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Abstract: In the present study, the susceptibility to flash-floods and flooding was studied across the
Izvorul Dorului River basin in Romania. In the first phase, three ensemble models were used to
determine the susceptibility to flash-floods. These models were generated by a combination of three
statistical bivariate methods, namely frequency ratio (FR), weights of evidence (WOE), and statistical
index (SI), with fuzzy analytical hierarchy process (FAHP). The result obtained from the application
of the FAHP-WOE model had the best performance highlighted by an Area Under Curve—Receiver
Operating Characteristics Curve (AUC-ROC) value of 0.837 for the training sample and another
of 0.79 for the validation sample. Furthermore, the results offered by FAHP-WOE were weighted
on the river network level using the flow accumulation method, through which the valleys with
a medium, high, and very high torrential susceptibility were identified. Based on these valleys’
locations, the susceptibility to floods was estimated. Thus, in the first stage, a buffer zone of 200 m
was delimited around the identified valleys along which the floods could occur. Once the buffer
zone was established, ten flood conditioning factors were used to determine the flood susceptibility
through the analytical hierarchy process model. Approximately 25% of the total delimited area had a
high and very high flood susceptibility.

Keywords: flooding; flash-floods; bivariate statistics; fuzzy multicriteria decision-making; small
catchments; Romania

1. Introduction

According to Hu et al. [1], a total number of 2.5 billion peoples were affected by flash-
floods and floods between 1994 and 2013. In the same period, 0.16 billion fatalities occurred
due to the same natural risk phenomena. Therefore, since flash-floods are extremely severe
phenomena, they are also very dangerous for human life [2,3]. These phenomena appear
most frequently in small river basins characterized by a high slope. Additionally, areas
with smaller slopes favor the accumulation of the transported water and materials [4]. In
this context, the identification of sections that favor the surface runoff occurrence, torrential
valleys on which the flash-floods are propagated, and the flood susceptibility assessment in
those regions, is one of the most important measures to combat the negative effects of these
phenomena on water quality and human society. Additionally, the results provided by this
type of analysis are very important in assessing a region’s vulnerability and risk to flash
floods. It should be noted that most of the procedures regarding the evaluation of flash-
flood and flood risk assessment, which were adopted by the European countries includes
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the use of several traditional methods such as hydraulic and hydrological modeling. These
techniques are time consuming and very expensive [5,6]. In this context, the need to
find faster, more accurate, and cheaper techniques for determining the flood hazard has
significantly increased.

In recent years, the scientific field of flash-food and flood susceptibility assessment has
had a high dynamic due to the fast development of the techniques and software used to
perform these analyses [7]. Thus, to assess the flood susceptibility, Geographic Information
System (GIS) techniques, complex models of bivariate statistics, and machine learning are
used [8]. The most used bivariate statistical techniques for assessing susceptibility to natural
hazards are weights of evidence [9], frequency ratio [10], evidential belief function [11],
certainty factor [12], statistical index [13], and index of entropy [14]. The most well-
known machine learning models used in the study of susceptibility to floods are decision
trees [15], multilayer perceptron [16], logistic regression [17], support vector machine [18],
bagging [19], k-nearest neighbor [20], naïve Bayes [21], Decorate [22], Dagging [15], and
adaptive neuro-fuzzy inference system [23]. Many researchers have assessed the risk of
flash-floods and floods by using ensemble models resulting from the combination of several
methods [15,21,24].

Nevertheless, in all the research papers where machine learning and bivariate statistics
were used, the susceptibility was estimated separately for flash-floods and flooding. Up to
now, there is no approach in which the susceptibility to these two phenomena, which are
strongly related, can be estimated together. A first attempt to identify the torrential valleys,
based on the flash-flood susceptibility, was done by Costache et al. [25]. In that study, the
authors managed to detect the river valleys prone to flash-flood propagation using four
hybrid models and the flow accumulation method. Nevertheless, the flooding susceptibility
was not estimated along the torrential river valleys, this fact being a shortcoming that
should be addressed.

In this context, we aimed to propose an integrated approach for estimating the surface
runoff susceptibility and the susceptibility to floods. Thus, in the first stage, we follow
the identification of areas susceptible to flash-floods by applying three overall models
generated by combining frequency ratio, statistical index, and weights of evidence bivariate
statistics models, on the one hand, and fuzzy analytical hierarchy process on the other
hand. The models’ performances were evaluated utilizing the ROC curve. The second stage
of the study aims to identify the torrential valleys susceptible to the propagation of the
upstream flash-floods by applying the flow accumulation method. Once the valleys with a
medium, high, and very high potential for flash-flood propagation are identified, the flood
susceptibility is calculated to determine the areas exposed to floods. Flood susceptibility is
determined through the analytical hierarchy process stand-alone model.

It should be mentioned that this is the first time in the literature when the susceptibility
of these two phenomena, flash-floods and flooding generated by them, were analyzed in
an integrated way and in a spatial causal relationship. The previous studies carried out in
Romania as well as in any part of the globe were focused on the estimation of flooding or
flash-flood susceptibility without taking into account their strong spatial relationship.

2. Study Area

The present study focused on the Izvorul Dorului River basin located in the moun-
tainous area of the central part of Romania. The surface of the study area is 33 km2, which
falls into the category of small-area basins that are frequently affected by rapid floods.
The altitude inside the study zone varies from 763 m to 2202 m (Figure 1a). This high
difference in altitude on a small area creates favorable premises for flash-flood genesis and
their propagation from the upper to the lower part of the river basin. The river basin is
characterized by an average high slope of 15.6◦, which is another indicator of the high
potential for flash-flood propagation along the valleys in the study area. According to the
existing information and, as can be seen in Figure 1b, the afforestation degree of the river
basin is around 50%. Additionally, from Figure 1b, one can remark that in the perimeter of
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the deforested surfaces located at the highest altitude also exists a very high potential for
a rapid surface runoff on the slopes. This is another element indicating that the genesis
of the flash-floods is related to the high-altitude region of the river basin from where they
are propagated along the steep river valleys toward the lowland area. The lower part of
the study area corresponds to the built space of Sinaia city, the most famous mountain
tourist resort in Romania. This locality has been affected by floods multiple times, caused
by Izvorul Dorului River and its tributaries. One of the most violent flash-floods took place
in August 2010 when several dozens of buildings were affected as well as National Road 1,
National Road 71, and the railroad between Bucharest and Brasov cities. Additionally, as a
result of different strong floods, several landslides were activated and affected the houses
from Sinaia.
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3. Methods
3.1. Background of the Models
3.1.1. Statistical Index

Proposed by van Westen [26], statistical index (SI) is a bivariate method widely used
in natural risk susceptibility evaluation studies [13,27]. According to this model, the score
of a predictor class can be computed by applying the natural algorithm to the ratio between
the density of pixels associated with the phenomenon presence in the predictor class and
the density of the same pixels across the study area [28]. Thus, a well-known formula to
estimate the SI weight is the following:

Wij = ln
( fij

f

)
= ln

 Npix(Si)
Npix(Ni)

∑ Npix(Si)
∑ Npix(Ni)

, (1)
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where Wij is the weight of the class/category i of predictor j; fij is the density of the
phenomenon in class i of predictor j; f is the density of phenomenon in the study; Npix(Si)
is the number of pixels associated with the phenomenon in class i; and Npix(Ni) is the sum
of pixels of the same parameter class.

3.1.2. Frequency Ratio

Frequency ratio (FR) is a bivariate statistical model, widely applied to evaluate flood
and landslide susceptibility mapping worldwide [9,10,13]. The relationship between food
occurrences and conditioning parameters is used to analyze and calculate the frequency
ratio. The mathematical expression of frequency ratio (i.e., the frequency ratio of class i of
factor j) is given in Equation (2) [10]:

FR =

Npix(1)
Npix(2)

∑ Npix(3)
∑ Npix(4)

(2)

where Npix(1) is the total number of torrential points contained by a class/category of
factor; Npix(2) is the total number of pixels contained by each class/category; ∑ Npix(3)
is the total number of torrential pixels within the study area; and ∑ Npix(4) is the total
number of pixels within the study area.

After calculating the frequency ratio, each controlling factor summed up all the values
to generate a map of flood vulnerability. If the frequency ratio is greater than 1, the
conditioning factors strongly influence flooding, otherwise, there is a negative relationship
between conditioning factors and flood occurrence.

3.1.3. Weights of Evidence

Weights of evidence (WOE) is a widely used statistical model for landslide, flood,
and fire forest susceptibility assessment [29–31]. This method was first introduced for
geological studies in 1992, then adopted for the analysis of different hazards (e.g., fire
forest, flood, landslides) [27]. This method estimates the weights of evidence coefficients
based on the relationship between each class of factors and the flood absence/presence.
The positive weight (W+) and the negative weight (W−) are necessary for the computation.
These weights reflect the presence and absence of areas affected by the flood, respectively,
and can be computed using the following [29–31]:

W+ = ln
P{B|S}
P
{

B
∣∣S} (3)

W− = ln
P
{

B
∣∣S}

P
{

B
∣∣S} (4)

where B and B are the presence and absence of flood conditioning parameters, respectively;
P is the probability; and S, and S are the presence and absence of flooding, respectively.

The output of the performed processes is used to implement Equations (3) and (4) in
ArcGIS. Subsequently, the mathematical representation of these two equations are [29]:

W+ = ln
Npix1

Npix1+ Npix2
Npix3

Npix3+ Npix4

(5)

W− = ln
Npix2

Npix1+ Npix2
Npix4

Npix3+ Npix4

(6)

where W+ and W− are the positive and negative weights, respectively; Npix1 and Npix2
are the number of pixels with flood points inside and outside of the class, respectively;
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and Npix3 and Npix4 are the number of pixels without flooding inside and outside of the
class, respectively.

The final weights of evidence coefficients (Wf ) assigned to each factor class can be
obtained as follows [29]:

W f = W plus + Wmintotal −Wmin (7)

where (Wf ) is the final weight of evidence coefficients; Wmintotal is the total of all negative
weights in a multiclass map; and Wplus and Wmin are the positive negative weights of a
class factor, respectively.

3.1.4. Fuzzy Analytical Hierarchy Process

The analytical hierarchy process (AHP) is an algorithm used for flood, landslide,
and fire forest susceptibility mapping [32–35]. Through a pairwise comparison matrix
constructed based on expert knowledge, AHP was used to calculate the weights of relevant
criterion map layers. Since AHP has several advantages such as its fuzzy extension,
the fuzzy analytical hierarchy process (FAHP) was proposed and applied to solve the
hierarchical fuzzy problems. It can be employed to increase the analysis quality, reducing
the subjectivity in the estimation of weights criteria by a combination of the fuzzy set theory
and the analytical hierarchy process [36]. The following steps show how to determine the
weights of criteria in the FAHP.

The pairwise comparison matrices are constructed from flood conditioning factors
(elevation, slope angle, stream density, curve number, rainfall, lithology, land use, soil
texture, etc.). Linguistic terms are assigned to the pairwise comparison (Equation (8)) to
establish the most important criteria [37]:

A′ =


1′ a′12 · · · a′1n

a′21 1′ · · · a′1n
...

...
. . .

...
a′n1 a′n2 · · · 1′

 =


1′ a′12 · · · a′1n

1/a′21 1′ · · · a′1n
...

...
. . .

...
1/a′n1 1/a′n2 · · · 1′

 (8)

where a’ij indicates a pair of criteria i and j.
The Buckley method [38] is utilized to calculate the fuzzy geometric mean and fuzzy

weight of each criterion by:

r′i =
(
a′i1 ⊗ a′i2 ⊗ . . .⊗ a′in

) 1
n , (9)

w′i = r′i ⊗ (r′1 ⊗ . . .⊗ r′n)
−1, (10)

where a′in is the fuzzy comparison value between the pair criterion i and criterion n; and r′1
is the geometric mean of the fuzzy comparison values for criterion i compared to each of
the other criteria; w′i is the fuzzy weighting of the ith criterion; and w′i = (lwi, mwi, uwi),
where lwi, mwi and uwi are the values of the lower, middle, and upper, fuzzy weighting of
the ith criterion, respectively [37,39].

The extent analysis algorithm was applied to determine the final values of the flood
conditioning factor weights. The construction of a fuzzy triangular comparison matrix is
the first step. This matrix is done by [40]:

A′ =
(

a′ij
)

nxn
=


(1, 1, 1) (l12, m12, u12) · · · (l1n, m1n, u1n)

(l21, m21, u21) (1, 1, 1) · · · (l2n, m2n, u2n)
...

...
. . .

...
(ln1, mn1, un1) (ln2, mn2, un2) · · · (1, 1, 1)

 (11)

where a′ij = (lij, mij, uij) and a
′−1

ij = (1/lij, 1/mij, 1/uij) for i, j = 1, . . . , n and i 6= j.
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Next, we computed the priority vector of the triangular matrix. Then, the fuzzy
arithmetic function was employed to sum up each row of the matrix A′ in a first stage, as
follows:

RSi =
n

∑
j=1

a′ij =

(
n

∑
j=1

lij,
n

∑
j=1

mij,
n

∑
j=1

uij

)
, i = 1, . . . , n (12)

Then, the value of the fuzzy synthetic extent in terms of the ith object is obtained
through the normalization of the above relation, as follows [32]:

S′i =
n

∑
j

a′ij ⊗
[

n

∑
k=1

n

∑
j=1

a′kj

]−1

=

(
∑n

j=1 lij
∑n

k=1 ∑n
j=1 ukj

,
∑n

j=1 mij

∑n
k=1 ∑n

j=1 mkj
,

∑n
j=1 uij

∑n
k=1 ∑n

j=1 lkj

)
, i = 1, . . . , n. (13)

The computation of the degree of possibility of S′i ≥ S′j represents the third step and is
achieved through Equation (14):

V(S′i ≥ S′j) =


1, i f mi ≥ mj,

ui− lj
(ui− mi)+(mj− lj)

, lj ≤ ui, i, j = 1, . . . , n; j 6= i

0, otherwise

(14)

where S′i = (li, mi, ui) and S′j =
(
lj, mj, uj

)
.

Considering that:

w′(ai) = min
{

V(S′i ≥ S′k)
}

, k = 1, 2, . . . ., n; k 6= i (15)

the weight vector values can be calculated by:

w′(ai) =
[
w′(a1), w′(a2), . . . , w′(an)

] T . (16)

The weight vectors were obtained using the following equation after a
normalization process:

w(ai) = [w(a1), w(a2), . . . , w(an)]
T (17)

where w is a non-fuzzy number.
The present study was carried out by completing several methodological steps, as

presented in Figure 5 and also briefly described below.

3.2. Data Used
3.2.1. Torrential Areas Inventory

Identifying the areas previously affected by a natural risk phenomenon is vital for
detecting other zones where that phenomenon has a high probability of occurrence [41].
The appearance of any phenomenon will be favored in areas with characteristics similar
to those where the phenomenon has already occurred [42]. For this reason, to estimate
the susceptibility to the occurrence of rapid floods, torrential areas were inventoried and
mapped. These areas were generated by the rapid surface runoff on the slopes. The
modality of identification of such zones is presented in the studies [43]. Torrential areas
are zones characterized by the unified presence of a torrential microform of relief such
as ravines and gullies generated by surface runoff. Thus, through the satellite images
made available through the Google Earth application (Figure 1), an area affected by intense
torrential processes of about 170 hectares was vectorized, which is located in the upper part
of the river basin where the absence of vegetation and the high slopes favor the apparition
of such phenomena.

3.2.2. Flash-Flood and Flood Predictors

Whereas torrential zones represent an indicator of the rapid surface runoff on the
slopes, certain geographical factors are the predictors of this phenomenon, or in other
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words, are the variables that generate and favor the surface runoff. Moreover, the genesis
of floods generated by flash-floods also depends on the characteristics of geographical
factors. Therefore, to identify as accurately as possible the surfaces favorable to the genesis
of flash-floods and those susceptible to floods, twelve conditioning factors were taken
into account. Eight morphometrical predictors were obtained by processing the digital
elevation model, while the other four flood and flash-flood predictors were collected from
the following vector databases: hydrological soil groups from the Digital Soil Map of
Romania, 1:200,000; land use/cover from Corine Land Cover, 2018; lithology from the
Digital Geological Map of Romania, 1:200,000; and distance from rivers was estimated
with the help of the river network in an Environmental Systems Research Institute (ESRI)
shapefile format. Below, the main characteristics of flood and flash-flood predictors are
briefly presented.

The slope is the geographic factor that has the biggest influence on both the potential
for rapid surface runoff and the flood potential [24]. Surfaces with steep slopes cause rapid
water drainage, while the flat surfaces lead to the water accumulation process [44]. In our
case study, the sloping relief had values between 0.1◦ and 54.1◦ (Figure 2a). This interval
was divided into six classes according to the literature [43].

Land use/cover is another predictor that influences both flash-floods and floods [45].
Lands covered with pastures or without vegetation will favor the appearance of rapid
runoff on the slopes, while areas covered with forests are characterized by a lower potential
for runoff and flooding [21]. In the study area, the grassland and the forest shared equally
almost all of the territory (Figure 2b). Additionally, the presence of the built space in the
lower part of the Izvorul Dorului River basin was observed.

Hydrological soil group has a high influence on the flood. Thus, the flooding phe-
nomenon will likely be over the areas with soils with high clay content such as those in
hydrological group D, while water infiltration will be more pronounced on soils with a
sandy texture [46–48]. Within the study area, the largest surface was occupied by hydrolog-
ical soil group A (Figure 2c).

Convergence index (CI) is a predictor obtained from the DEM whose values show
the concentration degree of the drainage network. CI values close to −100 indicate a
high density of the river network whereas positive CI values are associated with the
interfluvial surfaces. In the study area, the CI values are situated in the range from −86 to
84 (Figure 2d). These were divided into five classes according to the literature [43].

Profile curvature is a predictor whose negative values show the surfaces that favor the
accelerated surface runoff, while the decelerated runoff manifests itself on the surfaces with
positive values. The information from the literature was used to classify profile curvature
values into the next classes: −2.3–−0.1; 0–0.1; 0.2–2.6 (Figure 3a).

The aspect factor obtained from the DEM is an indicator of the humidity potential that
exists at the slope level [49]. In the case of the Izvorul Dorului basin, the southeast surfaces
were the most extensive, these being followed by the southwest slopes (Figure 3b).

Topographic position index (TPI) is a predictor calculated from the DEM, which
shows the relative position of a point in the research area in relation to the immediately
neighboring regions [50]. The next TPI classes were established using the natural breaks
method: −7.8–−1.8; −1.7–−0.5; −0.4–0.5; 0.6–1.9; 2–8.6 (Figure 3c). The following five
classes of Topographic Wetness Index (TWI) were delimited using the natural break method:
−4.4–4.7; 4.8–8.4; 8.5–11.8; 11.9–15; 15.1–23.1 (Figure 3d).

The elevation is a useful indicator for detecting the surfaces exposed to flooding
processes that may occur as a result of flash-flood propagation from the upper part of river
basins [7]. The lower relief zones have a higher sensitivity to flooding occurrence. For the
study area, the range from 763.1 m to 2202 m was split into seven classes that generally
succeeded at a difference of 200 m (Figure 4a).
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Plan curvature shows the difference between the surfaces on which the convergent
and divergent runoff is manifested. Three classes were delimited for the plan curvature
values (Figure 4b): −3–−0.1; 0–0.1; 0.2–1.9.

Lithology is a predictor that influences the infiltration capacity at the ground surface,
so it should be considered in the studies concerning the flood and flash-flood potential.
The conglomerates, breccias, sandy flysch, and marls shale are predominant in the study
area (Figure 4c).

Distance from the river was generated using the Euclidean distance tool from ArcGIS
10.3 software. This is an important parameter that indicates the distance from different
surfaces to the nearest watercourse. The surfaces in the vicinity of watercourses will be
more prone to flash-floods and the floods generated by them. In the present study, the
distance from the river predictor was classified into eight classes.

3.3. Methodological Steps Implemented in the Present Study
3.3.1. Step 1: Flash-Flood Database Preparation

The flash-flood database used in the present research consisted of 1965 torrential points
collected from the delineated torrential surfaces and ten flash-flood conditioning factors.
Building and processing the flash-flood database were done through ArcGIS 10.3 software.
It should be noted that the torrential points were obtained by converting the torrential areas
from a raster format, with a cell size of 30 m, to a point. Therefore, each point corresponds
to a raster cell. According to the literature [51], the entire sample was divided into a training
dataset (70%) and a validation dataset (30%). The training dataset was used to calculate the
frequency ratio, weights of evidence, and statistical index coefficients, while the validation
dataset was used to evaluate the accuracy of the results achieved.

3.3.2. Step 2: Computation of Flash-Flood Potential Index (FFPI)

The flash-flood potential index represents a qualitative indicator of the potential for
torrential surface runoff, which exists at the slope level [52]. In the first stage, the frequency
ratio, weights of evidence, and statistical index coefficients were determined by analyzing
the spatial correlations between the torrential points included in the training sample and
the ten flash-flood predictors. In this regard, the equations from Sections 3.1.1–3.1.3 were
implemented in Excel and ArcGIS. The number of pixels used in the computation of the
types of bivariate statistics coefficients was 1376. Furthermore, the second stage consisted
of the computation of flash-flood predictors weights by the fuzzy analytical hierarchy
process method. Finally, three variants of the flash-flood potential index were computed
by the weighted sum between fuzzy analytical hierarchy process weights and the values of
frequency ratio, weights of evidence, and statistical index coefficients.

3.3.3. Step 3: Evaluation of Results Accuracy Using Receiver Operating Characteristic
(ROC) Curve

The results of FFPI were assessed using the receiver operating characteristic (ROC)
curve. The ROC curve represents a graphical plot that highlights the ability of a binary
model to classify a given dataset used in the modeling process into the presence or the
absence of a specific phenomenon [53]. This is the most frequently used algorithm to
validate the outcomes provided by a model for natural hazards susceptibility [42,49,54,55].
The ROC curves were constructed by comparing the existing torrential points with the flash-
flood potential index results. Both the success rate, constructed with the training sample,
and prediction rate constructed with the validation sample, will be used. The area under
curve (AUC) will highlight the performance of each flash-flood potential index model.

3.3.4. Step 4: Computation the Flood Potential Index (FPI) Based on the Most Performant
FFPI Result

To identify the valleys with a high torrential degree, the best performing flash-flood
potential index that resulted was used in a flow accumulation procedure (Figure 5). Through
the flow accumulation method, the flash-flood potential index values are weighted at the
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level of the river network within the study area. The weighted flash-flood potential
index values are further classified into five categories: very low, low, medium, high, and
very high. In the next stage, to select the river valleys along which the flood potential
index will be calculated, the hydrographic network having assigned a medium, high, and
very high flash-flood propagation susceptibility is selected. The flood potential index
represents a qualitative indicator that highlights the degree to which a specific region
can be affected by the flooding phenomenon [56]. The area on which the flood potential
index will be computed was limited to a buffer zone of 200 m along with the selected
river network. Eventually, the flood potential index values are obtained by involving the
next ten flood conditioning factors in the analytical hierarchy process method: slope, land
use, hydrological soil groups, convergence index, topographic position index, topographic
wetness index, elevation, distance from the river, plan curvature, and lithology. The values
of the FPI are then classified into five categories through which the areas prone to flooding
generated by flash-floods will be detected.
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4. Results
4.1. Bivariate Statistics Coefficients

The values of bivariate statistics coefficients highlight the spatial relationships be-
tween the location of torrential areas and the classes/categories of flash-flood predictors.
According to Table 1, the lowest weights of evidence coefficients were assigned to hydro-
logical soil group D (−15.04), lithological category of sandy flysch, marls shale (−10.3),
lithological category of clays, limestone (−9.27), and hydrological soil group C (−8.91).
The highest weights of evidence values were attributed to slope angles higher than 45◦

(3.34), grassland land use (1.52), lithological category of conglomerates, breccias (1.48),
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and slope angles between 15.1◦ and 25◦ (0.95). In terms of frequency ratio coefficients,
the lowest values (0) were associated with agricultural zones, built-up areas, bare rocks,
lithological categories of sandstone, gravels, clays, and limestone, zones with slope angles
lower than 3◦, and hydrological soil groups C and D. The highest frequency ratio values
were assigned to zones with slope angles higher than 45◦ (13.5), grassland land use (2.07),
lithological category of conglomerates, breccias (2.04), areas with slope angles between
15.1◦ and 25◦ (1.82), and convergence index class between −86 and −3 (1.78). In the case
of SI coefficients, the lowest values were calculated for hydrological soil group D (−7.83),
zones with slopes lower than 3◦ (−5.99), lithological category of sandstone and gravels
(−5.25), lithological category of sandy flysch and marls shale (−5.12), and built-up areas
(−4.94). The highest SI coefficients were obtained by zones with slope angles higher than
45◦ (2.6), grassland land use (0.73), lithological category of conglomerates, breccias (0.71),
zones with slope angles between 15.1◦ and 25◦ (0.6), and convergence index class between
−86 and −3 (0.58).

Table 1. Bivariate statistics of flash-floods conditioning factors classes.

Factor Class Class Pixels Torrential Points WOE FR SI

Slope

0–3◦ 1065 0 −6.05 0.00 −5.99
3.1–7◦ 5008 230 0.26 1.22 0.20
7.1–15◦ 15,098 299 −0.94 0.53 −0.64

15.1–25◦ 9937 677 1.01 1.82 0.60
25.1–45◦ 5407 93 −0.88 0.46 −0.78
45.1–54◦ 152 77 3.34 13.50 2.60

Land use

Built-up areas 374 0 −6.78 0 −4.94
Grassland 16,949 1316 1.52 2.07 0.73

Agriculture
areas 15 0 −3.55 0 −1.73
Forest 19,218 60 −5.05 0.08 −2.49

Bare rocks 111 0 −5.56 0 −3.73

Convergence
index

−86–−3 7514 502 0.93 1.78 0.58
−2.9–−2 2085 114 0.51 1.46 0.38
−1.9–−1 2750 107 0.13 1.04 0.04
−0.9–0 3939 101 −0.35 0.68 −0.38
0.1–84.9 20,379 552 −0.56 0.72 −0.33

Lithology

Sandy flysch,
marls shale 17,891 4 −10.30 0.01 −5.12

Conglomerates,
breccias 17,948 1372 1.48 2.04 0.71

Clays,
limestone 321 0 −9.27 0 −4.79

Sandstone,
gravels 507 0 −4.44 0 −5.25

Plan
curvature

−3–−0.1 7202 345 0.29 1.28 0.244
0–0.1 20,963 821 0.07 1.04 0.043

0.2–1.9 8502 210 −0.57 0.66 −0.418

HSG
A 29,965 1376 0.42 1.22 0.20
C 18 0 −8.91 0 −1.91
D 6684 0 −15.04 0 −7.83

Aspect

Flat surfaces 93 2 −0.31 0.57 −0.56
North 3306 97 −0.01 0.78 −0.25

Northeast 4440 27 −1.70 0.16 −1.82
East 5064 104 −0.43 0.55 −0.60

Southeast 6455 181 −0.09 0.75 −0.29
South 5225 334 0.95 1.70 0.53

Southwest 5434 286 0.69 1.40 0.34
West 3829 211 0.73 1.47 0.38

Northwest 2821 134 0.53 1.27 0.24

TPI

−7.8–−1.8 2063 27 −1.21 0.35 −1.05
−1.7–−0.5 8121 380 0.22 1.25 0.22
−0.4–0.5 16,532 744 0.29 1.20 0.18
0.6–1.9 8181 192 −0.68 0.63 −0.47
2–8.6 1770 33 −0.83 0.50 −0.70

TWI

−4.4–4.7 7477 277 −0.03 0.99 −0.01
4.8–8.4 9509 376 0.06 1.05 0.05
8.5–11.8 9180 307 −0.17 0.89 −0.12
11.9–15 9414 404 0.18 1.14 0.13

15.1–23.1 1083 12 −1.28 0.30 −1.22

Profile
curvature

−3–−0.1 7255 185 −0.65 0.68 −0.39
0–0.1 21,678 957 0.30 1.18 0.16

0.2–1.9 7734 234 −0.45 0.81 −0.22
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4.2. Flash-Flood Potential Index Computation Using Fuzzy Analytical Hierarchy Process Based
Ensembles

Following the methodological steps described in Section 3.1.4 the fuzzy analytical
hierarchy process algorithm was applied to determine the weights of the flash-flood
predictors. In the first step, the fuzzy analytical hierarchy process evaluation matrix was
created based on expert judgment (Table 2). Furthermore, using the values included in the
evaluation matrix, the synthesis values were calculated by using the formula:[

n

∑
k=1

n

∑
j=1

a′kj

]−1

= (88.48 130.16 182.17)−1 = (0.005 0.008 0.011) (18)

Table 2. Fuzzy analytical hierarchy process evaluation matrix.

1 2 3 4 5 6 7 8 9 10

Slope (1)

l1 1 1 2 1 1 2 3 3 2 1

m1 1 2 3 2 2 3 4 4 3 2

u1 1 3 4 3 3 4 5 5 4 3

Land use (2)

l2 0.33 1 1 1 1 1 2 1 1 1

m2 0.5 1 2 1 2 2 3 2 2 1

u2 1 1 3 1 3 3 4 3 3 1

Convergence
index (3)

l3 0.25 0.33 1 0.33 0.33 1 1 1 1 0.33

m3 0.33 0.5 1 0.5 0.5 1 2 2 1 0.5

u3 0.5 1 1 1 1 1 3 3 1 1

Lithology (4)

l4 0.33 1 1 1 1 1 2 2 1 1

m4 0.5 1 2 1 1 2 3 3 2 1

u4 1 1 3 1 1 3 4 4 3 1

Plan curvature
(5)

l5 0.33 1 1 1 1 1 2 2 1 1

m5 0.5 1 2 1 1 2 3 3 2 1

u5 1 1 3 1 1 3 4 4 3 1

HGS (6)

l6 0.25 0.33 1 0.33 0.33 1 1 1 1 0.33

m6 0.33 0.5 1 0.5 0.5 1 2 2 1 0.5

u6 0.5 1 1 1 1 1 3 3 1 1
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Table 2. Cont.

1 2 3 4 5 6 7 8 9 10

Aspect (7)

l7 0.2 0.25 0.33 0.25 0.25 0.33 1 1 1 0.33

m7 0.25 0.33 0.5 0.33 0.33 0.5 1 1 1 0.5

u7 0.33 0.5 1 0.5 0.5 1 1 1 1 1

TPI (8)

l8 0.2 0.25 0.33 0.25 0.25 0.33 1 1 1 0.33

m8 0.25 0.33 0.5 0.33 0.33 0.5 1 1 1 0.5

u8 0.33 0.5 1 0.5 0.5 1 1 1 1 1

TWI (9)

l9 0.25 0.33 1 0.33 0.33 1 1 1 1 0.33

m9 0.33 0.5 1 0.5 0.5 1 2 2 1 0.5

u9 0.5 1 1 1 1 1 3 3 1 1

Profile
curvature (10)

l10 0.33 1 1 1 1 1 2 1 1 1

m10 0.5 1 2 1 2 2 3 2 2 1

u10 1 1 3 1 3 3 4 3 3 1

The synthesis values calculated above were used in the following step to calculate the
fuzzy numbers for each flash-flood predictor. The fuzzy numbers were then compared
using the degree of possibility procedure, which is exemplified in Table 3. Utilizing
the results provided by the degree of possibility method, the weight vector values were
calculated using the following relations:

w’(ai) = {1 0.71 0.32 0.68 0.68 0.32 0 0 0.32 0.71}T (19)

w(ai) = {0.211 0.15 0.066 0.143 0.143 0.066 0 0 0.066 0.15}T (20)

In the next step, employing the defuzzification procedure, the Triangular Fuzzy
Numbers (TFNs) were transformed into the crisp weights that will be attributed to each
flash-flood predictor and multiplied with statistical index, frequency ratio, and weights of
evidence values to obtain the flash-flood potential index.

Flash-flood potential index values were mapped using the map algebra capability
from ArcGIS software. All three flash-flood potential indices were standardized between 0
and 1 and then reclassified into five classes using the natural break method. In the case
of FFPIFAHP-SI, very low values, situated from 0 to 0.25, were found in about 2.82% of the
study area (Figure 6a). The values, ranging from 0.26 to 0.62, were mainly associated with
the southern half and represent 28.9% of the entire river basin. The medium FFPIFAHP-SI
class corresponded to approximately 13.86% of the Izvorul Dorului catchment. The high
and very high potential were spread over a total of 54.43% of the entire catchment sur-
face. The analysis of FFPIFAHP-FR revealed that the very low potential spanned 18.48%
of the total study area and was present mainly in the southern half. The low flash-flood
potential accounted for approximately 16.29% of the catchment surface, while the medium
FFPIFAHP-WOE, with values from 0.32 to 0.48, covered 26.66% of the study zone. A zone
including 38.57% of the research area was characterized by a high and very high flash-flood
potential (Figure 6b). Following the application of the FAHP-WOE ensemble, only 0.62%
of the Izvorul Dorului catchment had a very low flash-flood potential (Figure 6c). The
low flash-flood potential, with values between 0.26 and 0.44, covered around 10.62% of
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the entire territory, while the medium values quantified approximately 30.81% of the river
basin. A percentage of 57.95% of the study area had high and very high FFPIFAHP-WOE
values ranging from 0.64 to 1.

Table 3. The ordinate of the highest intersection point, the degree possibility for Triangular Fuzzy Numbers (TFNs), and the
weights of the flash-flood predictors.

Slope = 1 Land Use = 2 CI = 3 Lithology = 4 Plan Curvature = 5

V(S1 ≥ S2) = 1 V(S2 ≥ S1) = 0.71 V(S3 ≥ S1) = 0.32 V(S4 ≥ S1) = 0.68 V(S5 ≥ S1) = 0.68
V(S1 ≥ S3) = 1 V(S2 ≥ S3) = 1 V(S3 ≥ S2) = 0.65 V(S4 ≥ S2) = 1 V(S5 ≥ S2) = 1
V(S1 ≥ S4) = 1 V(S2 ≥ S4) = 1 V(S3 ≥ S4) = 0.62 V(S4 ≥ S3) = 1 V(S5 ≥ S3) = 1
V(S1 ≥ S5) = 1 V(S2 ≥ S5) = 1 V(S3 ≥ S5) = 0.62 V(S4 ≥ S5) = 1 V(S5 ≥ S4) = 1
V(S1 ≥ S6) = 1 V(S2 ≥ S6) = 1 V(S3 ≥ S6) = 1 V(S4 ≥ S6) = 1 V(S5 ≥ S6) = 1
V(S1 ≥ S7) = 1 V(S2 ≥ S7) = 1 V(S3 ≥ S7) = 1 V(S4 ≥ S7) = 1 V(S5 ≥ S7) = 1
V(S1 ≥ S8) = 1 V(S2 ≥ S8) = 1 V(S3 ≥ S8) = 1 V(S4 ≥ S8) = 1 V(S5 ≥ S8) = 1
V(S1 ≥ S9) = 1 V(S2 ≥ S9) = 1 V(S3 ≥ S9) = 1 V(S4 ≥ S9) = 1 V(S5 ≥ S9) = 1

V(S1 ≥ S10) = 1 V(S2 ≥ S10) = 1 V(S3 ≥ S10) = 0.65 V(S4 ≥ S10) = 1 V(S5 ≥ S10) = 1
min{V(S1 ≥ Sk)} = 1 min{V(S2 ≥ Sk)} = 0.71 min{V(S3 ≥ Sk)} = 0.32 min{V(S4 ≥ Sk)} = 0.68 min{V(S5 ≥ Sk)} = 0.68

Weight = 0.211 Weight = 0.15 Weight = 0.066 Weight = 0.143 Weight = 0.143

HSG = 6 Aspect = 6 TPI = 7 TWI = 8 Profile Curvature = 10

V(S6 ≥ S1) = 0.32 V(S7 ≥ S1) = 0 V(S8 ≥ S1) = 0 V(S9 ≥ S1) = 0.32 V(S10 ≥ S1) = 0.71
V(S6 ≥ S2) = 0.65 V(S7 ≥ S2) = 0.23 V(S8 ≥ S2) = 0.23 V(S9 ≥ S2) = 0.65 V(S10 ≥ S2) = 1

V(S6 ≥ S3) = 1 V(S7 ≥ S3) = 0.59 V(S8 ≥ S3) = 0.59 V(S9 ≥ S3) = 1 V(S10 ≥ S3) = 1
V(S6 ≥ S4) = 0.62 V(S7 ≥ S4) = 0.19 V(S8 ≥ S4) = 0.19 V(S9 ≥ S4) = 0.62 V(S10 ≥ S4) = 1
V(S6 ≥ S5) = 0.62 V(S7 ≥ S5) = 0.19 V(S8 ≥ S5) = 0.19 V(S9 ≥ S5) = 0.62 V(S10 ≥ S5) = 1

V(S6 ≥ S7) = 1 V(S7 ≥ S6) = 0.59 V(S8 ≥ S6) = 0.59 V(S9 ≥ S6) = 1 V(S10 ≥ S6) = 1
V(S6 ≥ S8) = 1 V(S7 ≥ S8) = 1 V(S8 ≥ S7) = 1 V(S9 ≥ S7) = 1 V(S10 ≥ S7) = 1
V(S6 ≥ S9) = 1 V(S7 ≥ S9) = 0.59 V(S8 ≥ S9) = 0.59 V(S9 ≥ S8) = 1 V(S10 ≥ S8) = 1

V(S6 ≥ S10) = 0.63 V(S7 ≥ S10) = 0.23 V(S8 ≥ S10) = 0.23 V(S9 ≥ S10) = 0.63 V(S10 ≥ S9) = 1
min{V(S6 ≥ Sk)} = 0.32 min{V(S7 ≥ Sk)} = 0 min{V(S8 ≥ Sk)} = 0 min{V(S9 ≥ Sk)} = 0.32 min{V(S10 ≥ Sk)} = 0.71

Weight = 0.066 Weight = 0 Weight = 0 Weight = 0.066 Weight = 0.15

4.3. Flash-Flood Potential Index Results Validation

Results validation is a mandatory step to establish the best ensemble model whose
results will be used to identify the areas prone to flood generated by flash-floods. In this re-
gard, the success rate and prediction rate were used. The success rate revealed that the high-
est performance was obtained by the results provided by FAHP-WOE
(AUC = 0.837), followed by FAHP-SI (AUC = 0.833) and FAHP-FR (AUC = 0.723) (Figure 7a).
The same hierarchy was also revealed by the construction of the prediction rate. Thus, the
FAHP-WOE ranked first (AUC = 0.79), followed by FAHP-SI (AUC = 0.787) and FAHP-FR
(AUC = 0.717) (Figure 7b). Therefore, following the results validation procedure, the
FFPIFAHP-WOE was selected to be used in the next step of the analysis.

4.4. Flood Potential Index Computation

According to the description provided in Section 3.3.4, the flow accumulation method
was applied to FFPIFAHP-WOE to evaluate the torrential degree of the river valleys across
the study area. The results showed that a percentage of 21.59% of the total river valleys
identified were characterized by a low and very low torrential degree and are, therefore,
considered to be less favorable for flash-flood propagation (Figure 8a). For a 200 m
buffer zone along with the other 78.41% of the river valleys, the flood potential index
(FPI) was calculated. In this regard, the stand-alone analytical hierarchy process (AHP)
multicriteria decision-making was used. It should be mentioned that through AHP, in
the first stage, the weights of flash-flood predictors and classes/categories of flash-flood
predictors were calculated. In terms of flash-flood predictors, the highest weight was
detected for slope (0.224), followed by land use (0.137), elevation (0.137), distance from
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river (0.137), lithology (0.085), plan curvature (0.081), hydrological soil groups (0.064),
convergence index (0.055), TPI (0.046), and TWI (0.031) (Table 4). The analysis of the
weights attributed to the classes/categories of flash-flood predictors revealed that the
highest value was obtained for hydrological soil group D (0.66), followed by the plan
curvature class between −3 and −0.1 (0.539), the TPI class between −7.8 and −1.8 (0.439),
the TWI class between −4.4 and 4.7 (0.433), the conglomerates and breccias lithological
categories (0.423), the convergence index class between −86 and −3 (0.42), and the slope
angle class lower than 3◦ (0.379).

Water 2021, 13, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 6. Flash-flood potential index (FFPI) values. (a) Fuzzy Analytical Hierarchy Process—Statistical Index (FAHP-SI); 
(b) Fuzzy Analytical Hierarchy Process—Frequency Ratio (FAHP-FR); (c) Fuzzy Analytical Hierarchy Process—Weights 
of Evidence (FAHP-WOE). 

4.3. Flash-Flood Potential Index Results Validation 
Results validation is a mandatory step to establish the best ensemble model whose 

results will be used to identify the areas prone to flood generated by flash-floods. In this 
regard, the success rate and prediction rate were used. The success rate revealed that the 
highest performance was obtained by the results provided by FAHP-WOE (AUC = 0.837), 
followed by FAHP-SI (AUC = 0.833) and FAHP-FR (AUC = 0.723) (Figure 7a). The same 
hierarchy was also revealed by the construction of the prediction rate. Thus, the FAHP-
WOE ranked first (AUC = 0.79), followed by FAHP-SI (AUC = 0.787) and FAHP-FR (AUC 

Figure 6. Flash-flood potential index (FFPI) values. (a) Fuzzy Analytical Hierarchy Process—Statistical Index (FAHP-SI);
(b) Fuzzy Analytical Hierarchy Process—Frequency Ratio (FAHP-FR); (c) Fuzzy Analytical Hierarchy Process—Weights of
Evidence (FAHP-WOE).



Water 2021, 13, 758 18 of 24

Water 2021, 13, x FOR PEER REVIEW 18 of 25 
 

 

= 0.717) (Figure 7b). Therefore, following the results validation procedure, the FFPIFAHP-

WOE was selected to be used in the next step of the analysis. 

 
Figure 7. Receiver operating characteristic (ROC) Curves. (a) Success rate; (b) Prediction rate. 

4.4. Flood Potential Index Computation  
According to the description provided in Section 3.3.4, the flow accumulation 

method was applied to FFPIFAHP-WOE to evaluate the torrential degree of the river valleys 
across the study area. The results showed that a percentage of 21.59% of the total river 
valleys identified were characterized by a low and very low torrential degree and are, 
therefore, considered to be less favorable for flash-flood propagation (Figure 8a). For a 200 
m buffer zone along with the other 78.41% of the river valleys, the flood potential index 
(FPI) was calculated. In this regard, the stand-alone analytical hierarchy process (AHP) 
multicriteria decision-making was used. It should be mentioned that through AHP, in the 
first stage, the weights of flash-flood predictors and classes/categories of flash-flood pre-
dictors were calculated. In terms of flash-flood predictors, the highest weight was detected 
for slope (0.224), followed by land use (0.137), elevation (0.137), distance from river (0.137), 
lithology (0.085), plan curvature (0.081), hydrological soil groups (0.064), convergence in-
dex (0.055), TPI (0.046), and TWI (0.031) (Table 4). The analysis of the weights attributed 
to the classes/categories of flash-flood predictors revealed that the highest value was ob-
tained for hydrological soil group D (0.66), followed by the plan curvature class between 

Figure 7. Receiver operating characteristic (ROC) Curves. (a) Success rate; (b) Prediction rate.Water 2021, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 8. (a) River valleys torrential degree of the river; (b) Flood potential index classes. 

5. Discussion 
In the last ten years, the study of the susceptibility to hydrological risk phenomena 

has developed significantly as a result of the combined application of geospatial analysis 
techniques with statistical models or algorithms from artificial intelligence [49]. It is well 
known that small river basins located in mountainous areas favor the occurrence of flash-
floods and their propagation toward the areas located in the lower zones of the basins. 
The mountainous area of Romania is not an exception and is often affected by severe flash-
flood events that generate property damage and loss of life. In this context, the present 
study aimed to identify the areas exposed to floods generated by flash-floods within the 
Izvorul Dorului River basin located in the Romanian Carpathians, which could produce 
pollution such as the transport of polycyclic aromatic hydrocarbons resulting from differ-
ent sources [57]. 

The present study included a first part in which the potential for rapid water runoff 
on the slopes was determined, the second part referred to the identification of valleys with 
high torrential potential, followed by the evaluation of flood susceptibility existing along 
these valleys. The potential for rapid surface runoff, expressed through the FFPI, was cal-
culated by applying three ensemble models resulting from the combination of three sta-
tistical bivariate methods and the fuzzy AHP model.  

The decision to apply three ensemble models was taken after a careful review of the 
literature according to which hybrid models have higher performance than stand-alone 
ones [15]. The models applied for the calculation of the FFPI showed that the hydro-
graphic basin of the Izvorul Dorului River has a high and very high potential for a rapid 
surface runoff with a percentage between 38% and 58% of its surface. It was also high-
lighted that in particular, the upper and middle basin is characterized by these values of 
FFPI. Since the genesis of rapid water runoff on the slopes is finally reflected in the flooded 
areas along the rivers, it was decided to continue the study with the identification of val-
leys with a high potential for flash-flood propagation, along with the identification of the 
floodplains. In this regard, the three FFPI models were evaluated, and the result provided 
by FAHP-WOE, characterized by an AUC-ROC curve of 0.837 in the case of training data 
and 0.79 in the case of test data, was identified as the most accurate. Using the methodol-
ogy proposed by Costache et al. [25], the valleys in the study area were identified and 

Figure 8. (a) River valleys torrential degree of the river; (b) Flood potential index classes.



Water 2021, 13, 758 19 of 24

Table 4. Pair-wise comparison matrix and normalized weights for each factor and class/category.

Factor and Classes/Categories Pair-Wise Comparison Matrix AHP Weights
Flood Predictors [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

[1] Slope 1 0.224
[2] TPI 1/4 1 0.046
[3] TWI 1/5 1/2 1 0.031

[4] Land use 1/2 3 4 1 0.137
[5] Lithology 1/3 2 3 1/2 1 0.085
[6] Elevation 1/2 3 4 1 2 1 0.137

[7] Distance from river 1/2 3 4 1 2 1 1 0.137
[8] Plan curvature 1/3 2 2 1/2 1 1/2 1/2 1 0.081

[9] CI 1/4 1 2 1/3 1/2 1/3 1/3 1/2 1 0.055
[10] HSG 1/3 2 3 1/2 1/2 1/2 1/2 1/2 1/2 1 0.064

Classes in each factor

Slope angle
[1] 0–3◦ 1 0.379

[2] 3.1–7◦ 1/2 1 0.249
[3] 7.1–15◦ 1/3 1/2 1 0.160
[4] 15.1–25◦ 1/4 1/3 1/2 1 0.102
[5] 25.1–45◦ 1/5 1/4 1/3 1/2 1 0.065
[6] 45.1–54◦ 1/6 1/5 1/4 1/3 1/2 1 0.043

TPI
[1] −7.8–−1.8 1 0.439
[2] −1.7–−0.5 1/2 1 0.255
[3] −0.4–0.5 1/3 1/2 1 0.156
[4] 0.6–1.9 1/5 1/3 1/2 1 0.092
[5] 2–8.6 1/6 1/4 1/3 1/2 1 0.058

TWI
[1] −4.4–4.7 1 0.433
[2] 4.8–8.4 1/2 1 0.251

[3] 8.5–11.8 1/3 1/2 1 0.164
[4] 11.9–15 1/5 1/3 1/2 1 0.100

[5] 15.1–23.1 1/6 1/4 1/3 1/3 1 0.052

Land use
[1] Built-up areas 1 0.328

[2] Grassland 1/2 1 0.189
[3] Agriculture areas 1/3 1/2 1 0.120

[4] Forest 1/8 1/6 1/5 1 0.034
[5] Bare rocks 1 2 3 8 1 0.328

Lithology
[1] Sandy flysch, marls shale 1 0.227
[2] Conglomerates, breccias 2 1 0.423

[3] Clays, limestone 1/2 1/3 1 0.123
[4] Sandstone, gravels 1 1/2 2 1 0.227

Plan curvature
[1] −3–−0.1 1 0.539

[2] 0–0.1 1/2 1 0.297
[3] 0.2–1.9 1/3 1/2 1 0.164

Elevation
[1] 763.1–1000 m 1 0.350

[2] 1000.1–1200 m 1/2 1 0.237
[3] 1200.1–1400 m 1/3 1/2 1 0.159
[4] 1400.1–1600 m 1/4 1/3 1/2 1 0.107
[5] 1600.1–1800 m 1/5 1/4 1/3 1/2 1 0.071
[6] 1800.1–2000 m 1/6 1/5 1/4 1/3 1/2 1 0.049
[7] 2000.1–2202 m 1/8 1/7 1/6 1/5 1/4 1/3 1 0.026

Distance from river
[1] 0–50 m 1 0.327

[2] 50.1–100 m 1/2 1 0.227
[3] 100.1–150 m 1/3 1/2 1 0.157
[4] 150.1–200 m 1/4 1/3 1/2 1 0.108
[5] 200.1–400 m 1/5 1/4 1/3 1/2 1 0.073
[6] 400.1–700 m 1/6 1/5 1/4 1/3 1/2 1 0.050
[7] 700.1–1000 m 1/7 1/6 1/5 1/4 1/3 1/2 1 0.034

[8] >1000 m 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.024

Convergence index
[1] −86–−3 1 0.420
[2] −2.9–−2 1/2 1 0.299
[3] −1.9–−1 1/3 1/3 1 0.141
[4] −0.9–0 1/4 1/4 1/2 1 0.088
[5] 0.1–84.9 1/7 1/5 1/3 1/2 1 0.052

HSG
[1] A 1 0.117
[2] C 3 1 0.224
[3] D 4 5 1 0.660
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The consistency of judgments was evaluated using the consistency ratio (CR) values.
The results from Table 5 show that the CR values were less than 0.1, indicating that all the
comparisons within the matrices were consistent. Table 5 also contains the values of some
parameters involved in the CR computation.

Table 5. Properties of comparison matrices in the previous table.

Factors N λmax CI RI CR

All 10 10.32 0.036 1.49 0.024
Slope 6 6.123 0.025 1.24 0.020
TPI 5 5.046 0.012 1.12 0.010
TWI 5 5.121 0.030 1.12 0.030

Land use 5 5.063 0.016 1.12 0.010
Lithology 4 4.010 0.003 0.90 0.004
Elevation 7 7.248 0.041 1.32 0.030

Distance from river 8 8.292 0.042 1.41 0.030
Plan curvature 3 3.009 0.005 0.58 0.010

CI 5 5.087 0.022 1.12 0.020
HSG 3 3.203 0.102 0.58 0.018

To derive the flood potential index across the study area, the AHP weights, together
with the raster dataset associated with the flood predictors, were used in map algebra of
ArcGIS software. The normalized values of FPI were classified into five classes using the
natural break method. The very low class, between 0 and 0.12, covered about 18.9% of
the total area and was mainly spread along the valleys located in the southern part of the
catchment. Another 23% of the delimited zone was characterized by a low flood potential.
The medium FPI values (between 0.32 and 0.53) were associated with about 33.3% of the
delimited perimeter. The high and very high potential was spread around 24.8% and was
associated with FPI values higher than 0.53 (Figure 8b).

5. Discussion

In the last ten years, the study of the susceptibility to hydrological risk phenomena
has developed significantly as a result of the combined application of geospatial analysis
techniques with statistical models or algorithms from artificial intelligence [49]. It is well
known that small river basins located in mountainous areas favor the occurrence of flash-
floods and their propagation toward the areas located in the lower zones of the basins. The
mountainous area of Romania is not an exception and is often affected by severe flash-
flood events that generate property damage and loss of life. In this context, the present
study aimed to identify the areas exposed to floods generated by flash-floods within the
Izvorul Dorului River basin located in the Romanian Carpathians, which could produce
pollution such as the transport of polycyclic aromatic hydrocarbons resulting from different
sources [57].

The present study included a first part in which the potential for rapid water runoff
on the slopes was determined, the second part referred to the identification of valleys with
high torrential potential, followed by the evaluation of flood susceptibility existing along
these valleys. The potential for rapid surface runoff, expressed through the FFPI, was
calculated by applying three ensemble models resulting from the combination of three
statistical bivariate methods and the fuzzy AHP model.

The decision to apply three ensemble models was taken after a careful review of the
literature according to which hybrid models have higher performance than stand-alone
ones [15]. The models applied for the calculation of the FFPI showed that the hydrographic
basin of the Izvorul Dorului River has a high and very high potential for a rapid surface
runoff with a percentage between 38% and 58% of its surface. It was also highlighted that
in particular, the upper and middle basin is characterized by these values of FFPI. Since the
genesis of rapid water runoff on the slopes is finally reflected in the flooded areas along the
rivers, it was decided to continue the study with the identification of valleys with a high
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potential for flash-flood propagation, along with the identification of the floodplains. In
this regard, the three FFPI models were evaluated, and the result provided by FAHP-WOE,
characterized by an AUC-ROC curve of 0.837 in the case of training data and 0.79 in the
case of test data, was identified as the most accurate. Using the methodology proposed by
Costache et al. [25], the valleys in the study area were identified and classified according to
the degree of torrentiality. Valleys with a small and very small propagation potential were
eliminated from the analysis, with only those characterized by a medium, high, and very
high potential being used. The AHP model was further used to calculate the flood potential
index along the torrential valleys and at the same time to determine the potential for
flooding generated by the flash-flood propagation. It is worth mentioning that following
the flash-flood genesis (which is facilitated by the torrential areas highlighted in Figure 1)
and their propagation, the areas located along the torrential valleys are the most affected
regions because the water flow from the slopes will be concentrated on the main river
network. Therefore, it is very important to indicate the surfaces that are finally affected by
these complex phenomena. This resulted in 24% of the delimited surface having a high
and very high potential for flooding.

In a previous study, Costache et al. [58] estimated only the flooding susceptibility
along the large river valleys within the Trotus, River basin from Romania, unlike the
present study which analyzed the following three elements in close spatial and causal
connection: (i) flash-flood potential at the slopes level; (ii) river valleys torrential degree;
and (iii) flood potential along the river basins within this small catchment. In addition to
this difference regarding the methodological approaches, the present study also differed
from that conducted by Costache et al. [58] by the methods proposed for determining
the susceptibility to the analyzed hydrological hazards. Thus, in the present study, three
ensemble models of the fuzzy analytical hierarchy process with bivariate statistical methods
for the estimation of flash-flood potential at the slopes level were applied, while in the
previous study, three other ensemble models of the adaptive neuro-fuzzy inference system
(ANIFS) were applied to determine the flooding potential at the large river valley level.
Moreover, the flow accumulation procedure was applied in the present research in order
to identify the torrential valleys. Another example where the fuzzy multicriteria decision
making analysis was proposed to estimate the flood susceptibility was the study carried
out by Azareh et al. [59]. In that research, which focused on the Haraz watershed in Iran,
the authors used a combination between DEMATEL, analytical network process, and fuzzy
logic in order to estimate the flood susceptibility. Like in the present case, the performance
of the applied model was very good, which was revealed by an AUC-ROC curve between
0.8 and 0.9. Nevertheless, the main difference between the present study and the research
work developed by Azareh et al. [59] is given by the fact that the mentioned study only
included the evaluation of the terrain surface potential along the river valley, to produce
the flooding phenomenon and did not also include an evaluation of the slopes for surface
runoff genesis.

6. Conclusions

The assessment of flash-floods and flood susceptibility is an actual scientific topic due
to the high potential of the studies to propose solutions for reducing the economic damage
and diminishing the number of victims. The new approach developed in the present
research is useful because it provides a complete overview regarding the susceptibility of
the entire phenomenon composed of rapid surface runoff on the slopes, the propagation of
flash-floods generated by the surface runoff, and the potential for flooding along torrential
valleys. The water quality in the floodplains will be lower because the flash-flood waves
will be accompanied by the massive transport of materials from the slopes and inside the
forest vegetation. Furthermore, the decision-makers will have a clearer image regarding
the places they must implement measures to reduce the water runoff on the slopes, to
arrange the torrential valleys, and to protect the areas exposed to floods.
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5. Bakuła, K.; StĘpnik, M.; Kurczyński, Z. Influence of Elevation Data Source on 2D Hydraulic Modelling. Acta Geophys. 2016, 64,

1176–1192. [CrossRef]
6. Bonakdari, H.; Moradi, F.; Ebtehaj, I.; Gharabaghi, B.; Sattar, A.A.; Azimi, A.H.; Radecki-Pawlik, A. A Non-Tuned Machine

Learning Technique for Abutment Scour Depth in Clear Water Condition. Water 2020, 12, 301. [CrossRef]
7. Nhu, V.-H.; Thi Ngo, P.-T.; Pham, T.D.; Dou, J.; Song, X.; Hoang, N.-D.; Tran, D.A.; Cao, D.P.; Aydilek, İ.B.; Amiri, M. A New

Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible
Mapping. Remote Sens. 2020, 12, 2688. [CrossRef]

8. Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L. A Comparative
Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J.
Hydrol. 2019, 573, 311–323. [CrossRef]

9. Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-Based Flood Susceptibility Assessment and Its Mapping
in Iran: A Comparison between Frequency Ratio and Weights-of-Evidence Bivariate Statistical Models with Multi-Criteria
Decision-Making Technique. Nat. Hazards 2016, 83, 947–987. [CrossRef]

10. Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; Niu, C. Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and
Statistical Index Methods in Coalmine Subsidence Areas. Sustainability 2016, 8, 948. [CrossRef]

11. Althuwaynee, O.F.; Pradhan, B.; Park, H.-J.; Lee, J.H. A Novel Ensemble Bivariate Statistical Evidential Belief Function with
Knowledge-Based Analytical Hierarchy Process and Multivariate Statistical Logistic Regression for Landslide Susceptibility
Mapping. Catena 2014, 114, 21–36. [CrossRef]

12. Chen, Z.; Liang, S.; Ke, Y.; Yang, Z.; Zhao, H. Landslide Susceptibility Assessment Using Evidential Belief Function, Certainty
Factor and Frequency Ratio Model at Baxie River Basin, NW China. Geocarto Int. 2019, 34, 348–367. [CrossRef]

13. Chen, W.; Li, W.; Hou, E.; Bai, H.; Chai, H.; Wang, D.; Cui, X.; Wang, Q. Application of Frequency Ratio, Statistical Index, and
Index of Entropy Models and Their Comparison in Landslide Susceptibility Mapping for the Baozhong Region of Baoji, China.
Arab. J. Geosci. 2015, 8, 1829–1841. [CrossRef]

14. Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide
Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison
at Mugling–Narayanghat Road Section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [CrossRef]

15. Yariyan, P.; Janizadeh, S.; Phong, T.V.; Nguyen, H.D.; Costache, R.; Le, H.V.; Pham, B.T.; Pradhan, B.; Tiefenbacher, J.P.
Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood-Risk Mapping. Water Resour.
Manag. 2020. [CrossRef]

16. Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine
Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. Catena 2017, 149, 52–63.
[CrossRef]

17. Debella-Gilo, M.; Etzelmüller, B. Spatial Prediction of Soil Classes Using Digital Terrain Analysis and Multinomial Logistic
Regression Modeling Integrated in GIS: Examples from Vestfold County, Norway. Catena 2009, 77, 8–18. [CrossRef]

18. Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the Effects of Training Data Selection on the
Landslide Susceptibility Mapping: A Comparison between Support Vector Machine (SVM), Logistic Regression (LR) and Artificial
Neural Networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2018.06.197
http://doi.org/10.3390/w11030504
http://doi.org/10.3390/w11020279
http://doi.org/10.1515/acgeo-2016-0030
http://doi.org/10.3390/w12010301
http://doi.org/10.3390/rs12172688
http://doi.org/10.1016/j.jhydrol.2019.03.073
http://doi.org/10.1007/s11069-016-2357-2
http://doi.org/10.3390/su8090948
http://doi.org/10.1016/j.catena.2013.10.011
http://doi.org/10.1080/10106049.2017.1404143
http://doi.org/10.1007/s12517-014-1554-0
http://doi.org/10.1007/s11069-012-0347-6
http://doi.org/10.1007/s11269-020-02603-7
http://doi.org/10.1016/j.catena.2016.09.007
http://doi.org/10.1016/j.catena.2008.12.001
http://doi.org/10.1080/19475705.2017.1407368


Water 2021, 13, 758 23 of 24

19. Chen, W.; Shahabi, H.; Zhang, S.; Khosravi, K.; Shirzadi, A.; Chapi, K.; Pham, B.T.; Zhang, T.; Zhang, L.; Chai, H. Landslide
Susceptibility Modeling Based on Gis and Novel Bagging-Based Kernel Logistic Regression. Appl. Sci. 2018, 8, 2540. [CrossRef]

20. Mansuy, N.; Thiffault, E.; Paré, D.; Bernier, P.; Guindon, L.; Villemaire, P.; Poirier, V.; Beaudoin, A. Digital Mapping of Soil
Properties in Canadian Managed Forests at 250 m of Resolution Using the K-Nearest Neighbor Method. Geoderma 2014, 235,
59–73. [CrossRef]

21. Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-Flood Hazard
Assessment Using Ensembles and Bayesian-Based Machine Learning Models: Application of the Simulated Annealing Feature
Selection Method. Sci. Total Environ. 2020, 711, 135161. [CrossRef]

22. Zhang, C.-X.; Wang, G.-W.; Zhang, J.-S. An Empirical Bias–Variance Analysis of DECORATE Ensemble Method at Different
Training Sample Sizes. J. Appl. Stat. 2012, 39, 829–850. [CrossRef]

23. Ahmadlou, M.; Karimi, M.; Alizadeh, S.; Shirzadi, A.; Parvinnejhad, D.; Shahabi, H.; Panahi, M. Flood Susceptibility Assessment
Using Integration of Adaptive Network-Based Fuzzy Inference System (ANFIS) and Biogeography-Based Optimization (BBO)
and BAT Algorithms (BA). Geocarto Int. 2019, 34, 1252–1272. [CrossRef]

24. Antonetti, M.; Horat, C.; Sideris, I.V.; Zappa, M. Ensemble Flood Forecasting Considering Dominant Runoff Processes–Part 1:
Set-up and Application to Nested Basins (Emme, Switzerland). Nat. Hazards Earth Syst. Sci. 2019, 19, 19–40. [CrossRef]

25. Costache, R.; Hong, H.; Wang, Y. Identification of Torrential Valleys Using GIS and a Novel Hybrid Integration of Artificial
Intelligence, Machine Learning and Bivariate Statistics. Catena 2019, 183, 104179. [CrossRef]

26. van Westen, C. Statistical Landslide Hazards Analysis, ILWIS 2.1 for Windows Application Guide; ITC Publication: Enschede, The
Netherlands, 1997.

27. Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash Flood Susceptibility Analysis and Its Mapping Using Different
Bivariate Models in Iran: A Comparison between Shannon’s Entropy, Statistical Index, and Weighting Factor Models. Environ.
Monit. Assess. 2016, 188, 656. [CrossRef] [PubMed]

28. Rautela, P.; Lakhera, R.C. Landslide Risk Analysis between Giri and Tons Rivers in Himachal Himalaya (India). Int. J. Appl. Earth
Obs. Geoinf. 2000, 2, 153–160. [CrossRef]

29. Ali, S.A.; Parvin, F.; Pham, Q.B.; Vojtek, M.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Nguyen, H.Q.; Ahmad, A.; Ghorbani, M.A.
GIS-Based Comparative Assessment of Flood Susceptibility Mapping Using Hybrid Multi-Criteria Decision-Making Approach,
Naïve Bayes Tree, Bivariate Statistics and Logistic Regression: A Case of Topl’a Basin, Slovakia. Ecol. Indic. 2020, 117, 106620.
[CrossRef]

30. Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C. GIS-Based Groundwater Potential
Analysis Using Novel Ensemble Weights-of-Evidence with Logistic Regression and Functional Tree Models. Sci. Total Environ.
2018, 634, 853–867. [CrossRef]

31. Lee, S.; Kim, Y.-S.; Oh, H.-J. Application of a Weights-of-Evidence Method and GIS to Regional Groundwater Productivity
Potential Mapping. J. Environ. Manag. 2012, 96, 91–105. [CrossRef]

32. Roodposhti, M.S.; Rahimi, S.; Beglou, M.J. PROMETHEE II and Fuzzy AHP: An Enhanced GIS-Based Landslide Susceptibility
Mapping. Nat. Hazards 2014, 73, 77–95. [CrossRef]

33. Eskandari, S. A New Approach for Forest Fire Risk Modeling Using Fuzzy AHP and GIS in Hyrcanian Forests of Iran. Arab. J.
Geosci. 2017, 10, 190. [CrossRef]

34. Hategekimana, Y.; Yu, L.; Nie, Y.; Zhu, J.; Liu, F.; Guo, F. Integration of Multi-Parametric Fuzzy Analytic Hierarchy Process and
GIS along the UNESCO World Heritage: A Flood Hazard Index, Mombasa County, Kenya. Nat. Hazards 2018, 92, 1137–1153.
[CrossRef]

35. Kahraman, C.; Cebeci, U.; Ulukan, Z. Multi-Criteria Supplier Selection Using Fuzzy AHP. Logist. Inf. Manag. 2003, 16, 382–394.
[CrossRef]

36. Costache, R.; Popa, M.C.; Bui, D.T.; Diaconu, D.C.; Ciubotaru, N.; Minea, G.; Pham, Q.B. Spatial Predicting of Flood Potential
Areas Using Novel Hybridizations of Fuzzy Decision-Making, Bivariate Statistics, and Machine Learning. J. Hydrol. 2020,
585, 124808. [CrossRef]

37. Feizizadeh, B.; Shadman Roodposhti, M.; Jankowski, P.; Blaschke, T. A GIS-Based Extended Fuzzy Multi-Criteria Evaluation for
Landslide Susceptibility Mapping. Comput. Geosci. 2014, 73, 208–221. [CrossRef] [PubMed]

38. Buckley, J.J. Fuzzy Hierarchical Analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [CrossRef]
39. Sun, C.-C. A Performance Evaluation Model by Integrating Fuzzy AHP and Fuzzy TOPSIS Methods. Expert Syst. Appl. 2010, 37,

7745–7754. [CrossRef]
40. Wang, T.-C.; Chen, Y.-H. Applying Fuzzy Linguistic Preference Relations to the Improvement of Consistency of Fuzzy AHP. Inf.

Sci. 2008, 178, 3755–3765. [CrossRef]
41. Zaharia, L.; Costache, R.; Prăvălie, R.; Ioana-Toroimac, G. Mapping Flood and Flooding Potential Indices: A Methodological

Approach to Identifying Areas Susceptible to Flood and Flooding Risk. Case Study: The Prahova Catchment (Romania). Front.
Earth Sci. 2017, 11, 229–247. [CrossRef]

42. Gioia, A.; Totaro, V.; Bonelli, R.; Esposito, A.A.; Balacco, G.; Iacobellis, V. Flood Susceptibility Evaluation on Ephemeral Streams of
Southern Italy: A Case Study of Lama Balice; Springer: Berlin/Heidelberg, Germany, 2018; pp. 334–348.

43. Costache, R. Flash-Flood Potential Index Mapping Using Weights of Evidence, Decision Trees Models and Their Novel Hybrid
Integration. Stoch. Environ. Res. Risk Assess. 2019, 33, 1375–1402. [CrossRef]

http://doi.org/10.3390/app8122540
http://doi.org/10.1016/j.geoderma.2014.06.032
http://doi.org/10.1016/j.scitotenv.2019.135161
http://doi.org/10.1080/02664763.2011.620949
http://doi.org/10.1080/10106049.2018.1474276
http://doi.org/10.5194/nhess-19-19-2019
http://doi.org/10.1016/j.catena.2019.104179
http://doi.org/10.1007/s10661-016-5665-9
http://www.ncbi.nlm.nih.gov/pubmed/27826821
http://doi.org/10.1016/S0303-2434(00)85009-6
http://doi.org/10.1016/j.ecolind.2020.106620
http://doi.org/10.1016/j.scitotenv.2018.04.055
http://doi.org/10.1016/j.jenvman.2011.09.016
http://doi.org/10.1007/s11069-012-0523-8
http://doi.org/10.1007/s12517-017-2976-2
http://doi.org/10.1007/s11069-018-3244-9
http://doi.org/10.1108/09576050310503367
http://doi.org/10.1016/j.jhydrol.2020.124808
http://doi.org/10.1016/j.cageo.2014.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26089577
http://doi.org/10.1016/0165-0114(85)90090-9
http://doi.org/10.1016/j.eswa.2010.04.066
http://doi.org/10.1016/j.ins.2008.05.028
http://doi.org/10.1007/s11707-017-0636-1
http://doi.org/10.1007/s00477-019-01689-9


Water 2021, 13, 758 24 of 24

44. Hapciuc, O.-E.; Romanescu, G.; Minea, I.; Iosub, M.; Enea, A.; Sandu, I. Flood Susceptibility Analysis of the Cultural Heritage in
the Sucevita Catchment (Romania). Int. J. Conserv. Sci. 2016, 7, 501–510.

45. Zhao, G.; Pang, B.; Xu, Z.; Peng, D.; Xu, L. Assessment of Urban Flood Susceptibility Using Semi-Supervised Machine Learning
Model. Sci. Total Environ. 2019, 659, 940–949. [CrossRef]

46. Costache, R.; Bui, D.T. Identification of Areas Prone to Flash-Flood Phenomena Using Multiple-Criteria Decision-Making,
Bivariate Statistics, Machine Learning and Their Ensembles. Sci. Total Environ. 2020, 712, 136492. [CrossRef]

47. Gessesse, B.; Bewket, W.; Bräuning, A. Model-based Characterization and Monitoring of Runoff and Soil Erosion in Response to
Land Use/Land Cover Changes in the Modjo Watershed, Ethiopia. Land Degrad. Dev. 2015, 26, 711–724. [CrossRef]

48. Bărbulescu, A.; Maftei, C.; Dumitriu, C.S. The Modelling of the Climateric Process That Participates at the Sizing of an Irrigation
System. Bull. Appl. Comput. Math. 2002, 2048, 11–20.

49. Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A Novel Hybrid Artificial Intelligence
Approach for Flood Susceptibility Assessment. Environ. Model. Softw. 2017, 95, 229–245. [CrossRef]

50. Skentos, A. Topographic Position Index Based Landform Analysis of Messaria (Ikaria Island, Greece). Acta Geobalcanica 2018, 4,
7–15. [CrossRef]

51. Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A Comparison of Statistical Methods and Multi-Criteria
Decision Making to Map Flood Hazard Susceptibility in Northern Iran. Sci. Total Environ. 2019, 660, 443–458. [CrossRef]

52. Brewster, J. Development of the Flash Flood Potential Index (FFPI) for Central NY & Northeast PA; WFO: Binghamton, NY, USA, 2010;
pp. 2–4.

53. Campbell, G.; Ratnaparkhi, M.V. An Application of Lomax Distributions in Receiver Operating Characteristic (ROC) Curve
Analysis. Commun. Stat. Theory Methods 1993, 22, 1681–1687. [CrossRef]

54. Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.-X.; Chen, W. Application of Fuzzy Weight of Evidence and Data Mining
Techniques in Construction of Flood Susceptibility Map of Poyang County, China. Sci. Total Environ. 2018, 625, 575–588.
[CrossRef]

55. Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic Classifiers for Flood-Prone Areas Delineation for Data-Scarce Environments. Adv.
Water Resour. 2017, 102, 13–28. [CrossRef]

56. Popa, M.C.; Peptenatu, D.; Drăghici, C.C.; Diaconu, D.C. Flood Hazard Mapping Using the Flood and Flash-Flood Potential
Index in the Buzău River Catchment, Romania. Water 2019, 11, 2116. [CrossRef]

57. Krein, A.; Schorer, M. Road Runoff Pollution by Polycyclic Aromatic Hydrocarbons and Its Contribution to River Sediments.
Water Res. 2000, 34, 4110–4115. [CrossRef]

58. Costache, R.; T, încu, R.; Elkhrachy, I.; Pham, Q.B.; Popa, M.C.; Diaconu, D.C.; Avand, M.; Costache, I.; Arabameri, A.; Bui, D.T.
New Neural Fuzzy-Based Machine Learning Ensemble for Enhancing the Prediction Accuracy of Flood Susceptibility Mapping.
Hydrol. Sci. J. 2020, 65, 2816–2837. [CrossRef]

59. Azareh, A.; Rafiei Sardooi, E.; Choubin, B.; Barkhori, S.; Shahdadi, A.; Adamowski, J.; Shamshirband, S. Incorporating Multi-
Criteria Decision-Making and Fuzzy-Value Functions for Flood Susceptibility Assessment. Geocarto Int. 2019, 1–21. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2018.12.217
http://doi.org/10.1016/j.scitotenv.2019.136492
http://doi.org/10.1002/ldr.2276
http://doi.org/10.1016/j.envsoft.2017.06.012
http://doi.org/10.18509/AGB.2018.01
http://doi.org/10.1016/j.scitotenv.2019.01.021
http://doi.org/10.1080/03610929308831110
http://doi.org/10.1016/j.scitotenv.2017.12.256
http://doi.org/10.1016/j.advwatres.2017.01.007
http://doi.org/10.3390/w11102116
http://doi.org/10.1016/S0043-1354(00)00156-1
http://doi.org/10.1080/02626667.2020.1842412
http://doi.org/10.1080/10106049.2019.1695958

	Introduction 
	Study Area 
	Methods 
	Background of the Models 
	Statistical Index 
	Frequency Ratio 
	Weights of Evidence 
	Fuzzy Analytical Hierarchy Process 

	Data Used 
	Torrential Areas Inventory 
	Flash-Flood and Flood Predictors 

	Methodological Steps Implemented in the Present Study 
	Step 1: Flash-Flood Database Preparation 
	Step 2: Computation of Flash-Flood Potential Index (FFPI) 
	Step 3: Evaluation of Results Accuracy Using Receiver Operating Characteristic (ROC) Curve 
	Step 4: Computation the Flood Potential Index (FPI) Based on the Most Performant FFPI Result 


	Results 
	Bivariate Statistics Coefficients 
	Flash-Flood Potential Index Computation Using Fuzzy Analytical Hierarchy Process Based Ensembles 
	Flash-Flood Potential Index Results Validation 
	Flood Potential Index Computation 

	Discussion 
	Conclusions 
	References

