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Abstract: For Case-II water bodies with relatively complex water qualities, it is challenging to estab-
lish a chlorophyll-a concentration (Chl-a concentration) inversion model with strong applicability and
high accuracy. Convolutional Neural Network (CNN) shows excellent performance in image target
recognition and natural language processing. However, there little research exists on the inversion
of Chl-a concentration in water using convolutional neural networks. Taking China’s Dongting
Lake as an example, 90 water samples and their spectra were collected in this study. Using eight
combinations as independent variables and Chl-a concentration as the dependent variable, a CNN
model was constructed to invert Chl-a concentration. The results showed that: (1) The CNN model of
the original spectrum has a worse inversion effect than the CNN model of the preprocessed spectrum.
The determination coefficient (RP

2) of the predicted sample is increased from 0.79 to 0.88, and the
root mean square error (RMSEP) of the predicted sample is reduced from 0.61 to 0.49, indicating that
preprocessing can significantly improve the inversion effect of the model.; (2) among the combined
models, the CNN model with Baseline1_SC (strong correlation factor of 500–750 nm baseline) has
the best effect, with RP

2 reaching 0.90 and RMSEP only 0.45. The average inversion effect of the
eight CNN models is better. The average RP

2 reaches 0.86 and the RMSEP is only 0.52, indicating the
feasibility of applying CNN to Chl-a concentration inversion modeling; (3) the performance of the
CNN model (Baseline1_SC (RP

2 = 0.90, RMSEP = 0.45)) was far better than the traditional model of
the same combination, i.e., the linear regression model (RP

2 = 0.61, RMSEP = 0.72) and partial least
squares regression model (Baseline1_SC (RP

2 = 0.58. RMSEP = 0.95)), indicating the superiority of
the convolutional neural network inversion modeling of water body Chl-a concentration.

Keywords: convolutional neural network; chlorophyll-a; Dongting Lake

1. Introduction

The problem of lake eutrophication is one of the most important water environmental
problems facing human beings [1]. Although the current degree of eutrophication in
Dongting Lake’s water body is relatively low, due to factors such as the social and economic
development of the basin, the water quality deteriorated and the eutrophication trend
intensified [2,3]. Chlorophyll-a (Chl-a) is an important component of aquatic algae, with its
concentration often used to estimate the biomass and productivity of phytoplankton, and
it is also an important parameter reflecting the degree of eutrophication of water bodies.
Carrying out Chl-a monitoring is of great significance in understanding the status and
evolution trend of Dongting Lake eutrophication [4,5]. At present, water quality monitoring
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methods can accurately determine the various indicators of the water quality at certain
locations, but due to the large labor and material resources required, it is difficult to meet
the needs of real-time, rapid, large-scale water environment monitoring. Hyperspectral
remote sensing technology are rapid, macroscopic, and high spectral resolution, which
provides the possibility for rapid monitoring of Chl-a concentration [6–8].

The material composition of Case-II water bodies is relatively complex, and the optical
properties are mainly affected by phytoplankton pigments, suspended particles, and yellow
substances. There is a complex coupling mechanism between the spectra of different
components, which brings great uncertainty to the inversion of Chl-a concentration. A
simple empirical model can hardly meet the accuracy requirements of Chl-a concentration
inversion. How to accurately simulate the relationship between spectral information and
Chl-a concentration and to establish a Chl-a concentration inversion model with strong
applicability and high accuracy has always been a difficult point [9,10]. Scholars at home
and abroad have done a lot of research on improving the accuracy of Chl-a concentration
inversion. Band ratio [11,12], three-band [13–17], and four-band [18–20] algorithms are
commonly used band selection algorithms for Chl-a concentration inversion and have
many successful applications. Yang et al. [7] used vegetation index and Chl-a concentration
to establish a regression model and used Landsat images to study the temporal and
spatial distribution characteristics of Chl-a concentration in East Lake. Cheng et al. [18]
used the band ratio, three-band, four-band model, and Chl-a concentration to establish
a regression model, and inverted the Chl-a concentration in Taihu Lake. However, the
multi-band characteristics of hyperspectral are not fully utilized, and the Chl-a information
carried by other spectral bands in the visible light range is ignored. Secondly, in high
turbidity lakes, the influence of suspended solids concentration on the spectrum limits
the application of the above model [6,19,21]. Baseline correction is to subtract the baseline
value from the spectral reflectance [22–25], which can be used to weaken the non-Chl-a
spectral information in the in-situ spectrum. Wei et al. [26] found that baseline correction
can weaken the spectral contribution of suspended sediment to Chl-a. Thirdly, there are a
lot of uncertain factors in the relationship between the water reflection spectrum and the
water composition. Using traditional empirical and semi-empirical models to invert the
nonlinear relationship between Chl-a concentration and the reflectance spectrum, good
prediction results cannot be obtained [11,27,28]. Convolutional Neural Networks (CNN)
is a type of feature extractor composed of convolutional layers and pooling layers and a
network model composed of feedforward neural networks. CNN’s weight-sharing network
method makes it resemble a biological neural network structure, thereby reducing the
complexity of the model and the amount of weight, and better extracting data features.
Through the activation function, CNN can realize multilevel, nonlinear transformation.
CNN was successfully applied in many fields, such as image target recognition and natural
language processing [29–32]. However, for Case-II water bodies with relatively complex
water qualities, it is still challenging to establish a Chl-a concentration inversion model
with strong applicability and high accuracy, with few studies on the CNN model of Chl-a
concentration in water bodies [33–35]. Syariz et al. [36] used Sentinel-3 and in-situ Chl-a
concentration to achieve the Chl-a concentration inversion using CNN and found that the
inversion accuracy is higher than that of the neural network model. However, for turbid
water bodies, based on in-situ spectroscopy, Chl-a’s CNN inversion model has not been
reported. To sum up, (1) For the filtering of bands, it is easy to cause information loss and
affect the accuracy of Chl-a concentration inversion. This study uses preprocessed in-situ
spectra as the input of the model. (2) Aiming at the problem of the spectral contribution of
suspended solids to Chl-a in high turbidity lakes, the baseline correction method is used
to eliminate its influence. (3) Whether the CNN model is feasible to retrieve the Chl-a
concentration, what is the best mode for the CNN model to retrieve the Chl-a concentration,
and whether it is superior to the traditional Chl-a concentration inversion model is still an
open question.
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Taking China’s Dongting Lake as an example, this study collected 90 water samples
and their spectra. Taking different inversion factors (strong correlation factors and princi-
pal component factors) of different spectrum types (original spectrum, 500–750 baseline
spectrum, 750 baseline spectrum, and envelope removal spectrum) as input independent
variables and Chl-a concentration as the dependent variable, eight Chl-a concentration in-
version models based on one-dimensional CNNs were constructed and their performances
were compared. The aim was to study a new method of Chl-a concentration inversion and
to explore the best mode of the CNN model applied to Chl-a concentration inversion. It
is expected to provide a scientific selection basis for the hyperspectral inversion of Chl-a
concentration and rapid diagnosis of eutrophication in Dongting Lake.

2. Materials and Methods
2.1. Study Area

Dongting Lake is the second largest freshwater lake in China, located in the north
of Hunan Province and south of the Yangtze River. Its geographic location is between
28◦30′–29◦31′ N and 111◦40′–113◦10′ E. The four rivers of Xiang, Zi, Yuan, and Li merge
into Dongting Lake from south to north. The north is connected to the Yangtze River. It is a
typical throughput lake with a total drainage area of 257,200 km2, a lake area of 2579 km2,
a lake length of 143 km, an average lake width of 17 km, a maximum water depth of
23.5 m, an average water depth of 6.39 m, and a water cycle period of about 18.2 days.
At present, it is divided into East Dongting Lake, South Dongting Lake, West Dongting
Lake, and Datong Lake (Figure 1). Dongting Lake not only has very rich biodiversity
resources, but also has the function of regulating the flood and runoff of the Yangtze
River. In recent years, with the impact of economic development and human activities,
a large number of point source and nonpoint source pollutants were discharged into the
basin, and the water quality of Dongting Lake is not currently optimistic. The overall
lake is at a mesotrophic level. The water quality is showing a downward trend. The
eutrophication of the water body is gradually increasing, and Dongting Lake is beginning
to show a eutrophication trend [2]. Carrying out monitoring of Chl-a concentration and
understanding the distribution characteristics of Chl-a concentration is of great significance
in understanding the status and evolution trend of Dongting Lake eutrophication.

2.2. Sampling Plan Design

According to the “Technical Guidelines for Sampling of Lakes and Reservoirs”
(GB/T14581-93), the layout of sampling points should consider the hydrodynamic con-
ditions of the lake water body, the area of the lake body, the shape of the lake basin, the
replenishment conditions, the water outlet and intake, the location and scale of the sewage
facilities, and other conditions. At the same time, considering the particularity of remote
sensing, a large area of relatively uniform water area should be selected to arrange sampling
points to maximize the correspondence between the “point data” of the ground sampling
points and the “surface data” of the remote-sensing data. Considering the inheritance of
the data, the sampling points were arranged in combination with the data accumulation
of Dongting Lake for many years to facilitate the study of the time evolution of Dongting
Lake. The location of the water quality sampling points of Dongting Lake is shown in
Figure 1. Due to the large area of Dongting Lake, and it has been divided into multiple
lakes, according to the specific conditions, take the speedboat, fishing boat and other means
of transportation, divide it into two groups, and carry out ground experiments. To have
similar lighting conditions as the remote sensing data, a day with clear weather and a
little cloud was selected, and the ground experiment was completed on 9–12 August 2013,
which lasted four days. The water spectrum data in the field were measured and the
water samples were collected and brought back to the laboratory for analysis to obtain
water quality data. A total of 90 samples were collected. During the sampling process,
the sampling point number, location, weather conditions, sampling time, sampling point
characteristics, and other information were simultaneously recorded. In August 2013, the
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monthly average values of environmental factors at the Yangtze River exit of Dongting
Lake were: water temperature 32 ◦C, dissolved oxygen 5.6 mg/L, total nitrogen 1.54 mg/L,
total phosphorus 0.048 mg/L, transparency 0.38 m, monthly precipitation 132.2 mm, the
maximum daily precipitation is 51.4 mm, the number of days with daily precipitation
greater than 0.1 mm is 9 days, the number of sunshine hours is 245.2 h, and the average
wind speed is 3.5 m/s.
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2.3. Spectral Collection and Chl-a Concentration Determination

The water surface spectrum measurement method was used to measure the water
surface spectrum. In the process of spectrum collection, to avoid the influence of water
specular reflection and ship shadow on the measurement results as much as possible, and
to better extract the water reflectance, a certain observation angle is used to observe the
water spectrum. The angle of observation azimuth was approximately 135◦ between the
instrument observation plane and the sun incident plane. The angle of observation zenith
was approximately 40◦ between the instrument and water surface normal. These angles
avoid most of the reflectance from direct solar radiation, while also reducing the ship-
shadow effect. We measured the standard gray plate, water, and sky on the open ship deck
30 cm above the water surface several times and calculated the remote sensing reflectance
(Rrs) as the average of the observation station spectra [37,38]. For each sample point, ten
water surface spectra were collected using an ASD Field Spec portable field spectrometer
(spectral range 350–1050 nm, spectral resolution 3 nm). Abnormal values were eliminated
and an averaging processing was carried out to obtain the measured spectrum value of
the sample point. The transparency of the water body was measured using a Saishi plate.
The concentration of Chl-a was measured using the hot ethanol method. A certain volume
(500–1000 mL) of water sample was taken using a 47 mm diameter GF/C filter membrane
and the filter membrane was placed in a refrigerator for more than 48 h. The samples were
extracted with 90% hot ethanol, then 90% ethanol was used as the reference solution to
measure the absorbance at 665 and 750 nm on a spectrophotometer. One drop of 1% dilute
hydrochloric acid was added to acidify and then the Chl-a concentration was calculated.

2.4. Spectra Pretreatment
2.4.1. Spectral Denoising and Resampling

Spectral measurement is easily affected by many factors, such as observation angle
and illumination, which makes the signal-to-noise ratio of spectral data low. Preprocessing
of spectral data can reduce its impact. In this study, the low signal-to-noise ratio bands
(350–399 nm and 891–1050 nm) were removed. The Savitzky-Golay algorithm was used
to smooth the spectrum [39]. The effective bands of each spectrum were resampled at
10 nm intervals (Figure 2a) to reduce the correlation between bands and improve data
processing efficiency.

2.4.2. Baseline Correction

The baseline correction involves subtract the baseline value from the spectral re-
flectance. In the inversion of Chl-a concentration in inland water bodies, it is mainly used
to weaken the nonChl-a spectrum information in the measured spectrum. In water color
remote sensing research, the 750 nm spectral reflectance of indoor water is approximately
zero. The baseline correction with 750 nm as the baseline enhanced the fluorescence peak
of chlorophyll by about 700 nm and the absorption peak by about 680 nm in water. In addi-
tion, the backscattering coefficient of suspended matter in water at 500–750 nm decreased
linearly with the increase in wavelength. The straight line connecting the reflectance values
of 500 nm and 750 nm was taken as the baseline and a 500–750 nm baseline correction was
performed on all spectral data, highlighting the water body Chl-a spectral information.
This study uses 500–750 baseline spectra and 750 baseline spectra as the two preprocessing
spectra of the CNN model (Figure 2b,c).
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2.4.3. Envelope Removal

The envelope is the line connecting the start and end points of the absorption valley
of the spectral curve. The envelope removal method is a spectral analysis method that
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effectively enhances the absorption characteristics of interest. It effectively highlights the
absorption and reflection characteristics of the spectral curve and normalizes them to a
consistent background, which is conducive to the comparison of characteristic values with
other spectral curves. This study used the envelope removal spectrum as a preprocessing
spectrum of the CNN model (Figure 2d).

2.5. Inversion Factor Selection

Correlation analysis reflects the strength of the linear relationship between two vari-
ables. The Pearson correlation coefficient between the reflectance and Chl-a concentration
was used in this work to indicate the strong correlation band of the difference in the
chlorophyll concentration of water bodies. The calculation formula is:

r =
Cov(xi, y)

σxi σy
(1)

In the formula, r represents the Pearson correlation coefficient, xi represents the
reflectance of the i band, y represents the Chl-a concentration, Cov represents the covariance,
and σ represents the standard deviation. A band with a significance level of 0.05 during
the t-test of the correlation coefficient was considered to be a strong correlation band.

The strong correlation band is used as the strong correlation factor (SC) for Chl-a
concentration inversion (Figure 2e).

Through principal component transformation, this study transformed the prepro-
cessed spectrum into linearly independent principal component variables. The calculation
formula is:

Cj = v1jX1 + v2jX2 + · · ·+ vijXi + · · ·+ vmjXm (2)

where Xi is the reflectance of the i-band; Cj is the j-th new component after the main com-
ponent transformation; m is the number of spectral variables before the main component
transformation. Vij is the eigenvector corresponding to the i-th eigenvalue in the correlation
coefficient matrix of the original variables. To avoid the false abandonment of the effective
weak signal in the modeling process, all the principal components extracted in this study
are retained as the independent variables of the model. These independent variables are
used as the principal component factors (PC) of the Chl-a concentration inversion.

2.6. Convolutional Neural Network Model

Convolutional neural network is a feedforward neural network with excellent per-
formance in image target recognition and natural language processing. CNN is mainly
composed of three parts, namely, the convolutional layer, the pooling layer, and the fully
connected layer. The convolutional layer is composed of multiple feature planes. The
neurons in the feature plane are locally connected to the previous feature plane through
the convolution kernel. The convolution kernel slides on the feature plane according to
a certain step length to achieve weight-sharing. The function of the pooling layer is to
downsample the local features extracted by the convolutional layer, reduce network free
parameters, and improve the robustness of feature data. Generally, the average pooling
or maximum pooling methods are adopted. The fully connected layer flattens the feature
map output by the pooling layer and is fully connected with the multilayer perceptron.

The convolution layer performs feature extraction on the convolution operation of
the input signal through the convolution kernel. The size and number of convolution
kernels directly determine the overall performance of the network. Generally, the smaller
the convolution kernel, the more detailed the extracted features, but the overall structure
information of the input signal will be lost, which reduces the generalization of the network.
Conversely, the larger the convolution kernel, although the overall structure information is
preserved, the details of the signal will be missing. The number of convolution kernels is
different, which means that the feature extraction methods of the input signal are different.
Generally, the number of convolution kernels is positively correlated with the overall
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performance of the network, but after increasing to a certain upper limit, not only will
the improvement of the network performance become very limited, but also the network
calculation scale will increase. The pooling layer down-samples the feature maps extracted
by the convolutional layer. The sampling ratio should not be too large. Although an
increase in the sampling ratio will improve the generalization ability of the network and
reduce the network scale, an excessively large down-sampling ratio will lose a large amount
of characteristic information and cause a decrease in network performance. Therefore,
the size and number of convolution kernels, the size of downsampling, the number of
convolutional layers, and the number of pooling layers all increase the uncertainty of the
CNN inversion model of the Chl-a concentration [18,19].

Through repeated tests, this study designed a 7-layer CNN model for Chl-a concen-
tration inversion, including 1 input layer, 2 convolutional layers, 2 pooling layers, 1 fully
connected layer, and 1 output layer (Figure 3). The input layer inputted the original spec-
trum and the convolutional layer was behind the input layer. The size of the convolution
kernel of the first convolution layer was 5, the number was 20, and the linear rectification
function was used as the activation function. The size of the convolution kernel of the
second convolution layer was 3, the number was 10, and the linear rectification function
was used as the activation function. The pooling layer adopted the mean pooling method
and the downsampling scale was 2. The output layer was the dense layer, using a linear
function for activation for real value regression. The cross-validation method was used to
select the best parameters and the mean square error was used as the cost function of the
model. The experimental environment was the Windows 10 system using Python language
and Tensorflow 2.0 as the backend to build a CNN model of Chl-a concentration inversion
based on the Keras deep learning framework.
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2.7. Model Evaluation Criteria

The coefficient of determination (R2), the root mean square error (RMSE), the relative
percent deviation (RPD), and the relative error (RE) were selected as the criteria for judging
the predictive ability of the model. Among them, R2 included the determination coefficient
of training samples (RT

2) and the determination coefficient of prediction samples (RP
2),

and RMSE included the root mean square error of training samples (RMSET) and the root
mean square error of prediction samples (RMSEP), as follows:
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R2 =
n
∑
1
(
∧
yi −

−
y)2/

n
∑
1
(yi −

−
y)2

RMSE =

√
n
∑
1
(
∧
yi − yi)

2
/n

RPD = SD/RMSE

RE =
n
∑

i=1

∣∣∣∧yi − yi

∣∣∣/yi/n

(3)

where
∧
y is the predicted value of the sample,

−
y is the mean of the measured sample, y is

the measured sample value, n is the number of samples denoted by i = 1, 2 · · · , n, and
SD is the standard deviation. Generally, the larger the RP

2, RT
2, and RPD, the smaller the

RMSEP, RMSET , and RE, the higher the model accuracy, and the smaller the deviation.

3. Results
3.1. Descriptive Statistics of Chl-a Concentration

Dongting Lake is a typical water-through lake. The water body with fast water
exchange has a low Chl-a concentration, while the relatively closed water body has a high
Chl-a concentration (maximum 124.25 mg/m3). The concentration difference between
different sample points was very large (standard deviation up to 30.00 mg/m3) (Table 1).
The chi-square test showed that the Chl-a concentration data did not obey the normal
distribution at the 0.05 significance level. The original data were transformed normally
by the Box–Cox method [40]. Divided into two groups, which lasted four days, a total of
90 samples of spectrum and water quality data were collected. Of the samples, 70% were
randomly selected as training samples and 30% were selected as test samples.

Table 1. Descriptive statistics of Chl-a concentration (mg/m3).

Minimum Maximum Average
Value

Standard
Deviation Skewness Kurtosis

1.86 124.25 31.35 30.00 0.87 2.82

3.2. Spectral Curve Characteristics and Characteristic Band Recognition

As seen in Figure 2a, before 580 nm, the spectral reflectance rose rapidly as the
wavelength increased, reaching a peak near 585 nm, then revealing tiny reflection peaks
near 650 nm, 700 nm, and 800 nm, with absorption valleys at 630 nm, 680 nm, and 740 nm.
On the whole, the waveband after 600 nm, especially the waveband between 600 and
800 nm, showed larger fluctuations in the spectral curve, with larger reflection peaks at
700 nm and larger absorption valleys at 740–780 nm. The Pearson correlation coefficient
between the Chl-a concentration and the spectrum was calculated (Figure 2e). The results
showed many significant correlation bands between the four spectra and the water Chl-a
concentration, and the strong correlation bands with a correlation coefficient greater than
0.5 were mainly concentrated between 578 and 695 nm. The inverse principal component
transformation of regression coefficients is an effective way to reconstruct the spectrum,
obtain the contribution intensity of each band, and identify the characteristic band. The
principal component regression curves of the four spectra are shown in Figure 2f.

3.3. Robustness Analysis of Chl-a Concentration CNN Model

Of the training samples, 25%, 50%, 75%, and 100% (i.e., 16, 32, 47, and 63 samples)
were selected in the model as new training samples to train the model. The test sam-
ples were all 27 samples for model verification. Taking the strong correlation factors of
the four preprocessing spectrum types (original spectrum, 500–750 baseline spectrum,
750 baseline spectrum, and envelope removal spectrum) as input independent variables,
the concentration of Chl-a was the dependent variable and the concentration of Chl-a was
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retrieved using the CNN model. The performance of the model is shown in Figure 4. It
can be seen from the results that: (1) When the number of samples was 16, the overall
performance of the CNN model of the 500–750 baseline spectrum was the best (RT

2 = 0.62,
RMSET = 0.94, RP

2 = 0.75, RMSEP = 0.71, RPD = 1.45, and RE = 0.21), and the generaliza-
tion performance of the CNN model of the original spectrum was the worst (RT

2 = 0.61,
RMSET = 0.91, RP

2 = 0.64, RMSEP = 0.74, RPD = 1.37, and RE = 0.21), whereas when the
number of samples was 63, the overall performance of the CNN model of the same 500–
750 baseline spectrum was the best (RT

2 = 0.78, RMSET = 0.68, RP
2 = 0.90, RMSEP = 0.45,

RPD = 1.19, and RE = 0.17), and the generalization performance of the CNN model of
the original spectrum was the worst (RT

2 = 0.81, RMSET = 0.63, RP
2 = 0.80, RMSEP = 0.59,

RPD = 1.15, and RE = 0.17); (2) generally speaking, the more samples there were, the better
the overall performance of the CNN models of the four spectra were improved. Under
different sample sizes, the average performances of the CNN models of the four spectra
were ranked from good to bad: 500–750 baseline spectrum (RT

2 = 0.74, RMSET = 0.75,
RP

2 = 0.82, RMSEP = 0.56, RPD = 1.32, and RE = 0.19), 750 baseline spectrum (RT
2 = 0.73,

RMSET = 0.76, RP
2 = 0.79, RMSEP = 0.61, RPD = 1.27, and RE = 0.19), envelope removal

spectrum (RT
2 = 0.71, RMSET = 0.78, RP

2 = 0.78, RMSEP = 0.63, RPD = 1.25, and RE = 0.20)
and original spectrum (RT

2 = 0.72, RMSET = 0.77, RP
2 = 0.72, RMSEP = 0.66, RPD = 1.23,

and RE = 0.20).
Water 2021, 13, 664 11 of 17 
 

 

 
Figure 4. Model robustness evaluation analysis. (a) RT2, (b) RP2, (c) RMSET, (d) RMSEP, (e) RPD and (f) RE. In the figure, 
Baseline1 is a 500–750 nm baseline, and Baseline2 is a 750 nm baseline. 

3.4. Accuracy Analysis of Chl-a Concentration Inversion 
Tables 2 and 3, and Figure 5 show the inversion results of the CNN model after eight 

combinations of two inversion factors (strong correlation factor and principal component 
factor) of four spectral types (original spectrum, 500–750 baseline spectrum, 750 baseline 
spectrum, and envelope removal spectrum). The inversion effect of the CNN model of the 
preprocessed spectrum was good (500–750 baseline spectrum, 750 baseline spectrum, and 
envelope removal spectrum), and the CNN model of the original spectrum showed the 
worst inversion effect (Tables 2 and 3, and Figure 4). The results showed that prepro-
cessing significantly improved the model inversion effect. The inversion effect of the CNN 
model with strong correlation factor (RT2 = 0.79, RMSET = 0.67, RP2 = 0.87, RMSEP = 0.50, RPD 
= 1.21, and RE = 0.18) and the CNN model with principal component factor (RT2 = 0.76, 
RMSET = 0.71, RP2 = 0.85, RMSEP = 0.53, RPD = 1.24, and RE = 0.18) were not much different 
(Table2 and Figure 5), showing that the selection of inversion factors had little effect on 
the performance of the model. Among the combined models, the CNN model of Base-
line1_SC (RT2 = 0.78, RMSET = 0.68, RP2 = 0.90, RMSEP = 0.45, RPD = 1.19, and RE = 0.17) 
showed the best effect and the average inversion effect of 8 CNN models is also better (RT2 

= 0.78, RMSET = 0.69, RP2 = 0.86, RMSEP = 0.52, RPD = 1.23 and RE = 0.18) (Table 2 and Figure 

Figure 4. Model robustness evaluation analysis. (a) RT
2, (b) RP

2, (c) RMSET, (d) RMSEP, (e) RPD and (f) RE. In the figure,
Baseline1 is a 500–750 nm baseline, and Baseline2 is a 750 nm baseline.



Water 2021, 13, 664 11 of 16

3.4. Accuracy Analysis of Chl-a Concentration Inversion

Tables 2 and 3, and Figure 5 show the inversion results of the CNN model after
eight combinations of two inversion factors (strong correlation factor and principal com-
ponent factor) of four spectral types (original spectrum, 500–750 baseline spectrum, 750
baseline spectrum, and envelope removal spectrum). The inversion effect of the CNN
model of the preprocessed spectrum was good (500–750 baseline spectrum, 750 baseline
spectrum, and envelope removal spectrum), and the CNN model of the original spectrum
showed the worst inversion effect (Tables 2 and 3, and Figure 4). The results showed
that preprocessing significantly improved the model inversion effect. The inversion effect
of the CNN model with strong correlation factor (RT

2 = 0.79, RMSET = 0.67, RP
2 = 0.87,

RMSEP = 0.50, RPD = 1.21, and RE = 0.18) and the CNN model with principal component
factor (RT

2 = 0.76, RMSET = 0.71, RP
2 = 0.85, RMSEP = 0.53, RPD = 1.24, and RE = 0.18)

were not much different (Table 2 and Figure 5), showing that the selection of inversion
factors had little effect on the performance of the model. Among the combined models,
the CNN model of Baseline1_SC (RT

2 = 0.78, RMSET = 0.68, RP
2 = 0.90, RMSEP = 0.45,

RPD = 1.19, and RE = 0.17) showed the best effect and the average inversion effect of 8
CNN models is also better (RT

2 = 0.78, RMSET = 0.69, RP
2 = 0.86, RMSEP = 0.52, RPD = 1.23

and RE = 0.18) (Table 2 and Figure 5). All showed higher RP
2 and lower RMSEP, indicating

the feasibility of applying CNN to the modeling of Chl-a concentration hyperspectral
inversion. To verify the superiority of CNN model applied to Chl-a concentration inver-
sion modeling, the performances of the CNN, linear regression, and partial least square
regression models for Chl-a concentration inversion were compared. The performance of
the CNN model (Baseline1_SC (RP

2 = 0.90, RMSEP = 0.45)) was much better than the same
combination of traditional models, i.e., the linear regression model (LR) (Baseline1_SC
(RP

2 = 0.61, RMSEP = 0.72) and the partial least squares regression model (PLSR) (Base-
line1 _SC (RP

2 = 0.58, RMSEP = 0.95)). This showed the superiority of CNN applied to the
inversion modeling of Chl-a concentration.

Table 2. Inversion results of the combined model.

Pretreatment
Method

Inversion
Factor Alias RT

2 RMSET RP
2 RMSEP RPD RE

Original SC Original_SC 0.81 0.63 0.80 0.59 1.15 0.17
PC Original_PC 0.65 0.85 0.78 0.62 1.33 0.20

Baseline
500–750 nm

SC Baseline1_SC 0.78 0.68 0.90 0.45 1.19 0.17
PC Baseline1_PC 0.81 0.65 0.85 0.56 1.20 0.17

Baseline
750 nm

SC Baseline2_SC 0.79 0.67 0.88 0.48 1.26 0.18
PC Baseline2_PC 0.78 0.68 0.87 0.48 1.26 0.18

Envelope
removed

SC Envelope _SC 0.78 0.68 0.88 0.49 1.23 0.18
PC Envelope _PC 0.80 0.65 0.88 0.47 1.18 0.17

Table 3. Means of various combination models.

Pretreatment Method RT
2 RMSET RP

2 RMSEP RPD RE

Original 0.73 0.74 0.79 0.61 1.24 0.19
Baseline 1 0.80 0.67 0.88 0.51 1.20 0.17
Baseline 2 0.79 0.68 0.88 0.48 1.26 0.18
Envelope 0.79 0.67 0.88 0.48 1.21 0.18

All models 0.78 0.69 0.86 0.52 1.23 0.18
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4. Discussion

As a high-performance deep learning model, CNN has stronger feature extraction
and model expression capabilities than shallow learning methods. However, for Case-II
water bodies with relatively complex water qualities, it is still challenging to establish a
highly applicable and accurate Chl-a concentration inversion model. Few research works
exist on remote sensing inversion modeling of Chl-a concentration using CNN [36]. This
study explored the possibility of quantitatively inverting the Chl-a concentration based
on measured spectra using the CNN model. Its novelty lies in the inversion of Chl-a
concentration using a CNN model with four types of spectra (original spectrum, 500–
750 baseline spectrum, 750 baseline spectrum, and envelope removal spectrum) and two
inversion factors (strong correlation factor and principal component factor).

Among the combined models of CNN, the CNN model of Baseline1_SC showed the
best effect, and the average inversion effect of the eight combined CNN models was better,
indicating the feasibility of the CNN inversion modeling of the Chl-a concentration. The
performance of the CNN model was far better than the same combination of traditional
models, i.e., the linear regression model and partial least squares regression model, indi-
cating the superiority of the CNN inversion modeling of Chl-a concentration. This was
similar to previous studies [41–46]. Xu Y et al. found in a comparative study of machine
learning models used to retrieve Chl-a concentration in Lake Taihu that deep learning
methods had better inversion accuracy and better model stability [42]. Wang C et al. found
in a study of near-infrared spectroscopy used to predict soil moisture content that the pre-
diction accuracy of the CNN model was better than traditional models, such as PLSR [46].
However, previous studies did not provide the optimal scheme for applying the CNN
model with different preprocessing methods and different inversion factor combinations
to the inversion modeling of Chl-a concentration in order to provide a reference for the
inversion modeling of Chl-a concentration.

This study randomly selected 25%, 50%, 75%, and 100% of the samples to train the
model to test the robustness of the CNN model. The results showed that as the number
of training samples increased, the overall performances of the CNN models for the four
spectra were improved. The number of samples had an impact on the performance of
the CNN model. Enough samples improved the stability of the CNN model, which was
consistent with the conclusions of other studies [36,47–49]. However, the cost of obtaining a
large number of in situ samples is high. Considering the integration of laboratory samples
and in situ samples and increasing the number of samples is an issue that needs to be
considered to improve the robustness of CNN. This study only considered the influence
of sample size on the robustness of the model, but the Chl-a concentration is also affected
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by water quality parameters such as water temperature, dissolved oxygen, dissolved
phosphorus, and total nitrogen. The influence of water quality parameters of inland water
bodies, coastal water bodies, and ocean water bodies carries certain differences [29]. A Chl-
a concentration inversion model that takes into account the influence of different regions
and different types of water quality parameters is a problem that needs to be considered to
improve the spatial robustness of the model. The robustness of the model is also affected
by time. Although this study was an experiment carried out by simultaneous sampling
of water quality parameters and spectrum, the sampling lacked time continuity. The
dominant substances in different water bodies were often different, resulting in different
optical properties and different Chl-a concentrations in water bodies. A Chl-a concentration
inversion model taking into account the time duration is another issue that needs to be
considered to improve the time robustness of the model.

This research establishes a semi-empirical model, and the inversion result of the
model is affected by sampling location, time, and weather conditions. To eliminate the
influence of these factors, a physical model based on the theory of radiation transmission
needs to be established. However, due to the complexity of the physical model and too
many parameters, the application of this model is limited. The characteristics of water
spectrum are complex, regional, seasonal, etc., resulting in the same algorithm can only
guarantee its accuracy in a certain area. Limited experimental data led to temporal and
spatial limitations in the built model. If more sample data are used, the resulting impact
could be eliminated or weakened so the validity and applicable boundaries of the model
can be further analyzed and discussed.

5. Conclusions

Taking China’s Dongting Lake as an example, 90 water samples and their spectra were
collected in this study. Using eight combinations of two inversion factors (strong correlation
factor and principal component factor) of four spectral types (original spectra, 500–750
baseline spectra, 750 baseline spectra, and envelope removal spectra) as independent
variables and Chl-a concentration as the dependent variable, a CNN model was constructed
to invert Chl-a concentration. The results showed that: (1) As the number of training
samples increased, the overall performances of the CNN model for the four spectra were
improved. Under different sample sizes, the average performances of the CNN models
of the four spectra were ranked from good to bad, namely, 500–750 baseline spectrum,
750 baseline spectrum, envelope removal spectrum, and original spectrum; (2) the CNN
model of the preprocessing spectrum showed a good inversion effect, and the CNN
model of the original spectrum showed the worst inversion effect, indicating that the
preprocessing significantly improved the inversion effect of the model; (3) the inversion
effects of the CNN model with the strong correlation factor and the CNN model with the
principal component factor were not much different, indicating that the choice of inversion
factor had little effect on the performance of the model; (4) among the combined models,
the CNN model of Baseline1 _SC showed the best effect and the average inversion effects
of the eight combinations of CNN models were better, indicating the feasibility of applying
CNN to the inversion modeling of water body Chl-a concentration; (5) the performance of
the CNN model was far better than the traditional model of the same combination, i.e., the
linear regression and partial least squares regression models, indicating the superiority of
the CNN inversion modeling of water body Chl-a concentration.
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