly visible. As the
load increases, the pores are easily compressed, and the connection between the particles
tightens, as shown in Figure 10b. The process from the dispersed state of the particles
in Figure 10a to the compact state of the particles in Figure 10b corresponds to the OA
segment in the pressure−displacement curve in Figure 8. Here, a weak force chain is
formed between the particles. With a further increase in the load, there is almost no change
in the relative position between the closely connected particles observed in the microscope;
however, the macroscopic settlement deformation of the specimen continues to increase,
but this increment is small. This shows that a certain amount of elastic deformation may
occur at the interconnected parts of the particles, which accumulates to form a macro-
scopic deformation. This process corresponds to the AB segment of the curve in Figure 8.
The force chain between the particles becomes stable and strong. As shown in Figure 10c,
when the load increases to a certain extent, the original arrangement and structure of the
particles are destroyed, and small particles are squeezed into the pores between large
particles, thus reducing the pores between the particles and corresponding BC segment
of the pressure−displacement curve. This process generally occurs in binary granular
mixtures with large size ratios during volume compression [44,45]. The experimental
tailings in this study have a large particle size distribution range with a uniform coefficient
of approximately 26, which is a favorable condition for this process. Here, the original
force chain between the particles is broken, and the new force chain is not formed. Hence,
the load shows less change or may slightly decrease with an increase in the displacement.
Then, as the load increases further, the particles are more closely connected, and a more
compact structure of the particles is generated, where an extremely stable force chain net
is formed, as shown in Figure 10d. Thus, the changes in the mesostructure of the tailings
particles can be graphically represented as shown in Figure 11, which are obtained by
summarizing the results shown in Figures 8 and 10. The four stages (four thick arrows)
shown in Figure 11 correspond to the four stages of the pressure−displacement curve in
Figure 8.
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4. Discussion

Unsaturated tailings are a three-phase mixture of solid particles, pore water, and
pore gas. The liquid between the particles connects the surfaces of adjacent particles;
this is called a liquid bridge [40]. The adhesion mode of the pore water to the tailings
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particles, i.e., the liquid bridge regime, mainly depends on the degree of saturation of the
unsaturated tailings [46]. Different liquid bridge regimes exhibit different adhesion force
between the particles and their corresponding action mechanism. According to previous
research on the liquid bridge regime of wet granular matter [40,46–48], tailings with
different degrees of saturation show three different liquid bridge regimes: when the degree
of saturation is low (generally less than 10−30%), the liquid bridge is in the pendular regime
(Figure 12a); when the tailings are close to saturation (the degree of saturation generally
exceeds 70−90%), the liquid bridge is in the capillary regime (Figure 12c); when the degree
of saturation is in the middle, the liquid bridge is in a transitional state, which is the
funicular regime (Figure 12b).
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For the specimen with a moisture content of 9% in this test, owing to its low degree of
saturation (42.6%), its liquid bridge regime is funicular and close to pendular. Here, most
of the liquid bridges are very slender and exist around the contact points of the particles.
Few pores between the particles are filled with liquid, and the adhesion force of the liquid
bridge to the particles is small [49]. Because the moisture content is less than the plastic
limit, the pore water exists in the form of firmly bound water, and the specimen is in a solid
or semisolid state.

For the specimens with moisture contents of 12%, 15%, and 18%, as the moisture
content increased, the degree of saturation of the tailings and proportion of the pores filled
with water increased, and the liquid bridge regime gradually changed from funicular to
capillary, respectively. Under this condition, the liquid bridge has a strong adhesive force,
which can allow several adjacent particles to form a block [50]. Microscopic observation
showed that under the action of pressure, the movement of individual particles and overall
movement of blocks could be observed. As shown in Figure 13, a block has been translated
and rotated integrally, but the relative position of the particles inside the block did not
change; however, the structure of the block became compact. A similar phenomenon was
observed in the DEM numerical simulation for granular materials, which was conducted
by Zdenek Grof et al. [51,52].

When the moisture content exceeds the plastic limit, the tailings specimens are in a
plastic state. In addition to firmly bound water around the particles, loosely bound water
was existed, which can migrate under the action of squeeze and shear, thereby causing
the shape and adhesive force of the liquid bridge to become unstable and demonstrating
a lubricating effect. When the moisture content exceeds the liquid limit, a portion of the
pore water exists in the form of free water, which further enhances the lubricating effect.
Here, the tailings exhibit the flow state; with no lateral pressure restriction, the specimen
loses its bearing capacity. Owing to the lubricating effect of the pore water, for the three
specimens with moisture contents of 12%, 15%, and 18%, the transition pressure from the
OA segment to the AB segment in the pressure−displacement curves (shown in Figures 7
and 8) decreases with an increase in the moisture content. This is consistent with the results
reported by Ning Lu et al.—the adhesive force of a liquid bridge is generally maximized in
the funicular regime [47,53].
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The specimen with a moisture content of 21% showed a high degree of saturation
(99.4%) and attained saturation rapidly owing to volume compression. However, owing to
the low permeability of the specimen and high loading rate, the pore water could not
be discharged at the appropriate time, resulting in the generation of excess pore water
pressure. Excess pore water pressure appears as a force that pushes adjacent particles apart
on the mesoscale, which is opposite to the adhesive effect of liquid bridges.

5. Conclusions

In this study, a special testing apparatus was used to study the deformation character-
istics and mesostructure evolution mechanism of tailings with different moisture contents
under continuous load. The following are the main conclusions:

(1) The mesostructure evolution of unsaturated tailings under continuous load can
be divided into four stages: pore compression, elastic deformation, structure change,
and further compaction. This is manifested in the macroscopic pressure–displacement
curve as a change in the slope of the curve.

(2) When the pressure reaches a certain extent, the original particle arrangements and
structure of the specimens are destroyed. Here, the small particles are squeezed into the
pores between the large particles; this is observed in the pressure−displacement curve as
the continuous increase in displacement under the condition of almost constant pressure.

(3) For unsaturated tailings, there is an optimal moisture content corresponding to
the strongest resistance to deformation. The optimal moisture content of the experimental
tailings in this study was 15%, which can provide a basis for determining the moisture
content of the tailings used in the sub-dam.

(4) The regime of the liquid bridge between the tailings particles varies with the
degree of saturation, which further affects the evolution mechanism of the mesostructure
of the tailings. Due to the adhesion force of the liquid bridge, the movement of individual
particles and overall movement of a block composed of multiple particles were observed
in the specimen with a higher degree of saturation.
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