
water

Article

Purpleback Flying Squid Sthenoteuthis oualaniensis in the
South China Sea: Growth, Resources and Association with
the Environment

Chunxu Zhao 1,2 , Chunyan Shen 2,3, Andrew Bakun 3, Yunrong Yan 2,3,* and Bin Kang 4,*

����������
�������

Citation: Zhao, C.; Shen, C.; Bakun,

A.; Yan, Y.; Kang, B. Purpleback

Flying Squid Sthenoteuthis oualaniensis

in the South China Sea: Growth,

Resources and Association with the

Environment. Water 2021, 13, 65.

https://doi.org/10.3390/w13010065

Received: 12 October 2020

Accepted: 21 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fisheries College, Jimei University, Xiamen 361021, China; ct9zcx@163.com
2 Marine Resources Big Data Center of South China Sea, Southern Marine Science and Engineering Guangdong

Laboratory, Zhanjiang 524013, China; cyshen101@126.com
3 Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; a.bakun@icloud.com
4 Fisheries College, Ocean University of China, Qingdao 266100, China
* Correspondence: yryan_gdou@163.com (Y.Y.); kangbin@ouc.edu.cn (B.K.); Tel.: +86-13902505881 (Y.Y.);

+86-13012425395 (B.K.)

Abstract: The purpleback flying squid (Ommastrephidae: Sthenoteuthis oualaniensis) is an important
species at higher trophic levels of the regional marine ecosystem in the South China Sea (SCS),
where it is considered to show the potential for fishery development. Accordingly, under increasing
climatic and environmental changes, understanding the nature and importance of various factors
that determine the spatial and temporal distribution and abundance of S. oualaniensis in the SCS is of
great scientific and socio-economic interest. Using generalized additive model (GAM) methods, we
analyzed the relationship between available environmental factors and catch per unit effort (CPUE)
data of S. oualaniensis. The body size of S. oualaniensis in the SCS was relatively small (<19.4 cm),
with a shorter lifespan than individuals in other seas. The biological characteristics indicate that
S. oualaniensis in the SCS showed a positive allometric growth, and could be suitably described by
the logistic growth equation. In our study, the sea areas with higher CPUE were mainly distributed
at 10◦–11◦ N, with a 27–28 ◦C sea surface temperature (SST) range, a sea surface height anomaly
(SSHA) of −0.05–0.05 m, and chlorophyll-a concentration (Chl-a) higher than 0.18 µg/L. The SST was
the most important factor in the GAM analysis and the best fitting GAM model explained 67.9% of
the variance. Understanding the biological characteristics and habitat status of S. oualaniensis in the
SCS will benefit the management of this resource.

Keywords: Sthenoteuthis oualaniensis; South China Sea; generalized additive model (GAM); catch per
unit effort (CPUE)

1. Introduction

Cephalopods are widely distributed in the ocean. They constitute a key group in
the marine food web, connecting predators and prey [1]. Cephalopod catches increased
from more than 1 million tons in 1970 to 4.3 million tons in 2007 [2], but decreased from
4.03 million tons in 2012 to 3.63 tons in 2018 according to the Food and Agriculture Or-
ganization (FAO) yearbook report [3]. Subsequently, the annual cephalopod production
was stable, except occasional fluctuations in composition of a few economically important
cephalopod species [4]. According to the FAO’s estimation, the total biomass of Stheno-
teuthis oualaniensis in the Indian Ocean and Pacific Ocean was between 8 and 11.2 million
tons [2]. As an economically important species in the South China Sea, S. oualaniensis is
characterized by high fecundity, fast growth and high abundance [5–7]. Acoustic survey
data inferred that S. oualaniensis resource amount in the open seas of the South China
Sea reached 1.5 million tons [8]; the light lure resource assessment model estimated that
the total catchable S. oualaniensis in the South China Sea was 994 thousand tons and the
resource amount reached 2.05 million tons [9].
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The marine environmental conditions have direct impacts on the survival, distribu-
tion, replenishment and migration of cephalopods [10]. Understanding the impact of the
marine environment on S. oualaniensis is conducive to effective sustainable management
of this species [11]. Remote sensing of marine environments is being widely used in the
study of sustainable fishery development and fishing efficiency [12–14]. Satellite remote
sensing can provide large-scale and high-resolution sea environmental information under
appropriate conditions [15]. Research has shown that sea surface temperature (SST) was
an important indicator of the distribution of marine pelagic fishery resources and changes
in the marine environment [16], resulting in a positive correlation between the amount of
marine biological resources and SST [16–18]. Phytoplankton is an important part of net
primary productivity, and could be estimated by chlorophyll-a concentration (Chl-a) from
the ocean color data observed by satellites. [11]. Unfortunately, the relationship between
Chl-a and resources showed time lags [19]. Satellite remote sensing of sea surface height
anomaly (SSHA) data can help identify the changes in ocean current patterns and current
velocity (CV) [20]. As it is a complex dynamic process, SSHA cannot directly reflect the
distribution of resources like other environmental factors [21].

Analysis of measurement data shows that marine ecosystems are dynamic and non-
linear, and there are obvious problems in empirical analyses based on traditional statistical
methods [22]. The generalized additive models (GAMs) method provides an additional
choice for the empirical analysis of the spatial–temporal relationship between marine
species and their environment; such models take into account nonlinear responses between
variables [19,23]. The combination of GAMs and geographic information systems (GIS) has
been demonstrated to be suitable for describing marine habitats and explaining the impact
of different environmental factors on marine resources [21,24,25]. For GAMs analysis in
the application to cephalopods, SST and Chl-a are the main environmental variables that
affect resource changes [17,26,27].

In our study, we analyzed the biological information of S. oualaniensis collected
monthly in the South China Sea in 2018 to examine the mantle length–body weight relation-
ship and the dynamics of age structure, aiming to construct an optimal growth model. The
GAMs method was used to analyze the correlation between the catch data of S. oualaniensis
in the South China Sea and the environmental remote sensing data (SST, Chl-a, SSHA and
CV), and then to determine the driving factors affecting the large-scale distribution of the
population.

2. Materials and Methods
2.1. Catch Data

The catch data of S. oualaniensis were collected in 2018 from the Guangzhou Ocean
Fishery Company’s light falling-net fishing boats (Yuesuiyu 30033 and Yuesuiyu 30035)
operating in the South China Sea. Two light falling-net fishing boats were used. Each boat
was 55 m long and had 622 kw host power, equipped with a net of 90 m height and 300 m
outlet circumference, and a total of 700 fish-collection lights (each at 1 kw). The catch data
included time, location (latitude and longitude) and production in both abundance and
biomass. The area ranged from 9.875◦ to 16.875◦ north latitude and 112.375◦ to 115.875◦

east longitude (Table 1 and Figure 1). The catch data was averaged according to the spatial
resolution of 0.25◦ × 0.25◦ to match environmental remote sensing data.
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Table 1. Fishery data collected in the South China Sea in 2018.

Month Latitude (◦N) Longitude (◦E) Station Fishing Times

January 10.625–16.875 112.875–115.125 16 81
February 10.125–11.625 112.125–114.625 9 141

March 9.875–11.625 113.125–115.875 21 227
April 10.125–11.375 113.875–115.875 16 300
May 10.375–11.625 114.625–115.875 5 66
June 10.375–11.125 114.125–115.875 11 62
July 10.375–11.875 114.375–115.625 5 41

August 10.125–11.625 114.125–114.875 6 132
September 10.125–11.625 114.125–115.375 7 57

October 9.875–16.875 112.375–115.625 21 103
November 10.375–16.125 113.375–115.625 13 134
December 10.375–13.875 113.375–114.625 9 102

Total 9.875–16.875 112.375–115.875 139 1446
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2.2. Environmental Remote Sensing Data

Environmental remote sensing data included SST (◦C), Chl-a (µg/L), SSHA (m) and
absolute geostrophic velocity (AGV, m/s) in the study sea area (9.875◦–16.875◦ N and
112.375◦–115.875◦ E). The AGV includes the zonal component (ZCV) and the meridian
component (MCV) for determining a large-scale estimated flow velocity scalar.

The environmental data were from the Pacific node of the Ocean Observation Center
of the National Oceanic and Atmospheric Administration (NOAA) in the USA (https:
//oceanwatch.pifsc.noaa.gov/). The remote sensing data used in the analysis were from
the first day of each month in 2018. The spatial resolution of SST was 0.05◦ × 0.05◦; the
spatial resolution of Chl-a was 0.0375◦ × 0.0375◦; the spatial resolution of SSHA and
AGV was 0.25◦ × 0.25◦. The software ArcGIS (10.2) was used for drawing figures. The
calculation equation of current velocity (CV, m/s) was:

CV =
√

ZCV2 + MCV2

https://oceanwatch.pifsc.noaa.gov/
https://oceanwatch.pifsc.noaa.gov/
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2.3. Biological Data

In total, 1387 S. oualaniensis samples from 112.28◦ E–115.60◦ E, 10.27◦ N–16.59◦ N
were provided by the Guangzhou Ocean Fishery Company’s light falling-net fishing boat
Yuesuiyu 30,033 in 2018. According to Marine Survey Regulations (GB/T 12763.6-2007), the
biological parameters as mantle length and body weight were measured. The mantle length
measurement was accurate to 0.1 cm, and the body weight measurement was accurate to
0.01 g.

In the experiments, a knife was used to remove the statoliths in the statocyst, and the
statoliths were placed in centrifuge tubes containing 75% alcohol for the statolith grinding
experiments. A total of 180 samples were collected and successfully grounded in the
statolith grinding experiment. The statolith grinding experiment comprised embedding,
grinding, polishing, photographing, and reading and counting the ring patterns [28].
The embedding was carried out with a 1:1 ratio of acrylic powder and hardener and the
grinding was carried out 24 h after embedding. Baikalox 0.3 CR alumina polishing powder
(Baikalox CR, Baikowski, France) was used for polishing and the photos were taken under
an Olympus BX53 microscope (Olympus, Tokyo, Japan) with an Olympus DP26 camera
(Olympus, Tokyo, Japan). Each statolith sample was counted separately by two people and
one red dot was marked every ten rings (Figure 2). The average values were taken using a
criterion of <10% error. Otherwise, a third person calibrated the reading [29].
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Figure 2. Ring counts and measurements of S. oualaniensis statoliths. This sample was collected in
September, and was a female S. oualaniensis with a mantle length of 9.8 cm, a body weight of 29.39 g
and an age of 62 days. The distance from the core to the longest edge was 118 µm.

2.4. Methods

A power function relationship was established between mantle length and body
weight:

BW = a·MLb

Here, BW is body weight in g, ML is mantle length in cm, a (intercept) is an estimated
parameter related to the habitat. Parameter b (slope) reflects the growth type: b = 3 means
uniform growth; b < 3 means negative allometric growth; b > 3 indicates positive allometric
growth [30,31].

Based on the suggestion that one ring represents one day of growth, seven growth
model equations were established [28], including linear, exponential, power function,
logarithmic, logistic, Gompertz and Von Bertalanffy growth equations.

Logistic growth model equation:

Lt =
L∞

1 + e−K·(t−t0)

Gompertz growth model equation:

Lt = L∞·e−e−K(t−t0)
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Von Bertalanffy growth model equation:

Lt = L∞·
(

1− e−K(t−t0)
)

Here, K is the estimated growth parameter, t0 is the initial age, L∞ is the limit of mantle
length, Lt is the mantle length at age t, and t is the age in days.

Akaike’s Information Criterion (AIC) measures the advantages and disadvantages of
model fitting. The smaller the AIC value, the better the model fit [32]. The maximum likeli-
hood estimates and model AIC values could be calculated as follows using the planning
and solving function in Excel [33]:

− ln[L(θ|data)] = ln(σ) +
(o− p)2

2σ2

AIC = −2ln[L(θ|data)] + 2m

Here, o is the observed value, p is the predicted value, and σ is the standard deviation
representing 15% of the average observed value. In our study, σ was 17.8 mm.

The catch per unit fishing effort (CPUE, kg/net) is calculated according to the follow-
ing equation:

CPUE =
Yield

Fishing times

Here, Yield is the total catch in the sea area of a 0.25◦ × 0.25◦ grid cell, and fishing
times are the total number of operations in each grid cell.

The generalized additive models (GAMs) method was used to determine the effects of
environmental factors (depth, SST, Chl-a, SSHA and CV) and spatiotemporal factors (month,
longitude and latitude) on the ln(CPUE) of S. oualaniensis in the South China Sea. GAMs
method generalizes linear regressions by regarding linear functions as covariates [34]. The
MGCV package in the R language (Version 4.0.0) was used for GAMs analysis [35,36]. The
non-parametric GAMs function is

g f actor(ln(CPUE)) = s( f actor1) + s( f actor2) + . . . + s( f actorn)

Here, ln(CPUE) is the logarithmic transformation of the CPUE of S. oualaniensis, g is
the connection function and s is a smoothing function.

According to the explanatory power of the model based on single factor, factors were
added to the model from large to small in turn. The variables suitable for the model
were screened by factor significance, Akaike information criterion (AIC) and generalized
cross-validation (GCV) values so as to select the best fitting model.

Each grid cell in different months was considered as a unit for calculating the average
CPUE. The environmental factors were grouped to calculate the average CPUE at each
scale. The group scale of SST, Chl-a, depth, SSHA, and CV was 1 ◦C, 0.05 µg/L, 500 m,
0.05 m, and 0.1 m/s, respectively. The most suitable environmental range was determined
according to the relationship between CPUE and each environmental factor.

3. Results
3.1. Temporal and Spatial Changes in Environmental Conditions

The SST gradually increased from south to north from January to May and from
October to November in the study area. In contrast, from June to September, SST gradually
decreased from south to north (Figure 3A); Chl-a did not undergo significant spatial changes
during most months, but from July to September, Chl-a in the southern sea area was clearly
greater than in the northern sea area with the boundary at 14◦ N (Figure 3B). In February,
November and December, the SSHA in the middle of the study area was relatively high; in
September and October, the SSHA was highest to the south of 12◦ N (Figure 3C).
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3.2. Growth Status of S. oualaniensis in the South China Sea

The sample mantle lengths ranged from 7.5 to 19.4 cm with the mean value at 12.3 cm.
The monthly mean maximum value appeared in October at 13.5 cm, followed by May
at 13.0 cm, November at 12.6 cm and August at 12.5 cm. The smallest average was in
December at 11.3 cm (Figure 4).
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The sample body weights ranged from 10.5 to 302.8 g with the mean value at 76.96 g.
The monthly average body weight was highest in October at 107.39 g, followed by May
at 89.85 g, August at 86.07 g, September at 80.91 g, and November at 80.57 g. The lowest
value appeared in December at 51.97 g (Figure 5).
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A power function relationship between mantle length and body weight of the 1387 S.
oualaniensis individuals in the South China Sea in 2018 was established as BW = 0.010ML3.498

(R2 = 0.910), where the b value was greater than three, indicating positive allometric growth
(Figure 6).
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Figure 6. Relationship of mantle length and body weight of S. oualaniensis.

The age of the oldest individual was 90 days with a mantle length of 15.4 cm and the
youngest individual was 45 days old with a mantle length of 8.4 cm. The dominant age
range was 50 to 80 days, accounting for 92.7% of the total (Figure 7). The average mantle
length of S. oualaniensis was 9.5 cm in the range of 50–59 days, 12.0 cm in the range of
60–69 days, and 13.5 cm in the range of 70–79 days. Within the dominant age group, the
S. oualaniensis grew about 2.0 cm every 10 days.
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Fitting the optimal growth model based on the statolith ring pattern, the logistic
growth equation was the most suitable (AIC = 1199.549). The difference between logis-
tic and AIC values of the Gompertz, von Bertalanffy and power growth equations was
about 0.1, while the difference between logistic and logarithmic growth equations was
112.927 (Table 2), thus the logarithmic equation was excluded for describing the growth of
S. oualaniensis.
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Table 2. Model equation parameters for S. oualaniensis. Bold means the parameters of the best model.

Equation a b t0 K L∞ AIC

Linear 0 1.847 - - - 1202.278
Exponential 40.781 0.016 - - - 1205.921

Power 1.19 1.105 - - - 1200.628
Logarithmic 28.666 0 - - - 1312.476

Logistic - - 51.31 0.055 178.431 1199.549
Gompertz - - 44.534 0.037 194.924 1199.847

Von
Bertalanffy - - 24.487 0.018 238.457 1200.241

AIC: Akaike information criterion.

3.3. Temporal and Spatial Changes in CPUE

The CPUE in the study area showed significant spatial variation. The CPUE range
of 74 grid cells was 6.66–741.69 kg/net, with the average value at 195.77 kg/net. The
high CPUE were mainly distributed at 10–11◦ N, and the lower CPUE mostly appeared to
the north of 13◦ N. The pattern of CPUE changes in the longitude direction was unclear
(Figure 8).
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3.4. GAMs Analysis

Starting from the month with the highest interpretation bias, environmental variables
were added in turn to the GAMs, and the performance of the model according to AIC
and GCV was used to determine which factor was suitable for inclusion in the optimal
model. Finally, model 5 with resolution rate was 62.6% was selected as the optimal model,
including the following factors: month, SST, SSHA, Chl-a, and latitude resolute (Table 3).
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Table 3. Analysis of variance for generalized additive model (GAMs) fitted to ln(CPUE). Bold means
the best model.

Model Adjusted R2 AIC GCV Variance Explained (%)

Model 1 0.286 373.2 0.849 32.9
Model 2 0.369 359.5 0.774 42.5
Model 3 0.436 350.8 0.739 51.9
Model 4 0.489 338.6 0.68 57.2
Model 5 0.542 326 0.627 62.6

AIC: Akaike information criterion; GCV: generalized cross-validation; SST: sea surface temperature; Chl-a:
chlorophyll-a concentration; SSHA: sea surface height anomaly. Model 1: ln(CPUE) = s(Month)***; Model 2:
ln(CPUE) = s(Month)** + s(SST)***; Model 3: ln(CPUE) = s(Month)** + s(SST)*** + s(SSHA); Model 4: ln(CPUE)
= s(Month)** + s(SST)*** + s(SSHA)** + s(Chl-a)**; Model 5: ln(CPUE) = s(Month)*** + s(SST)** + s(SSHA)* +
s(Chl-a)* + s(Latitude)**; ***: p < 0.001; **: p < 0.01; *: p < 0.05; : p < 0.10.

In GAMs analysis, month had a positive effect on CPUE from February to June and a
negative effect in January. SST had a negative effect on CPUE in the range of 28.0–30.3 ◦C
but a positive effect at other ranges of temperature. SSHA showed a situation where
negative and positive effects occurred alternately, with a small effect in the SSHA range of
−0.05–0.07 m and a heavy effect when SSHA was higher than 0.07 m. Chl-a higher than
0.18 µg/L showed a positive effect on CPUE but non-significant effects at other values.
Latitude had a positive effect on CPUE in the range of 10.0–15.6◦ and a negative effect at
other values (Figure 9).
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3.5. Relationship between CPUE and Environment

The SST in the study sea area was 25–31 ◦C and the CPUE was higher in the tempera-
ture range of 27–28 ◦C. The CPUE was higher when Chl-a was greater than 0.18 µg/L. The
range of SSHA in the study area was −0.1–0.25 m, in which −0.05–0.05 m was suitable for
higher CPUE (Figure 10).
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4. Discussion
4.1. S. Oualaniensis Population Structure

The individual sizes of S. oualaniensis varied in different regions, with the largest
individuals caught in the Arabian Sea and the smallest in the South China Sea. For example,
the mantle length of S. oualaniensis from the tropical eastern Pacific ranged from 14.2 to
29.7 cm [37]; the mantle length of S. oualaniensis from the southwest and southeast waters of
the Arabian Sea in the Indian Ocean was 10.6–61.2 cm and 9.1–27.0 cm, respectively [38,39];
the mantle length of S. oualaniensis from the South China Sea ranged from 5.6 to 23.6 cm [40].
In our study, the mantle length of S. oualaniensis from the South China Sea varied from 7.5 to
19.4 cm, with an average mantle length of 12.3 cm and a median mantle length of 12.2 cm.
The individuals of S. oualaniensis in the South China Sea are small, which may be caused by
differences in geographic environments and habitats [41]. The open waters of the South
China Sea are oligotrophic areas, characterized by lower chlorophyll and lower primary
productivity than other sea areas [42]. Individuals of S. oualaniensis in the South China
Sea may not obtain enough energy for vertical migration and growth, so the individuals
are smaller than those in other sea areas. Oceanic cephalopods can move up a trophic
level as mantle length increases from 1.5 to 4.7 cm, suggesting differences in feeding status
between individuals of different sizes [43]. The feeding situation of S. oualaniensis varies at
different stages of its ontogeny. As the mantle length increases, the feeding changes from
zooplankton to crustaceans and lantern fish, and then to lantern fish and cephalopods [44].
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According to the concepts of optimal foraging theory [45], during the foraging period,
animals should spend the lowest amount of energy and reap the greatest benefits in order
to maximize their adaptation to the environment [45].

The b value in the power function relationship between mantle length and body
weight reflects the growth status and type of species [46], and the growth type and speed
may be different at different developmental stages [47]. The b value is mainly affected
by the growth environment of the species and the abundance of food organisms, and the
number of samples and the size range can improve the accuracy of the relationship between
body length and body weight. Positive allometric growth species tend to inhabit high
primary productivity sea areas, while negative allometric growth species tend to inhabit
both low primary productivity and deep-sea areas [48]. In our study, the b value 3.498 of
S. oualaniensis was consistent with the result 3.367 of samplings from the southern part of
the South China Sea (SCS) [49], while the b-value 2.67 in the Indian Ocean waters showed
a negative allometric growth type [39]. The ranges of b-values in the Northwest Indian
Ocean and South China Sea were 2.584–2.912 and 3.416–3.556, respectively. Individuals in
the Indian Ocean were larger and the growth rate of body weight was decreasing compared
with the growth rate of mantle length. The individuals in the South China Sea were smaller
and their body weights increased rapidly. Different growth types appeared in the two sea
areas, which may be due to differences in growth caused by different habitats and food
items.

4.2. Analysis of Growth Status of S. oualaniensis

Like most oceanic cephalopods, S. oualaniensis is characterized by rapid growth,
efficient reproduction and a short life span [7,50]. According to the statolith ring patterns,
the life span mostly ranged from 88 to 363 days [51,52]. The lifespan of S. oualaniensis in
the equatorial waters of the eastern Pacific Ocean is about six months; the maximum age
is 168 days and the maximum mantle length is 29.6 cm [37]. In our study, the dominant
age group of S. oualaniensis from the South China Sea ranged from 50 to 80 days, with the
maximum age 90 days and the mantle length of 15.4 cm, indicating that the lifespan of
S. oualaniensis in the South China Sea was shorter than those in other seas. This difference
in lifespan of S. oualaniensis may reflect the impact of food availability and temperature [53].
Without collecting larvae and juveniles, it was impossible to fully describe the entire
growth cycle of S. oualaniensis in the South China Sea. The ontogeny of squid growth in the
developmental stage conformed to a linear growth equation and the growth throughout
the lifespan generally followed different nonlinear growth models [54,55]. In our study,
which only represented adult S. oualaniensis in the South China Sea, the Logistic growth
equation was most suitable to describe the growth pattern, consistent with the samplings
from the East Pacific [54]. This may be related to the similarity in both sample sizes and
developmental stages. Linear and power function growth equations were also considered
to be the suitable growth equations for S. oualaniensis in other sea areas [37,56]. Furthermore,
except the Logarithmic growth equation that was unsuitable for describing the growth, the
AIC values of the other growth models had little difference.

The growth status of S. oualaniensis varied from month to month. Squid have a short
lifespan and their growth rate can respond very quickly to changes in ocean conditions [57].
The surface temperature of the South China Sea from May to July was relatively high and
Chl-a was relatively low, which resulted in a low primary productivity. S. oualaniensis is a
species that spawns throughout the year with the peak spawning time in spring [57]. The
maturation peak of female S. oualaniensis mainly occurs in winter, and the individual dies
immediately after laying eggs [58].

4.3. Relationship between CPUE and Environment

The spatial variation of the CPUE of oceanic cephalopods with latitude is mainly
manifested through temperature changes [59]. In our study, the sea area with higher CPUE
was near the Spratly Islands. In the open ocean, Chl-a in the sea area near the islands



Water 2021, 13, 65 13 of 17

is relatively high, suggesting primary productivity and abundant food [60]. Oceanic
cephalopods likely gather near islands for reproduction, resulting in higher values of
CPUE [61].

The marine environment is complex and there are certain connections between various
environmental factors [62,63]. Temperature is one of the main factors affecting the growth
of organisms. Both low temperature and high temperature will affect the growth of
organisms [64,65]. With the increase in SST and the expansion of the hypoxic zone, Chl-a
decreased, leading to changes in squid behavior and distributional range [66,67]. In spring,
S. oualaniensis was mainly distributed in the SST range of 26.5–28.5 ◦C in the central and
northern waters of the South China Sea [17,19]. According to the GAM analysis for the
northeastern part of the Arabian Sea from December to January, the high densities of squid
were in the SST range of 28.03–28.62 ◦C [27]. Based on the habitat suitability index (HSI)
model combined with CPUE, the optimal SST range of S. oualaniensis in the South China Sea
was 27.4–30.7 ◦C [68]. For the distant catch of S. oualaniensis, the optimum SST was in the
range of 26–28 ◦C from September to March [69]. There were differences in the optimal SST
ranges between different sea areas and seasons. In our study, CPUE was higher when SST
was in the range of 27–28 ◦C. Within the suitable temperature range, CPUE was positively
correlated with temperature. Moreover, S. oualaniensis has a wide distribution and vertical
migration [61,70], showing a certain degree of adaptability to temperature.

SSHA reflects the dynamic changes of a marine environment, including the current
flow velocity and the occurrence of whirlpools. Based on the analysis of the habitat
suitability index (HSI) model, the optimal SSHA range of S. oualaniensis from the South
China Sea is 0.03–0.18 cm [68]. The edge of a whirlpool was more conducive to the foraging
of marine predators such as squid [71]. In our study, the CPUE of SSHA was higher in the
range of −0.05–0.05 m. Under GAM analysis, the SSHA range of −0.05–0.07 m had less
impact, while a value greater than 0.07 m had a greater impact. Although S. oualaniensis
showed a strong swimming ability [72,73] and adaptability to a large range of ocean
dynamics, higher SSHA and flow rates were not suitable for the accumulation of bait
organisms [71].

Chl-a is an important factor in determining net primary productivity (NPP) by con-
trolling the growth of phytoplankton. Therefore, Chl-a was an important indicator for
maintaining the stability of a squid population’s food web structure [13,74,75]. In the south-
eastern part of the Arabian Sea, the area with the most abundant S. oualaniensis appeared
in the Chl-a range of 0.4–0.6 µg/L [27]. A study in the Xisha waters of the South China
Sea showed that S. oualaniensis was mainly distributed in sea areas with Chl-a ranging
from 0.11 to 0.15 µg/L [17]. In our study, CPUE was higher in areas with Chl-a higher than
0.18 µg/L, consistent with the results of the SCS study [17].

The results of our study show that CPUE was higher when SST was in the range of
27–28 ◦C, Chl-a > 0.18 µg/L and SSHA in the range of −0.05–0.05 m. According to the
analysis on suitable habitat conditions for S. oualaniensis, the suitable period for SST, Chl-a
and SSHA was, respectively, in February and March, from July to next March, and from
January to March.

5. Conclusions

The purpleback flying squid (Ommastrephidae: Sthenoteuthis oualaniensis) is an im-
portant species with potential for resource exploitation in the South China Sea (SCS).
Understanding the biological characteristics and habitat status of S. oualaniensis in the
South China Sea will aid in the management of this resource.

The body size of S. oualaniensis in the SCS was relatively small, with a shorter lifespan
than individuals in other seas. S. oualaniensis in the SCS showed a positive allometric
growth, with the relationship between mantle length (ML) and body weight (BW) as BW =
0.010ML3.498 (R2 = 0.910). The dominant age of S. oualaniensis in the SCS was 50–80 days,
and the growth model could be better described by a logistic growth equation based on the
statolith ring pattern.
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To obtain a higher CPUE of S. oualaniensis, a favorable habitat environment was
required, including a sea surface temperature (SST) in the range of 27–28 ◦C, sea surface
height anomaly (SSHA) at −0.05–0.05 m, and chlorophyll-a (Chl-a) concentration higher
than 0.18 µg/L.

Though the status of S. oualaniensis resource amounts in the SCS is in a good condi-
tion, the reasonability and sustainability of exploitation should be fully considered. This
suggests that further studies concerning to the ecological niche including feeding habits,
reproduction strategy and species interactions would be worthwhile.
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