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Abstract: Substantial uncertainty is inherent in reservoir inflow forecasting, which exerts a potential
negative impact on reservoir risk. However, the risk propagation from the inflow forecast uncertainty
(IFU) to reservoir operations remains elusive. Thus, a new integrated assessment framework was
developed in this study to characterize the risk coupling with flood and electricity curtailment
risks that propagate from the IFU to the reservoir operations. First, to incorporate the IFU, an
improved Gaussian mixture distribution (IGMD) and Markov chain Monte Carlo (MCMC) algorithm
were constructed to model the measured forecast errors and generate ensemble inflow forecasts,
respectively. Next, to assess the reservoir risk, the flood risk induced by the IFU overestimation
and the electricity curtailment risk related to the IFU underestimation were identified according to
the reservoir operation rules. The sub-daily inflow forecast at the Jinping First Stage Hydropower
Plant Reservoir of Yalong River, China (Jinping I Reservoir) was selected. The results indicated that
the IGMD-based MCMC was capable of deriving robust ensemble forecasts. Furthermore, there
was no flood risk (risk rate was zero) induced by the IFU when taking designed reservoir floods
with a ≥10-year return period as the benchmark. In contrast, the electricity curtailment risk rate
significantly increased up to 41% when considering the IFU. These findings suggested that compared
with the flood prevention pressure, the IFU would more likely result in severe electricity curtailment
risk at the Jinping I Reservoir.

Keywords: risk assessment; reservoir inflow forecast; inflow forecast error modeling; Gaussian
mixture distribution; uncertainty

1. Introduction

The process of reservoir inflow forecasting plays a critical role in short-term reser-
voir optimal operations and directly influences the reservoir-adjusted flood prevention
and water resources management effectiveness, as well as the hydropower generation
efficiency [1,2]. Normally, the short-term, especially sub-daily, forecasting of reservoir
inflows is carried out in practice at a certain time with multiple lead times. The current
forecasted inflows with sub-daily lead times contain a large uncertainty, which constrains
the capacity of reservoir optimal operations and leads to multiple risk events, owing to the
strong randomness of the forecast error and the high real-time demand [3]. As a risk factor,
the inflow forecast uncertainty (IFU) is closely related to the reservoir operation effects
on flood prevention and the power generation capacity, and thus results in a risk when
operation failure occurs. Thus, how to quantify the risk that propagates from the IFU to
the reservoir operations is a huge challenge concerning the complex response process.
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The reservoir operation risks can be roughly categorized into two types, namely, the
occurrence of hazard events and various natural and/or socioeconomic losses [4–6]. For the
first type, flood damage and inundation risks are the primary hazard events [7] when the
reservoir operation is failing. Food damage risk is frequently short-term and caused by
flooding from external waters, while the inundation risk is caused by flooding from internal
waters during reservoir operations. As for the second type, a water shortage related to
water supply and ecological water utilization and a reduction in power generation capacity
of a hydropower plant often appear. Although these losses will not result in an extremely
critical hazard, they can induce large losses in the long run. Among various risks, both flood
and electricity curtailment risks are the most concerning regarding reservoir inflow-related
risks.

In practice, a certain inflow forecast series is normally provided to the engineers to
operate reservoirs. The engineers frequently analyze the forecast quality by modeling
forecast errors. To analyze the reservoir inflow forecast errors, the forecast errors of the
inflow discharge is obtained as the difference between the forecasted inflow discharge
and the corresponding observations. Current studies primarily focus on quantifying the
stochastic characteristics of inflow forecast errors using parametric and non-parametric
estimation [8,9] and maximum entropy approaches [10] to approximate the theoretical
distribution of the forecast errors [11,12]. These approaches were applied mainly based on
a single probabilistic distribution [13,14], which cannot quantify the theoretical distribution
that captures all the characteristics of the inflow discharge due to the varying tail features,
although satisfactory results may be possible under some conditions. Thus, it is necessary
to profile the forecasting errors using multiple distributions to depict various characteristics
of the forecasted inflow errors with strong randomness.

Finite mixture distributions, especially the Gaussian mixture distribution (GMD),
have been widely applied to modeling the daily or sub-daily discharge forecast errors in
previous studies due to their ability to fit the complex forecast errors [15,16]. For example,
Ji et al. [17] established the stochastic GMD model to fit the sub-daily forecast error series
of reservoir inflows. However, two important problems were unsolved in these studies.
The first one is the identification of the mixture number in the Gaussian function. If the
mixture number is too small, the fitness precision may be hindered, whereas the model
may be too complex to run if the mixture number is too large. The other problem is related
to the initialization of the model parameters used. The parameters of GMD, including the
weighting coefficient of Gaussian components and others, need to be initialized first before
they are numerically optimized using optimal algorithms. Different initialization schemes
lead to very different iteration results and exert a significant influence on the goodness-
of-fit. However, the number of Gaussian components and the initialization of parameters
were frequently decided arbitrarily in previous studies, which lacks a scientific trade-off
decision. Based on the theoretical distribution model of the forecasted inflow, ensemble
forecasts can be generated with various sampling techniques to represent the forecast
uncertainty. The Markov chain Monte Carlo (MCMC) algorithm provides a flexible tool
for generating ensemble inflow forecasts based on the raw deterministic forecasts [18,19].
In similar investigations, the IFU can be derived using the synthetic ensemble forecast [20].
Although the ensemble reservoir inflow forecast was explored in quite a few previous
investigations [21], the IFU has rarely been linked to the risk propagation of reservoir flood
prevention and power generation operations to quantify the risk.

Overall, from an uncertainty point of view, it is difficult to generate a robust ensemble
inflow forecast via modeling the inflow forecast error with a single Gaussian distribution
(SGD), due to the heterogeneity of inflow forecast errors that is related to unregulated
temporal dynamics. Accordingly, we introduced the improved GMD (named IGMD) to
depict the forecast errors for reservoir inflow, which is suitable for the heterogeneous
structures of errors that result from multiple hydro-meteorological conditions and runoff
generation processes over a lengthy period, as emphasized in previous studies [22,23];
we also introduced the GMD model, which is different from the IGMD in the means of
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Gaussian component and the initial parameter identification. The other problem concerns
how to quantify the reservoir operation risk that propagates from the IFU. In this study,
the operation risk driven by the ensemble inflow forecast was estimated for the flood risk
achieved by the reservoir design flood rules and for the electricity curtailment risk via
stochastic dynamic programming.

This study aimed at analyzing the response of the reservoir operation risk related to
the flood hazard and the electricity curtailment loss to the IFU. The specific objectives of
the present study were to (1) construct the IGMD model in order to model the error in the
reservoir inflow forecast and generate an ensemble forecast series with multiple lead times
via an MCMC algorithm, and (2) quantify and assess the risk, which was coupled with
the flood risk and electricity curtailment losses, that was induced by the IFU. To verify the
performance of the integrated framework for assessing the risk propagating from the IFU
to reservoir operations, the First Stage of the Jinping Cascade Hydropower Plant Reservoirs
located at Yalong River was exploited as the study area to investigate the short-term inflow
forecast.

Following this introduction, the method of modeling the inflow forecast error and
risk quantification is described in Section 2. Next, the study area and sub-daily inflow data
obtained from forecasts and observation techniques are introduced in Section 3. Section 4
provides the results and discussion derived from the quantification framework of the risk
propagation. Finally, the primary conclusions are given in Section 5.

2. Methods

Figure 1 illustrates the overall research schemes of the developed framework for
assessing the risk propagation from the uncertainty in the reservoir inflow forecasts to
the reservoir operation risks used in this study. Correspondingly, the approaches of the
traditional GMD model, the improved GMD model coupling the quantification of mixture
component number and the initialization of model parameters, the MCMC sampling
algorithm, the flood risk identification, and the dynamic programming for quantifying
electricity curtailment were introduced in Sections 2.1–2.5, respectively.

2.1. Gaussian Mixture Distribution (GMD) Model

The streamflow data exhibited strong temporal heterogeneity from the low flow
period to the flood period, showing multimodal features. Therefore, it is quite natural and
intuitive to assume that the cohorts come from different Gaussian distributions. Thus, the
probabilistic model of the GMD, which exhibited normally distributed subpopulations
of forecast errors within an overall population, was used to depict the error variable.
Mixture models, for example, the GMD, do not generally require identification of the
specific subpopulation that a data point belongs to, which allows the model to search the
subpopulations adaptively with a form of unsupervised learning [24,25]. The measured
forecast error was considered as the errors between the past forecasted (Q f

T(i),t(j)) and their
verifying observed (Q o

T(i),t(j)) inflow discharge. The forecast errors, denoted as eT(i),t(j),
can be expressed as:

eT(i),t(j) =
Q f

T(i),t(j) −Qo
T(i),t(j)

Qo
T(i),t(j)

× 100%, (1)

where T(i) and t(j) represent the beginning time of the forecast and the lead time, respec-
tively; i is the index of the forecast number, i = 1, 2, . . . , N; j is the index of the forecast
period number, j = 1, 2, . . . , M. The forecast errors eT(i),t(j) of a specific lead time t(j) can
be fitted using the Gaussian mixture model with a probability density function (PDF)
expressed as follows:

p(eT(i),t(j);θ) =
K

∑
k=1

[βk × pG
k (eT(i),t(j)

∣∣∣µk, σ2
k ) ], (2)
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where θ denotes the parameter set in the mixture model, and for a specific kth Gaus-
sian model component pG

k (), the parameters include the weighting coefficient βk, where
K
∑

k=1
βk = 1, component mean µk, and component variance σ2

k . To solve the mixture model,

the parameter set θ needs to be identified. The expectation maximum (EM) algorithm is a
powerful tool for optimizing the parameters and contains three steps, as follows:

(a) “E” Step: Define a latent variable εi,k, εi,k ∈ [0, 1] that represents whether the ith
sample belongs to the kth Gaussian model, k = 1, 2, . . . , K. Merging εi,k with Equation (2),
we can derive the log-transformed likelihood function of a single sample (see Equation (3)):

p(eT(i),t(j), εi,k;θ) =
K

∑
k=1

[β
εi,k
k × pG

k (eT(i),t(j)

∣∣∣µk, σ2
k )

εi,k

]. (3)

Figure 1. Flowchart for the integrated framework proposed in this study. GMD, IGMD, and SGD
denote the Gaussian mixture distribution, the improved Gaussian mixture distribution, and the
single Gaussian distribution models, respectively. Note that the IGMD was the model proposed in
this study and was used to quantify the inflow forecast uncertainty (IFU) and flood risk, as well as
the electricity curtailment risk, while the GMD and SGD were used for comparison with the IGMD.
AIC: Akaike information criterion, BIC: Bayesian information criterion.
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Then, the parameter set θ is initialized by setting βk = 1
K , a random µk complying

with the uniform distribution, and σ2
k = 1. Based on Equation (3), the posterior probability

distribution of εi,k in Bayesian theory can be written as:

P(εi,k= 1|eT(i),t(j),θ) =
βk × pG

k (eT(i),t(j)

∣∣∣uk, σ2
k )

K
∑

k=1
βk × pG

k (eT(i),t(j)

∣∣∣uk, σ2
k )

. (4)

(b) “M” Step: Partially derive the log-transformed likelihood function with respect to
the parameters βk, µk, and σ2

k using Equation (5):

P(eT(i),t(j), εi,k|θ) =
N

∏
i=1

K

∏
k=1

β
εik
k PG

k (eT(i),t(j)

∣∣∣uk, σ2
k )

εi,k
. (5)

The estimated parameters can be derived by setting the partial derivative function
equal to zero: 

β∗k = nk
N ,

u∗k =

K
∑

k=1
εi,keT(i),t(j)

N ,

σ2∗
k =

K
∑

k=1
εik(eT(i),t(j)−u∗k )(eT(i),t(j)−u∗k )

T

N .

(6)

(c) Step iterations: Update the parameters by iterating the steps (1) and (2) until
the difference between the two continuous estimates reaches a small enough value, for
example,

∣∣θ− θ∗
∣∣< η, η = 10−4 .

2.2. Improved Gaussian Mixture Distribution (IGMD) Model

The modification of the GMD, including the quantification of the suitable number
of Gaussian mixture models via the Akaike information criterion (AIC) and Bayesian
information criterion (BIC), as well as the initialization of the model parameters via the
k-mean++ algorithm in the data mining, is described in Sections 2.2.1 and 2.2.2, respectively.
Then, we introduce the indices of the optimal model test that was used to diagnose the
performance of the improved GMD model in Section 2.2.3. The advantages lie in the fact
that the improved modeling accuracy of the IGMD for fitting the inflow forecast errors
provides benefits to the inflow forecast uncertainty analysis and reservoir operation risk
that was driven by the ensemble inflow forecast. Figure 1 shows the flowchart of the
construction and application of the forecast error model using the IGMD for the reservoir
inflow.

2.2.1. Deciding on the Optimal GMD Models Using the AIC and BIC

Both the AIC and BIC can evaluate the goodness-of-fit for a model’s performance.
The difference between these two indices is that BIC is more appropriate for cases with
large amounts of sample data due to the punishment term for the model parameters and
taking the sample length into consideration. The mathematical functions of AIC and BIC
can be formulated as Equations (7) and (8), respectively, as given below:

AIC = 2K− 2 ln(L), (7)

BIC = K ln(N)− 2 ln(L), (8)

where K represents the number of model parameters and refers to the number of Gaussian
mixture model components in this context; N and L denote the length of the sample and
the likelihood function, respectively. Varying the parameters results in various AIC and
BIC estimates. Lower estimate values for AIC and BIC indicate a better performance of
the model fitting. Furthermore, the K value for a specific lead time corresponding to the
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lowest AIC and BIC is considered the optimal number of GMD model components for the
subsequent modeling.

2.2.2. Initializing the Model Parameters Using the k-Mean++ Algorithm

The k-mean++ algorithm was frequently used to determine the beginning state of the
cluster iteration, in which the distances between the centers of primary clusters were as
large as possible. To classify the sample data of the forecast errors, the components in the
Gaussian mixture model can also be considered as a cluster model. The clustering process
is achieved by mapping each data point into an appropriate Gaussian component, with the
detailed steps as follows (see Figure 2):

(a) Randomly select K centers for K Gaussian components (K is set to the optimal number
quantified in Section 2.2.1) for each sub-daily forecast period.

(b) Estimate the Mahalanobis distance DT(i),t(j) between the forecast error eT(i),t(j) with a
lead time of t(j) beginning at time T(i) and the nearest center of the Gaussian model
cluster.

(c) Calculate the probability that an error is taken as the next cluster center using the

formula
D

T(i),t(j)

∑i∈N D2
T(i),t(j)

, according to the Roulette wheel theory.

(d) Iterate steps (2) and (3) until all the cluster centers remain the same.
(e) Group each error eT(i),t(j) into a specific cluster, where the distance of the error to the

center is minimum among K clusters, and derive the cluster mean u′k and variance σ2
k
′

for each cluster (β′k =
1
K ).

Figure 2. Flowchart of the k-mean++ algorithm.

The u′k, σ2
k
′, and β′k identified above are the initialized parameters. The optimized

values for them can then be obtained using an iterative EM algorithm, as demonstrated in
Section 2.1. Furthermore, the forecast error distribution of a single sub-daily lead time in
Equation (3) is then identified using these parameters.

2.2.3. Indices of the Optimal Model Test

The Kolmogorov–Smirnov (K–S) test was introduced into this study to identify the
goodness-of-fit of the constructed Gaussian distribution. The K–S test is a non-parametric
approach, which can diagnose whether a population complies with a theoretical distribu-
tion. Compared with the χ2 test, the K–S test can make full use of the sample data, allowing
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for continuous and quantitative data. The index of the K–S test statistic DN can be written
in the following format:

DN = max
i∈(1,··· ,N)

(HN(eT(i),t(j))− H(eT(i),t(j))), (9)

where HN() and H() denote the empirical and theoretical distribution functions, respectively.
The significance level of the K–S test was set to 0.01. A smaller DN value indicates a better
goodness-of-fit. When the HN represents the probability density distribution of the GMD
in this study, then it can be expressed as:

HN(eT(1),t(j), · · · , eT(N),t(j)) =P(X1 6 eT(1),t(j), · · · , Xn 6 eT(N),t(j)) =
Nq − 0.44
N + 0.22

, (10)

where Nq denotes the number of samples that are subject to X1 6 eT(1),t(j), X2 6 eT(2),t(j),
· · · , and Xn 6 eT(n),t(j), while N is the sample size.

Furthermore, to quantitatively evaluate the discrepancy between the empirical and
theoretical distribution functions, the root of the mean square error (RMSE) and mean error
in the percentage (MAPE) were calculated using the expressions below [24]. Lower RMSE
and MAPE values indicate better performance.

RMSE =

√
∑N

i=1

(
HN(eT(i),t(j))− H(eT(i),t(j))

)2
/N (11)

MAPE =
1
N ∑N

i=1

∣∣∣∣∣HN(eT(i),t(j))− H(eT(i),t(j))

HN(eT(i),t(j))
× 100%

∣∣∣∣∣ (12)

2.3. Metropolis–Hastings MCMC Algorithm Based on the IGMD

The realization of high-quality sampling in statistics with complex computations is
heavily dependent on Markov chain Monte Carlo (MCMC) methods. The Metropolis–
Hastings (MH) algorithm, which allows for scalable parallelization of existing MCMC
methods, was introduced to randomly sample from the distribution of the modeling
of the inflow forecast error described by Equation (2). A finite-state Markov chain on
multiple proposals was defined in a way that ensures asymptotic convergence to the IGMD
distribution. The detailed algorithm steps can be obtained from the general introductions
in previous studies [26,27]. The aim of the MH algorithm in this context is to generate
multiple forecasts using a stochastic process of sampling of the modeled forecast errors.
The ensemble forecast series were derived for each of the forecasted inflows of four sub-
daily lead times, while each MH routine was implemented with 10,000 simulations to
provide a stable convergence.

The IFU in this study was represented using the ensemble forecast series that con-
tained varying errors. In order to quantify the IFU based on the IGMD modeling and MH
resampling, each sampled error was extracted from the raw inflow forecast and observa-
tions using Equation (13); this process can be regarded as a “correction” of the raw inflow
forecast:

Qc
T(i),t(j) =

Q f
T(i),t(j)

1− es
T(i),t(j)/100

, (es
T(i),t(j) < 100), (13)

where es
T(i),t(j) is the simulated forecast error derived from the IGMD model, the absolute

value of es
T(i),t(j)/100 is normally small, and Qc

T(i),t(j) denotes the corrected forecasted
inflow.

The 95% confidence interval of the retrospective ensemble-corrected inflow forecasts,
focusing on band assessment, can graphically depict the effect of the ensemble correction
on the raw inflow forecast. In addition, the containing ratio (CR) index was used to
quantitatively count the percentage of the observed inflow that was located within the



Water 2021, 13, 173 8 of 21

band of the 95% confidence interval [28,29]. High-quality performance of the ensemble
correction was characterized by high values of CR (≤100%):

CR =

N
∑

i=1
Count(Q f , l

T(i),t(j) ≤ Qo
T(i),t(j) ≤ Q f , u

T(i),t(j))

N
, (14)

where Qo denotes the observed inflow discharge; the Qf,l and Qf,u represent the lower and
upper bound values of the 95% confidence interval, respectively; the Count() function
calculates the number of inflows that satisfy the boundary condition; N is the length of the
data series, as mentioned above.

In order to drive the reservoir operation system, we applied a different strategy to use
the sampled error to generate an ensemble forecast, in which the samples were extracted
from the inflow observations:

Qen
T(i),t(j) =

es
T(i),t(j) ×Qo

T(i),t(j)

100
+ Qo

T(i),t(j), (15)

where e s
T(i),t(j) is the simulated forecast error derived from the IGMD model and Qen

T(i),t(j)
denotes the ensemble forecast, which comprises the input space of the reservoir power
generation operation that is solved using the dynamic programming algorithm introduced
in Section 2.5.

2.4. Defining a Flood Risk Event Using a Design Flood

The flood risk events induced by the IFU were diagnosed via reservoir routing with the
inflow ensemble forecast (generated using Equation (15)) based on design floods. Based on
the ensemble forecast, the risk within the forecast lead time can be expressed as the risk
rate (R f

rp), which represents the rate that the ensemble forecasted flood event (Qen
T(i),t(j))

exceeds the design flood (Qrp) in the return period rp [30,31]:

R f
rp =

Count(Qen
T(i),t(j) > Qrp)

NMCMC
, (16)

where NMCMC denotes the number of MCMC samples, i.e., the inflow ensemble forecast
number. This definition of the flood risk rate assumes that the longer the return period
of the design flood, the more severe the risk is. Given a design flood in a specific return
period, the more forecasted flood events with a specific lead time that exceeds the design
flood, the more severe the risk is. Equation (16) was derived under the condition that the
MH-based MCMC algorithm approximates the convergence state.

2.5. Dynamic Programming Used to Estimate the Electricity Curtailment

Dynamic programming is used to search for an optimal power generation capacity
with high dimensionality. The objective function of this dynamic programming, i.e., the
primary goal for non-convex impoundment operations, is to find the maximum total
hydropower generation capacity given the specific inflow series, which belongs to the
set of “water-to-electricity” optimization problems [32,33]. In addition, the constraints
of a reservoir system need to satisfy the common operation conditions, for example,
the water balance and water level, power generation capacity, and hydraulic relation
constraints. The ensemble forecast, the raw forecast, and the observed inflow of sub-daily
lead times individually force the reservoir power generation to quantify the maximum
power generation capacity for each scheme. Then, the losses of electricity curtailment are
evaluated as deviations of the optimal total power generation capacity, which are derived
from the operation driven by the observed and forecasted inflow. The mathematical model
of stochastic dynamic programming approach for the short-term optimal operation targets
of the reservoir that are related to power generation includes the objective function and
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the constraint conditions. In this study, the objective function, aiming at the maximum
generation benefit of the cascade system, can be expressed as follows:

E = max
TT

∑
time=1

(Ntime × ∆time) =max
TT

∑
time=1

(K× qtime × Htime × ∆time), (17)

where Ntime, qtime, and Htime denote the generated output, power flow, and hydraulic
head of the reservoir during the time interval ∆time. TT is the number of time intervals.
Therefore, the total generation benefit in the operation cycle has the unit of GW·h.

In addition, the main constraint conditions are related to the water balance, capacity,
the upper and lower bounds of flow rate and output, and water level. For a detailed
construction with stochastic dynamic programming equations and a solution with an
optimization algorithm of the model, please refer to the study of Zhao et al. [11].

3. Study Area and Data

The First Stage of the Jinping Hydropower Plant Reservoir (hereafter abbreviated
as JinPing I Reservoir) controls the whole cascade hydropower station reservoirs, which
consist of the Jinping First Stage, Jinping Second Stage, and Guandi hydropower reservoirs.
The Jinping I Reservoir was selected as the study area because large forecast errors inherent
in the inflow forecast have resulted in the water level of the reservoir often fluctuating
beyond the normal range since its operations began. Jinping I Reservoir is located on the
eastern edge of the structural belt of the Qingzang Plateau and on the western side of a
sharp bend in the Yalong River. The double-curvature arch dam of Jinping I Reservoir,
with a height of 305 m, is constructed in a typical V-shaped valley [34]. The water level
in the river is approximately 1630 m a.s.l., while the reservoir is able to reach a maximum
water level of approximately 1880 m a.s.l. The mean inflow discharge at the dam site is
about 1200 m3/s over a long-term record [34].

The inflow discharge contains the 6-hourly observed data and short-term forecasted
data at 6 h, 12 h, 18 h, and 24 h of the Jinping I Reservoir collected during 1 January 2014–23
June 2017. The forecast time begins from 9:00 a.m. each day such that the lead times for
the four periods are thus at 15:00 p.m. and 21:00 p.m. on the same day and at 3:00 a.m.
and 9:00 a.m. on the next day. That is, each observed inflow discharge corresponds to
four forecasted inflow values. For each observation, four types of forecast errors can be
derived by subtracting the same observed value from the corresponding forecasted values
at four sub-daily lead times. Subsequently, the four types of errors were applied when
producing the GMD model used to generate probabilistic ensemble-corrected forecasts.
Although finite lead times from the operation example in the real world were applied,
any lead times ≤24 h (daily scale) can be forecasted and used to analyze the reservoir
operation risk mentioned in this study.

4. Results and Discussion
4.1. Analysis of the IGMD Model
4.1.1. Performance of the IGMD Model

The fitting performance of the IGMD model to the measured forecast errors de-
rived using the 6 h, 12 h, 18 h, and 24 h lead times was analyzed. To quantify the opti-
mal number of IGMD models at each lead time, the AIC and BIC values of the IGMD
models were estimated with various K numbers, beginning from 2. It can be seen from
Figure 3, which shows the AIC and BIC values when K ranges from 2 to 5 for each of the
four forecast periods, that both the AIC and BIC reached their minima at K = 3.
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Figure 3. AIC and BIC values of the optimal IGMD-model-fitted forecast errors of multiple lead
times when the Gaussian mixture number K changed.

In addition, the performance generated from the traditional GMD model, which was
configured according to a previous study with an arbitrary selection of the Gaussian
component number and model parameter initialization [17], as well as the SGD, were
used for comparison with the modified GMD, i.e., the IGMD, to validate its improvement.
The fitting performance of the IGMD, traditional GMD, and SGD models for the inflow
discharge forecast errors are graphically displayed in Figure 4, which are compared with
the measured error histogram for each of the 6 h, 12 h, 18 h, and 24 h lead time schemes.
The density curve of the improved model IGMD was fitted to the frequency histogram
of the binned error data that was the best among the three models for each of the four
lead times. The traditional GMD performed second best, following the IGMD. Compared
with the traditional and the improved GMD, the SGD model significantly deviated from
the shape of the sample data of the forecast discharge errors and exhibited a much lower
peak. The peak of the SGD was not sharp enough to represent the error structure of the
four lead times, and thus could not capture the random behavior of the errors between
the observed and forecasted reservoir inflow, confirming the major finding in Li et al. [35].
Furthermore, as for the case of the SGD, the significant deterioration of the deviation that
occurred at the tail ends of the distribution may have been caused by the fact that the
lower histograms, which were linked to the larger absolute errors, exhibited different
distributional biases during storm seasons or wet seasons with a tendency toward resulting
in strong inflow forecast biases.

4.1.2. Goodness-of-Fit for the IGMD

To test the robustness and randomness of the constructed mixture distribution of the
inflow discharge error data, the goodness-of-fit of the IGMD was tested using historical
data based on the K–S test. The index of the K–S test, DN, is summarized in Table 1,
which shows that both the improved and traditional GMD distribution passed the K–
S test at the significance level of 0.01, indicating the adequacy of the IGMD and GMD
for modeling the forecast errors with sub-daily lead times. Furthermore, the DN value
generated from the IGMD model was lower compared with the GMD and SGD models at
each of the four lead times, which demonstrates the superior performance of the modified
GMD model.
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Figure 4. Histograms of the measured forecast errors and probability density curves of the IGMD,
GMD, and SGD models that were used to model the forecast errors of four sub-daily lead times.

Table 1. DN values for the Kolmogorov–Smirnov (K–S) test of the IGMD model at the significance
level of 0.01 with the critical value of 0.044.

Model 6 h 12 h 18 h 24 h

IGMD 0.016 0.012 0.019 0.018
GMD 0.022 0.016 0.031 0.021
SGD 0.095 0.103 0.066 0.066

Note: IGMD, GMD, and SGD represent the improved Gaussian mixture distribution, traditional Gaussian mixture
distribution, and single Gaussian distribution models, respectively.

Furthermore, to verify the robustness of the IGMD, Figure 5 displays the Q–Q plot of
the simulated vs. measured errors with the 6 h, 12 h, 18 h, and 24 h lead times. The scatters
derived using the IGMD model were much closer to the perfect location of the 1:1 line
compared with the GMD model for the four lead times, while the scatters generated by
the SGD model significantly departed from the perfect line. This indicates that it was
necessary to use a mixture distribution instead of single model; furthermore, the improved
model IGMD exhibited better skill when reproducing the random errors. Table 2 shows
the statistics of the mean, variance, and coefficient of variation generated from the IGMD
and the GMD model vs. the measured errors. The statistics of the errors simulated using
the IGMD model were generally nearer to the measured errors than those simulated using
the GMD.
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Figure 5. Q–Q plots of the simulated and measured forecast errors generated from the IGMD, GMD,
and SGD models under different sub-daily lead times. The gray short-dash line in each of the subplots
represents the 1:1 line for the two coordinate axes.

Table 2. Statistics of the sampled errors based on the IGMD and GMD models vs. the measured errors.

Model Lead
Time

u σ2 Cv

Sampled Measured Sampled Measured Sampled Measured

IGMD

6 h 0.238 0.236 83.575 84.081 38.489 38.838
12 h −0.701 −0.705 99.158 99.768 −14.197 −14.176
18 h 0.027 0.025 78.873 79.837 330.079 354.592
24 h −0.114 −0.117 91.656 92.629 −84.248 −82.466

GMD

6 h 0.245 0.236 83.175 84.081 37.184 38.838
12 h −0.675 −0.705 97.642 99.768 −14.632 −14.176
18 h 0.029 0.025 76.918 79.837 304.524 354.592
24 h −0.110 −0.117 90.350 92.629 −87.076 −82.466

Note: Cv is the coefficient of variation.

The posterior test can be used to quantify the difference between theoretical and
empirical cumulative distributions of the sample data. The RMSE and MAPE indices
were calculated to evaluate the posterior performance of the modeled error distribu-
tion, taking the empirical distribution of the measured forecast errors as a benchmark
(Figure 6). The RMSE index generated using the IGMD was the lowest among the three
models, followed by the GMD for each of the four lead times, while that from the SGD
was much higher than the IGMD and GMD. Similar to the pattern of RMSE for the three
models, the MAPE index of the IGMD had the lowest values for each of the four forecast
periods. As the reference that represents the case of only using one Gaussian distribution,
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the SGD performed much worse than the mixture cases of IGMD and GMD when com-
pared using the forecast error histogram, K–S test, Q–Q graphical plot, and the RMSE and
MAPE indices. The inferior and limited modeling capability of SGD mainly results from
the characteristics of SGD, such as only using two-parameter tuning and simple-structure
modeling. Although there were no uniform trends in both the RMSE and MAPE values
among the different lead times, the RMSE and MAPE values of the SGD fluctuated more
dramatically than the improved GMD and traditional GMD. This also suggests that the
mixture distribution exhibited stronger stability with increases in the lead time.

Figure 6. The RMSE and MAPE values that were used to evaluate the discrepancies between the
fitted theoretical cumulative distribution models of the IGMD, GMD, and SGD models and the
empirical cumulative distribution.

To compare the differences in the fitted IGMD distribution between different lead
times, four curves of the IGMD at multiple lead times are displayed together in Figure 7.
The changes in the curves can be observed, which show that with the lead times becoming
longer, the shapes of the curves developed from “narrow and high” into “wide and low.”
Despite the modeling biases, the changes in difference curves may have resulted from
the error feature of the inflow forecast at different lead times. The forecasted discharge
associated with longer lead times theoretically contains more values with larger errors
due to the limited forecasting skill. The increasing number of larger errors resulted in a
highly dispersive histogram. Thus, the theoretical curves generated from fitting the error
histogram look “wider and lower.” In general, the density curves of all three models fit the
shape of the frequency of the sample error data with 6 h lead time the best while fitting
the shape of the frequency histogram of the 24 h lead-time errors worst. This analysis is
easy to understand and remains highly consistent with the common knowledge about
the discharge forecast uncertainty in hydrology, as a longer forecast period results in a
larger uncertainty [15,35]. Compared with the similar application of the IGMD in previous
investigations focusing on other fields, the IGMD in this study exhibited a satisfactory
performance that was consistent with those reported by Pan et al. [24] and Zhuang et al. [25].
Furthermore, the IGMD in this study, which is only available for univariate modeling,
could be constructed based on multivariate modeling by combining inflow forecasting
errors of various lead times [23].
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Figure 7. Comparison of the characteristics of the probability density function (PDF) of the proposed
IGMD that were fitted using the forecast errors generated using different lead times.

4.2. Uncertainty Analysis of the Reservoir Inflow Forecast

The 95% confidence interval of the daily ensemble-corrected inflow derived from
IGMD, GMD, and SGD models are graphically displayed in Figures 8–10. The superior
performance of the IGMD correction for the inflow during the study period 1 January
2014–23 June 2017 was reflected in the band of the 95% confidence interval with more
observations located inside under the circumstances of the same ensemble size as that used
for the GMD and SGD (Figure 8). The CR of the 95% confidence interval for the IGMD
model with each lead time (92 to 95%) was significantly higher than that for the GMD (41
to 94%) and SGD (29 to 38%) models. The outliers mainly occurred during the dry seasons
(from November to the next April). In contrast, the 95% confidence interval corrected using
the IGMD-dependent errors had a relatively wider band than those corrected using the
GMD- and SGD-dependent errors, especially during the wet seasons (from May to October).
Although the fact that the ensemble correction of the inflow forecast performed better in the
IGMD model than in the GMD and SGD models was related to the higher 95% confidence
interval bands, as shown in Figures 8–10, the effect of the ensemble correction on the raw
inflow forecast of the IGMD was considered better than the GMD and SGD. This was
because the primary factor of concern in this study was the time and cost of computation
associated with the ensemble correction and the resulting optimal operation of the reservoir,
which are frequently considerable. The CR evaluating how many observations are covered
by the 95% confidence interval bands was superior to the band width since the computation
time and cost were comparable between the three models. The ensemble correction of the
raw forecast provided an available tool to quantify the IFU, in which the observed inflow
was made full use of. These results demonstrate that the IGMD-based MCMC is capable of
generating a corrected ensemble to quantify the IFU with a 95% confidence interval and a
CR index.
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Figure 8. The 95% confidence intervals, the median and mean values of the corrected inflow ensem-
bles that were derived from the developed IGMD model compared with the raw forecasted and
observed inflow series for the lead times of (a) 6 h, (b) 12 h, (c) 18 h, and (d) 24 h. The median line in
black and the mean line in blue were largely overlaid by the lines of the raw forecasted and observed
inflow. Note that only the data during 1 January 2014 to 1 July 2015 are presented to ensure the clarity
of the figure; however, the CR values were derived based on the whole study period.

The drastic change in the CR of the observed inflow data covered by 95% confidence
interval bands of the IGMD, GMD, and SGD models suggests the different representations
of these three models (Figures 8–10). Indeed, the sampled errors generated from the pro-
posed IGMD could capture the underlying characteristics of the measured forecast errors,
even though those errors are from historical measurements. Overall, the updated Gaussian
mixture model was able to reflect the reliable characteristics of the measured errors and
to support the correction of the raw forecasts. Moreover, ensemble error correction of
the inflow forecast can provide ensemble schemes of reservoir operation optimization
and further improve the optimization accuracy and operation levels, as well as the in-
creased hydropower generation benefit [30]. In addition, if the band of the 95% CI is wide
enough, all of the observations could be covered (CR would reach 100%). However, the
IFU considered in this study could not increase infinitely because the number of Gaussian
mixture components was controlled by the AIC and BIC, and the ensemble convergence
was determined by the MH-based MCMC algorithm. For the decision-making-dependent
optimization (e.g., reservoir optimal operation), the ensemble-corrected inflow scenarios
could guarantee relatively higher reliability due to covering more of the observed inflow
compared with the input strategy of the deterministic reservoir inflow forecast (i.e., the
raw inflow forecast series before generating the ensemble forecast).
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Figure 9. Same as Figure 8 but for the traditional GMD model.

4.3. Risk Assessment from the IFU to the Reservoir Operations
4.3.1. Assessment of the Flood Risk

The flood risk rates derived from the observed inflow and the raw inflow forecast
of each of the four lead times were all zero for the design flood for all the return periods.
For the ensemble forecast, there was still no flood risk when accounting for the risk rate
using design flood with a return period of ≥2 years and ≥5 years for 6 and 12 h forecast
times and 18 and 24 h forecast times, respectively. In contrast, the risk rates obtained
from ensemble forecast with a return period of 2 years increased with the increase of lead
times from 16 to 47%, while the ensemble inflow forecast exhibited much lower risk rates
for the 5-year return period only for the 18 h (0.01) and 24 h (0.08) lead times (Table 3).
Thus, taking the IFU into account would lead to flood risk rates defined using design floods
with low return periods. However, the IFU could not increase infinitely, and the ensemble
inflow forecast reached to a convergence state in MCMC algorithm. Compared with a
previous similar study on flood risks that occurred with a 20-year return period [31], the
flood risk rates resulting from the IFU were lower, suggesting that the study area of Jinping
I reservoir exhibited a lower flood risk.
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Figure 10. Same as Figure 8 but for the SGD model.

4.3.2. Assessment of the Electricity Curtailment Risk

Figure 11 displays the temporal dynamic of the power generation derived from the
raw inflow forecast (without IFU), ensemble inflow forecast (with IFU), and observed
inflow series. In general, the power generation level forced by ensemble forecast was
significantly lower than those forced by the raw inflow forecast and observations. During a
flood period, although the peaks of the power generation capacity curve related to the IFU
(in blue) reached similarly high levels to the curves related to the observations (in red) and
raw inflow forecast (in black) sometimes, the persistence time occurring at high levels of the
ensemble inflow forecast was much shorter than that of the observed and raw forecasted
inflow. The reduction in power generation capacity seen with the blue curve of Figure
11 is related to a water deficit. In some periods (for example, a dry period), if the inflow
reached the lower boundary of the water yield in the power generation operation rule, the
underestimation of the inflow when the IFU was considered resulted in a water deficit.
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Table 3. Flood risk rates of the forecasted ensemble inflows while taking the IFU into account.

Lead Time Return Period
(year) Qd (m3/s)

Count(Qem >
Qd) Frequency (%) Risk Rate (%)

6 h 10,000 16,100 – – –
1000 13,600 – – –
100 10,900 – – –
20 8850 – – –
10 7920 – – –
5 6920 – – –
2 5390 3279 32.79 16.40

12 h 10,000 16,100 – – –
1000 13,600 – – –
100 10,900 – – –
20 8850 – – –
10 7920 – – –
5 6920 – – –
2 5390 3918 39.18 19.59

18 h 10,000 16,100 – – –
1000 13,600 – – –
100 10,900 – – –
20 8850 – – –
10 7920 – – –
5 6920 7 0.07 0.01
2 5390 7966 79.66 39.83

24 h 10,000 16,100 – – –
1000 13,600 – – –
100 10,900 – – –
20 8850 – – –
10 7920 – – –
5 6920 40 0.4 0.08
2 5390 9397 93.97 46.99

Note: The Qd column gives the design floods with various return periods.

Furthermore, Figure 12 represents the total electricity curtailment derived from the
inflow with and without the consideration of the forecast uncertainty for each of the
lead times. The total electricity curtailment was calculated as the deviation of the power
generation capacity that was found using the inflow with/without the consideration of
the IFU from the power generation that was found using the observations, which can

be expressed as ∆E =

{
Eobs − EIFU , if using ensemble inflow forecast
Eobs − Eraw, if using raw inflow forecast

, where Eobs, EIFU,

and Eraw denote the power generation related to the observed inflow, ensemble inflow
forecast, and raw inflow forecast, respectively. The total electricity curtailment related to
the ensemble inflow forecast (i.e., with the consideration of the IFU) ranged from 3015.3
to 3113.1 GW·h as a magnitude and from 29 to 33% as a percentage, which were both
significantly higher than that related to the raw forecast without the consideration of the
IFU (ranging from 61.53 to 124.18 GW·h and from 0.65 to 1%, respectively) during the study
period. This was because, in the ensemble forecast, some members in the ensemble largely
underestimated the true inflow. In addition, the electricity curtailment percentages related
to both with and without the IFU were generally much lower during the entire study
period than those during the flood period only. This might have resulted from the fact that
large water resources were available and the reservoir stored a lot of water to generate
power from during the flood period. Thus, the electricity curtailment risks in the non-flood
periods were higher than in the flood periods. Nevertheless, the electricity curtailment
with the IFU during the flood period was much larger than that without the IFU for each of
the four lead times. Overall, the higher curtailment, with a risk rate up to 41%, might have
occurred when considering the IFU, which would severely reduce the power generation
capacity and lead to negative effects on the benefits for the hydropower plant.
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Figure 11. Temporal series of the power generation capacity that was optimized using the raw and
ensemble inflow forecast with 6 h (a), 12 h (b), 18 h (c), and 24 h (d) lead times, which were compared
with those derived from observations. The time intervals covered by double-headed arrows represent
flood periods.

Figure 12. Total electricity curtailment as a magnitude and a percentage of the ensemble inflow fore-
cast (with the forecast uncertainty considered) and the raw inflow forecast (without the consideration
of the forecast uncertainty) over the entire study period and flood period only.
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5. Conclusions

To identify the reservoir operation risks that propagate from the IFU, we proposed
an integrated statistical framework using the IGMD coupled with the MCMC sampling
algorithm to obtain the ensemble inflow forecast, and then assessed the response of the
flood and electricity curtailment risks to the ensemble IFU. Taking the forecasted inflow
discharge of the Jinping First Stage Hydropower Plant Reservoir, Yalong River, China with
four lead times (6 h, 12 h, 18 h, and 24 h) as a case study, the following key conclusions
were emphasized:

(1) The IGMD model substantially improved the modeling skill of the measured forecast
error characteristics and the IGMD-based MCMC algorithm offers a flexible and
attractive tool to obtain robust ensemble inflow forecast.

(2) The IGMD-based ensemble approach displayed a high capability of reproducing
the observed inflow to support the subsequent reservoir optimal operation and risk
assessment, given the limited ensemble size and computational resources.

(3) There existed no flood risk that was defined via the design flood with 10-year and
longer return periods when considering the reservoir IFU for each of the sub-daily
forecast lead times. In contrast, the electricity curtailment risk significantly increased
up to 41%, especially during the non-flood periods, when taking the IFU into account.

Other aspects also warrant attention for further investigation. Multivariate Gaussian
mixture distribution is worth investigating to provide the combined forecast errors over
multiple lead times, as they are physically relevant. In addition, the electricity curtailment
risk as well as the flood risk is expected to reduce by correcting the forecast errors in the
reservoir inflow.
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