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Abstract: This paper presents the calculation of the hydrodynamic forces exerted on an oscillating
circular cylinder when it moves perpendicular to its axis in infinitely deep water covered by com-
pressed ice. The cylinder can oscillate both horizontally and vertically in the course of its translational
motion. In the linear approximation, a solution is found for the steady wave motion generated by the
cylinder within the hydrodynamic set of equations for the incompressible ideal fluid. It is shown
that, depending on the rate of ice compression, both normal and anomalous dispersion can occur in
the system. In the latter case, the group velocity can be opposite to the phase velocity in a certain
range of wavenumbers. The dependences of the hydrodynamic loads exerted on the cylinder (the
added mass, damping coefficients, wave resistance and lift force) on the translational velocity and
frequency of oscillation were studied. It was shown that there is a possibility of the appearance of
negative values for the damping coefficients at the relatively big cylinder velocity; then, the wave
resistance decreases with the increase in cylinder velocity. The theoretical results were underpinned
by the numerical calculations for the real parameters of ice and cylinder motion.

Keywords: ideal fluid; deep water; ice cover; moving cylinder; hydrodynamic load; added mass;
wave resistance; damping coefficient

1. Introduction

As is well known, a significant proportion of the world’s oil and gas reserves (up to
80% according to some estimates) are concentrated on shelves of the surrounding oceans
and seas. In recent years, the volume of hydrocarbon production in the shelf zone has been
growing rapidly; the increased volume stimulates the rapid growth of onshore and offshore
engineering construction. In many countries, offshore projects are developing intensively.
One of the priority areas for the development of the energy sector is the exploration of the
Arctic and, possibly, Antarctic oil and gas fields. Progress in the development of natural
resources of the sea shelf is inextricably linked with the study of hydrodynamic processes
on the shelf and the ability to effectively describe and predict them. This is especially
important in relation to the study of extreme events. Due to the specifics of the circumpolar
regions, the development of research in the oceans and seas covered by ice is of great
importance. Large sea areas where research, energy production or the construction of
hydraulic structures (platforms, oil and gas pipelines) are conducted, may be covered with
pack ice, broken ice or solid ice, which is in a stress state due to wind influences or pressure
from outside mainland ice. According to available data, up to 12% of the oceans and seas
are covered with ice. Most of the ice cover is found in the circumpolar regions, but, during
particularly cold winters, the ice cover can deviate significantly south in the Northern
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Hemisphere or north in the Southern Hemisphere. The up-to-date review of the problem
of interaction of ocean waves with ice cover at the destructive influence of global climate
change is presented in the review by Ref. [1], which includes the results of theoretical,
laboratory and fieldwork studies.

In many cases, there are currents in the ocean beneath the ice cover. The currents
can cause vibrations of pipelines leading to wave motion in the ice. In certain conditions,
instability can arise, resulting in the simultaneous growth of pipeline oscillations and
flexural-gravity wave (FGW) amplitude in the ice cover. Therefore, the problem of the
description of such a phenomenon is both topical and important from the practical point of
view. It is also important to calculate the hydrodynamic loads exerted on the pipelines in
the current in the seas or oceans covered by ice.

Many works have been devoted to the problem of studying waves in an ocean with
an ice cover, among which the pioneering publications dating back to the 1960s can be
mentioned [2,3]. Since that time, joint systems of equations describing wave disturbances
in water and in an infinite homogeneous ice plate have been studied by many authors (see,
e.g., the reviews [4–6] and references therein). In addition, FGWs in the ice cover generated
by underwater sources were studied for both stationary and moving fluid of finite or
infinite depth [7–13]. Effective direct mathematical methods for studying wave interactions
with floating flexible structures have been developed by many authors and are described
in the book by Sahoo [4]. The detailed review of interactions of fluid/structure/ice was
presented by Ref. [14]. In this paper, various analytical and numerical results are presented
on the interaction of a uniform current with a circular cylinder submerged below an ice
sheet in water of a finite depth. In particular, the properties of the dispersion equation for
the different current speeds, resistance and lift forces, ice sheet deflection for the different
regimes of flow, etc. are presented. However, the calculations are performed for the
uncompressed ice plate of the fixed thickness h1 = 1 m; the ice plate inertia is neglected.

Under natural conditions, an ice sheet on the water can undergo compression or
tension due to wind stress and pressure from other ice areas, for example, due to the sliding
of continental ice into the ocean. As a result, the study of FGWs in oceans covered by
compressed ice is a topical and important problem. However, this problem becomes rather
complex from the theoretical point of view since it leads to a wide variety of possible cases
due to a rather complex dispersion relation for this type of waves (see, e.g., [15–18]). The
recently published work by the current authors [18] contains a study of FGWs generated
by a dipole moving horizontally at some depth under the ice and oscillating along the
direction of motion. Neglecting the effects of viscosity in water and in an ice plate, the
basic equations of wave motion for a fluid of finite depth are derived. The wave patterns
generated by a cylinder of a finite radius in an infinitely deep ocean are also analysed in
detail. The added mass coefficients and the damping coefficients acting on the cylinder
are found. In the same work, it is shown that the wave motion created by a cylinder of the
finite radius can be modelled with the reasonable accuracy by the motion of a point dipole.
The problem studied represents a particular case of the well-known general problem when,
in the process of translational motion of a body oscillating along and perpendicular to the
motion, the body experiences action of radiative hydrodynamic forces. This problem has
been thoroughly investigated in the linear approximation for a submerged cylindrical body
moving under a free surface in a homogeneous or two-layer fluid (see, e.g., [19–21] and
references therein).

In this paper, which continues our previous study [18] and further develops the
results of Ref. [14], we examine in detail the effect of compressed floating ice cover on the
hydrodynamic loads exerted on the translationally moving and oscillating circular cylinder
submerged in water. In the linear approximation, we derive a solution for the steady
wave motion generated by the cylinder within the hydrodynamic set of equations for the
incompressible ideal fluid of infinite depth. It is shown that, depending on the rate of ice
compression, both normal and anomalous dispersion can occur in the system. In the latter
case, the group velocity is opposite to the phase velocity in a certain range of wavenumbers.
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The dependences of hydrodynamic loads (the added mass, damping coefficients, wave
resistance and lift force) exerted on the cylinder on the translational velocity and frequency
of oscillation are investigated. It is shown that there is the possibility of the appearance of
negative values of the damping coefficients at the relatively big cylinder velocity; then, the
wave resistance decreases with increasing of the cylinder velocity. The theoretical results
are underpinned by the numerical calculations for the real parameters of ice and cylinder
motion.

2. Governing Equations and Boundary Conditions

Let us consider a circular cylinder of a radius a (e.g., a pipeline) flowing around by
a uniform current with the velocity U = −U∇x in an ideal incompressible fluid of the
density ρ (see Figure 1). The cylinder oscillates in the horizontal and vertical directions
with the frequency Ω. We assume that the water is infinitely deep and contains an ice cover
on the top, which can be modelled by a thin elastic plate. The main set of hydrodynamic
equations and boundary conditions describing FGWs in the linear approximation is as
follows. For the velocity potential Φ(x, y, t), we have the Laplace equation:

∆Φ ≡ ∂2Φ
∂x2 +

∂2Φ
∂y2 = 0 (|x| < ∞, −∞ < y ≤ 0), (1)

where the fluid velocity u = ∇Φ.
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Figure 1. Sketch of the flow around a rigid cylinder in a deep water covered by a flexible ice cover.

It is assumed that the lower boundary of the ice plate is always in contact with
the water. By denoting as w(x, t) the vertical displacements of the ice cover from the
undisturbed flat position, the kinematic and dynamic conditions at the upper boundary of
the fluid (at y = 0) can be written as [18]:

∂w
∂t
− ∂Φ

∂y
= 0, (2)

D
∂4w
∂x4 + Q

∂2w
∂x2 + M

∂2w
∂t2 + ρ g w + ρ

∂Φ
∂t

= 0, (3)

where D = Eh3
1/[12(1− ν2)], M = ρ1h1, E is the Young’s modulus of elastic plate, Q is the

longitudinal stress (Q > 0 corresponds to compression and Q < 0 to stretching), ν is the
Poisson ratio, h1 is the thickness of the ice plate and g is the acceleration due to gravity.
The first term in Equation (3) describes the elastic property of the ice plate; the second term
represents a horizontal stress or strain of the plate; and the term with the coefficient M
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describes the inertial property of the ice plate. All perturbations vanish in the bulk of the
fluid so that for the vertical component of fluid velocity we have:

∂Φ/∂y→ 0, when y→ −∞. (4)

The dispersion relation of FGW relating the frequency ω of harmonic waves of in-
finitesimal amplitude with the wavenumber k is (see, e.g., [2,18,22]):

ω(k) =

√
k(Dk4 −Qk2 + ρ g)

ρ + kM
. (5)

The phase and group velocities of FGW are:

cp(k) =

√
Dk4 −Qk2 + ρ g

k(ρ + kM)
. (6)

cg(k) =
2k3M(2Dk2 −Q) + ρ (5Dk4 − 3Qk2 + ρ g)

2ω(k)(ρ + kM)2 . (7)

As is known, the dispersion relation (5) imposes a restriction on the maximal value of
the compression force. The stability of oscillations of a floating ice plate is guaranteed by
the condition Q < Q∗ ≡ 2

√
gρD, whereas at Q > Q∗ the buckling occurs—the ice plate

shatters (see, e.g., [2,22]). There is one more critical value of the parameter Q such that for
Q < Q0 < Q∗ the group velocity of FGW is positive for all wavenumbers k ≥ 0. Such a
case when cg > 0 is called normal dispersion in contrast to the case of anomalous dispersion
for Q0 < Q < Q∗, which is characterised by the presence of a wavenumber interval within
which the group velocity is negative (details can be found in [18]). Both critical values Q∗
and Q0, as well as the corresponding wavenumbers k∗ and k0, can be determined from the
solution of two simultaneous equations cg(k) = 0 and dcg/dk = 0.

In this paper, we study a steady regime of fluid motion caused by the translationally
moving and oscillating cylinder. In this case, the total potential of fluid velocity can be
presented in the form:

Φ(x, y, t) = −Ux + Uϕ(x, y) + Re
2

∑
j= 1

ηj ϕj(x, y)ei Ω t, (8)

where ϕ is the velocity potential corresponding to the uniform motion of the body with
the unit velocity, ϕj (j = 1, 2) are the radiation potentials due to the cylinder oscillation in
the horizontal (j = 1) and vertical (j = 2) directions and ηj are the amplitudes of cylinder
vibrations in these directions. Similar to Equation (8), the vertical displacements of the ice
plate can be presented as:

w(x, t) = w(x) + Re

[
2

∑
j= 1

ηjwj(x)ei Ω t

]
. (9)

The stationary part of the total potential ϕ satisfies the Laplace equation in the fluid:

∆ϕ = 0 (|x| < ∞, −∞ < y ≤ 0) (10)

with the boundary conditions at y = 0 of

∂w
∂x

+
∂ϕ

∂y
= 0, (11)

(
D

∂4

∂x4 + Q
∂2

∂x2 + MU2 ∂2

∂x2 + ρg
)

∂ϕ

∂y
+ ρU2 ∂2 ϕ

∂x2 = 0. (12)
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The boundary conditions far from the source are as follows:

∂ϕ

∂y
→ 0 (y→ −∞),

∂ϕ

∂x
→ ψ± (x → ±∞), (13)

where functions ψ±(x, y) are equal to zero if the current speed U is less than the minimal
phase speed of FGWs. If U > (cp)min, then functions ψ±(x, y) represent wave disturbances
oscillating in x when x → ±∞.

On the circular contour S : x2 + (y + h)2 = a2, which represents the surface of the
rigid cylinder, the impermeability condition is posted:

∂ϕ

∂n
= n1 (x, y ∈ S), (14)

where n = (n1, n2) is the inner normal to the contour S and h is the distance of the cylinder
centre from the upper boundary of the fluid (h > a).

The components of radiation potentials also satisfy the Laplace equation:

∆ϕj = 0 (|x| < ∞, −∞ < y ≤ 0) (15)

and the boundary conditions at y = 0 are

Λwj −
∂ϕj

∂y
= 0, (16)

(
D

∂4

∂x4 + Q
∂2

∂x2 + MΛ2 + ρg
)

wj + ρΛϕj = 0, (17)

where the operator Λ = iΩ−U∂/∂x.
The boundary condition on the cylinder circular contour is:

∂ϕj

∂n
= iΩnj −Umj (x, y ∈ S), (18)

where (m1, m2) = ∇(∂ϕ/∂n).
In the far-field zone, when x → ±∞, wave perturbations consist of superposition of

several periodic waves (the details are clarified below).
Hydrodynamic forces F = (F1, F2) exerting on the cylinder, are determined by

integrating the fluid pressure (less the hydrostatic term) p = −ρ(∂Φ/∂t + |∇Φ|2/2) along
the contour S. It is convenient to replace this integral by the sum

Fj = Fsj + Re
(

FrjeiΩt
)

(j = 1, 2), (19)

where Fsj are the stationary force components (the wave resistance and lifting force) acting
on a body in a stationary uniform flow, while Frj are the radiation forces, which are usually
written in the matrix form (for more details, see, e.g., [23]): Frj = η1τj1 + η2τj2. The
quantities τjk (k = 1, 2) represent a complex force acting in the j-direction and caused
by sinusoidal oscillations of a body with a unit amplitude in the k-direction; they can be
represented as τjk = Ω2µjk − iΩλjk. The real quantities µjk and λjk are known as the added
mass and damping coefficients, respectively.

Let us introduce polar coordinates with the origin in the centre of the contour S,
x = r sin θ, y = r cos θ− h. Then, taking into account that the components of the unit vector
normal to the circular cylinder are

n1 = − sin θ, n2 = − cos θ, (20)
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we obtain (see, e.g., [20]):

(Fs1, Fs2) =
ρU2

2a

2π∫
0

[
∂(ϕ− x)

∂θ

]2

(sin θ, cos θ) dθ, (21)

τjk = ρa
2π∫
0

∂ϕ∗j
∂n

ϕk dθ, (22)

where symbol ∗ stands for complex conjugate.
In the next sections, we present solutions of stationary problem for the potential ϕ

and non-stationary problem for the radiation potentials ϕj.

3. Solutions of the Stationary Problem

A solution to the stationary problem of the flow around a circular cylinder has been
obtained by the method of multipole expansions by Li et al. [14]. Here, we present only the
main results of this solution that are required further for the study of the radiation problem
in Section 4. According to Ref. [14], the solution to Equation (10) with the boundary
conditions (11)–(14) can be represented in the form:

ϕ = Re
∞

∑
m= 1

amCm

(
e−imθ

rm − Rm

)
, (23)

where Rm =
1

(m− 1)!

∞∫
0

km−1Z(k)ek(y−h−ix) dk; (24)

with the unknown coefficients Cm to be determined.
Using the well-known relation

e−imθ

rm =
1

(m− 1)!

∞∫
0

km−1e−k(y+h+ix) dk (y > −h), (25)

and taking into account conditions (11) and (12) on the upper boundary of the fluid, we
obtain a representation for the function Z(k) in the form:

Z(k) = −1− 2ρU2k
P(k)− ρU2k

, P(k) = Dk4 −
(

Q + MU2
)

k2 + gρ. (26)

To take into account the boundary condition on the surface of the cylinder (14), we
use the relationship:

ek(y+h−ix) = 1 +
∞

∑
m= 1

(kr)m

m!
e−imθ . (27)

Then, the stationary potential in the vicinity of the cylinder can be presented up to an
insignificant constant in the form:

ϕ = Re
∞

∑
m= 1

[
am

rm Cm −
∞

∑
n= 1

anrm

m!(n− 1)!
In+m−1Cn

]
e−imθ , IN =

∞∫
0

kN Z(k)e−2kh dk. (28)

To calculate IN , let us do the following transformation:

IN = − N!
(2h)N+1 − 2ρU2

∞∫
0

kN+1

P(k)− ρU2k
e−2kh dk. (29)
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The denominator in the integrand, which is the fourth-degree polynomial in k, can be
represented as:

P(k)− ρU2k = D
4

∏
n= 1

(k− kn), (30)

where kn are the roots of the polynomial. Then, we use the following expansion:

k
P(k)− ρU2k

=
1
D

4

∑
n= 1

αn

k− kn
, (31)

where the coefficients αn can be readily calculated from the solution of the corresponding
system of linear algebraic equations obtained from the requirement of equality of the
numerator on the right- and left-hand sides of Equation (31).

The polynomial on the left-hand side of Equation (30) can be presented in the form:

P(k)− ρU2k = (ρ + Mk)(c2
p −U2). (32)

As was noted by Ref. [18], the equation

P(k)− ρU2k = 0 (33)

has real positive roots only for U > Up ≡ (cp)min. The value of the minimum phase velocity
of FGW is Up = cp(kp), where kp is defined as the real positive root of the equation:

Dk4(2Mk/ρ + 3)−Qk2 − 2gMk− gρ = 0. (34)

According to Equation (32), all four roots kn in Equation (33) are complex if U < Up,
whereas, when U > Up, there are two real positive roots k1 and k2 (k1 < k2) and two
complex roots k3 and k4.

We further use the recurrent formulae to calculate the integrals arising in Equation (29)
with the help of Equation (31). Let us denote

JN =

∞∫
0

kNe−2kh

k− kn
dk. (35)

Before going ahead, let us take into account the Sommerfeld radiation condition at
the big distances from the cylinder centre (in the far-field zone). This condition presumes
that there are only outgoing waves generated by the moving cylinder, i.e., a wave with
the wavenumber k1(k2) propagates co-current (counter-current), since its phase velocity is
greater (less) than the group velocity. Then, for the real roots k1,2, we obtain:

JN = J̃N − iπχnkN
n e−2knh, where J̃N = PV

∞∫
0

kNe−2kh

k− kn
dk. (36)

Here, χn = (−1)n (n = 1, 2), and the symbols PV stands for the principal value of
the integral. There is a recurrent formula for J̃N [24]:

J̃N+1(kn) =
N!

(2h)N+1 + kn J̃N(kn), J̃0(kn) = −e−2knhEi(2knh), (37)

where Ei(x) is the exponential integral of a real argument.
For complex roots kn, Equation (35) reduces to:

JN(z) =
1

(2h)N GN(z), z = −2hkn, (38)



Water 2021, 13, 822 8 of 21

where
GN+1(z) = N!− zGN(z) (N ≥ 1), G1(z) = 1− zezE1(z), (39)

and E1 is the exponential integral of a complex argument [24]. Therefore, the integral term
in Equation (29) can be presented as:

∞∫
0

kN+1 exp(−2kh)
P(k)− ρU2k

dk =
1
D

4

∑
n= 1

αn JN(kn). (40)

Differentiating Equation (28) with respect to r and using the boundary condition (14)
with the relations (20), as well as the orthogonality of trigonometric functions, we obtain a
system of linear algebraic equations for determining the coefficients Cm in Equation (23):

Cm +
∞

∑
l = 1

Clal+m Im+l−1
m!(l − 1)!

= −iaδm1, (41)

where δml is the Kronecker symbol.
Substituting expression (29) in Equation (28) for ϕ and differentiating with respect to

θ, we obtain for r = a:

∂(ϕ− x)
∂θ

= −2Re

(
∞

∑
m= 1

imCme−imθ

)
. (42)

After that, the expressions for the stationary forces exerting on the cylinder as follows
from Equation (21) are:

Fs2 − iFs1 =
2πρU2

a

∞

∑
m= 1

m(m + 1)C∗mCm+1. (43)

4. Solutions of the Radiation Problem

Now, let us determine the coefficients of the radiation load τjk in Equation (22). To this
end, we need to find the radiation potentials ϕj in Formula (8). Let us present the solution
for the radiation potentials in the form:

ϕj =
∞

∑
m= 1

am
[

A−jm

(
e−imθ

rm − E−m

)
+ A+

jm

(
eimθ

rm − E+
m

)]
(j = 1, 2). (44)

Here, the unknown coefficients A±jm are to be determined. Taking into account the
boundary conditions (16) and (17) for the radiation potentials and performing similar
manipulations as in Section 3, we obtain the following relations:

E±m =
1

(m− 1)!

∞∫
0

km−1Z±(k)ek(y−h−ix) dk, (45)

where

Z−(k) = −1− 2ρ(Ω + Uk)2/B−, (46)

Z+(k) = −1− 2ρ(Ω−Uk)2/B+, (47)

B− = (ρ + kM)
[
ω2(k)− (Ω + Uk)2

]
, (48)

B+ = (ρ + kM)
[
ω2(k)− (Ω−Uk)2

]
. (49)
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Now, let us take into account the boundary condition (18) on the surface of the cylinder.
Using relation (27), we can write down functions E±m in the vicinity of the cylinder up to an
insignificant constant in the form:

E±m =
∞

∑
n= 1

rnH±n+m−1
n!(m− 1)!

e±inθ , (50)

where

H±N =

∞∫
0

kN Z±(k)e−2kh dk. (51)

We present expressions for H±N in a form similar to (29):

H±N = − N!
(2h)N+1 − 2ρ

∞∫
0

kN

B±
(Ω∓Uk)2e−2kh dk. (52)

Functions B± in the denominator of the integrand in Equation (52) are fifth-degree
polynomials; by analogy with Equation (30), they can be written in the form:

B±(k) = D
5

∏
n= 1

(k− k±n ). (53)

Then, one can use the decomposition:

(Ω∓Uk)2

B±
=

1
D

5

∑
n= 1

β±n
k− k±n

, (54)

where the coefficients β±n are calculated from the solution of the corresponding systems of
linear algebraic equations obtained from the requirement of equality of the numerator on
the right- and left-hand sides of Equation (54).

The analysis of the real positive roots k±n is performed separately for k+n and k−n . Below,
we briefly present some information about the properties of these roots (for more details,
see [18]). As follows from Equation (49) for B+, the roots k+n must satisfy one of the
equations:

ω(k) + Ω−Uk = 0, ω(k)−Ω + Uk = 0. (55)

The first equation in (55) defines the stationary points of function Ψ2 in the notation
of the paper by Ref. [18]; it has at most two roots k(2)1 and k(2)2 (k(2)1 < k(2)2 ) only at certain
restrictions on the flow velocity U. The second equation in (55), which determines the
stationary points of function Ψ4 in the notation of Ref. [18], always has one positive root;
however, it can have two additional roots at certain restrictions on the magnitude of ice
compression Q. We denote these roots by k(4)1 < k(4)2 < k(4)3 . As follows from the form of
function B− in (48), it is easy to see that the roots k−n must satisfy the equation:

ω(k)−Ω−Uk = 0. (56)

This equation defines the stationary points of function Ψ3 in the notation of [18].
Equation (56) always has one positive root and, possibly, two additional roots at

certain restrictions on the frequency of cylinder oscillation Ω and flow velocity U. Let us
denote these roots k(3)1 < k(3)2 < k(3)3 .

The direction of wave propagation determined by stationary points of functions Ψ2
and Ψ3 depends on the sign of the expression U− cg(k) and, for function Ψ4, on the sign of
the expression U + cg(k), where k should be replaced by the wave numbers corresponding
to the stationary points of each function Ψ. Waves with the positives value of these
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expressions propagate downstream (x < 0), whereas waves with the negative values of the
expressions propagate upstream (x > 0). Therefore, the expressions of H±N in Equation (52)
can be transformed to the form:

H±N = − N!
(2h)N+1 −

2ρ

D

5

∑
n= 1

β±n JN(k±n ). (57)

Here, as in Equation (36), for the real roots k±n , an additional term must be introduced
such that χn = −1 for waves propagating downstream and χn = 1 for waves propagating
upstream.

Let us return now to constructing a system of linear algebraic equations for determin-
ing the unknown coefficients A±jm in Equation (44). For calculating the second derivatives
in the boundary conditions (18), we use the following relations [20]:

2π∫
0

∂2 ϕ

∂n∂x
eimθ dθ = − im

a2

2π∫
0

∂(ϕ− x)
∂θ

eimθ sin θ dθ =
iπm
a2 P−m , (58)

2π∫
0

∂2 ϕ

∂n∂y
eimθ dθ = − im

a2

2π∫
0

∂(ϕ− x)
∂θ

eimθ cos θ dθ = −πm
a2 P+

m , (59)

where P±m = (m + 1)Cm+1 ± (m− 1)Cm−1.
Differentiating Equation (44) with respect to r and taking into account Equation (50)

and the boundary conditions (18), we obtain the following systems of linear equations for
the determining A±jm:

A±jm +
∞

∑
n= 1

am+n

m!(n− 1)!
H±n+m−1 A±jn = X±jm (j = 1, 2), (60)

where

X−1m = (aΩδm1 − iUP−m /a)/2, X+
1m = (iUP−m

∗/a− aΩδm1)/2, (61)

X−2m = (UP+
m /a− iaΩδm1)/2, X+

2m = (UP+
m
∗/a− iaΩδm1)/2 (62)

The quantities H±N are given in Equation (57), where the recurrence formulae (37) and
(39) are used to calculate JN(k±n ) for the real and complex roots k±n , respectively.

On the surface of the cylinder at r = a, the values of the radiation potentials are:

ϕj =
∞

∑
m= 1

[(
2A−jm − X−jm

)
e−imθ +

(
2A+

jm − X+
jm

)
eimθ

]
. (63)

Solving the systems of Equation (60), the coefficients of radiation load τjk can be
determined. Substituting Equations (18) and (63) into (22), we finally obtain:

τjk = 2πρ
∞

∑
m= 1

m
[

X−jm
∗(2A−km − X−km

)
+ X+

jm
∗(2A+

km − X+
km
)]

. (64)

5. Numerical Results

To investigate quantitatively the effect of ice plate cover on cylinder oscillation in
infinitely deep water and the hydrodynamic forces exerting on the cylinder, we undertook
numerical calculations with the following set of parameters:

E = 5× 109 Pa, ν = 0.3, ρ1 = 922.5 kg/m3,

a = 5 m, h = 10 m, ρ = 1025 kg/m3, g = 9.81 m/s2. (65)
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Several ice-plate thicknesses were chosen to study its influence on FGWs and the
hydrodynamic characteristics of the cylinder.

Calculations of wave resistance and lift force of a uniform flow around a circular
cylinder submerged in a fluid of finite depth covered by ice were studied by Ref. [14].
Figure 6 of that work shows the dependence of the stationary forces on the current velocity
for different fluid depths and, in particular, for an infinitely deep fluid. The following
dimensionless values of hydrodynamic forces were used:(

Fs1, Fs2
)
= (Fs1, Fs2)/

(
πρ g a2

)
. (66)

Note that, in the cited paper [14], the calculations were performed for the uncom-
pressed ice plate (Q = 0) with the neglected inertia of the plate (M = 0); the thickness
of the ice plate was chosen to be fixed, h1 = 1 m, and the gravity constant was set to
be g = 9.8 m/s2. Other parameters were the same as in Equation (65). In Figure 2, we
present a comparison of the results obtained in [14] (solid black curve) with our calculations
(red dots for M = 0 and blue lines for M = ρ1h1 = 922.5 kg/m2). As one can see, the
results of these studies agree very well for the same set of parameters. The influence of
the inertial parameter M is small and can be neglected in most cases. The dimensionless
value of the minimum phase velocity of the FGW is Up/

√
gh = 1.6012 for M = 0 and

is Up/
√

gh = 1.5648 for M = 922.5 kg/m2. The effect of the ice thickness h1 on the
characteristics of stationary hydrodynamic loads was studied in detail by Li et al. [14].

Subsequent calculations presented below were performed for the ice thickness h1 = 0.5 m
and different values of the compression parameter Q̃ = Q/

√
ρ gD. The following dimen-

sionless parameters for the Froude number and frequency of cylinder oscillations are used
below (the Froude number is determined here in terms of the cylinder radius):

Fr =
U
√

g a
, σ = Ω

√
a
g

. (67)

For the used parameters, the critical dimensionless compression parameter, above
which the anomalous dispersion of FGW occurs, is Q̃0 = 1.4772. When the numerical
calculations were performed, the infinite sums in Equations (23) and (44) were replaced by
finite sums which contained only the first N = 8 terms. A further increase of N does not
change the value of the first five significant figures of the hydrodynamic loads. Figure 3
shows the dependence of stationary hydrodynamic forces (43) for Q̃ = 0, 1.2, 1.8, 1.95.
The dimensionless values of the critical Froude numbers Frp ≡ Up/

√
g a for the used

values of Q̃ are given in Table 1. Note that there are several definitions of a Froude number
in the literature and their critical values, respectively (see, e.g., [5,14]). The Froude number
can be defined through the total fluid depth H: FrH ≡ U/

√
g H, through the depth of a

submerged body h: Frh ≡ U/
√

g h or through the radius of a submerged cylinder a, as
in our case (see Equation (67) where index a is omitted for the sake of simplicity). In the
fluid of a finite depth covered by ice, two critical values of the Froude number can be
considered. One of them relates to the water speed exceeding the velocity of long linear
waves c =

√
gH, whereas the other relates to the water speed exceeding the minimal phase

velocity of FGWs, Up. In our case of infinitely deep water, there is only one critical Froude
number related to the minimal phase speed of FGWs as defined above.
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Figure 2. (Color online.) The wave resistance Fs1 and lift force Fs1 as functions of the dimensionless
velocity Frh ≡ U/

√
gh. Solid black lines (1) represent the results shown in Figure 6 of [14] for the

infinitely deep fluid; red dots are the results of this work for M = 0; blue lines (2) are the results of
this work for M = 922.5 kg/m2.

Figure 3. (Color online.) The wave resistance Fs1 and lift force Fs2 as functions of the Froude number
Fr = U/

√
ga for different values of the compression parameter Q̃ = 0, 1.2, 1.8, 1.95.
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Table 1. Dependences of the parameters Frp, Frg and σ∗ on the normalised compression parameter
Q̃.

Q̃ Frp Frg σ∗

0 1.7124 1.1225 0.2226

1.2 1.1231 0.3311 0.3691

1.8 0.5715 −0.6325 0.6285

1.95 0.2870 −1.2972 0.8650

According to the kinematic properties of FGWs, the excitation of wave motion in the
infinitely deep water can occur only for Fr > Frp in the so-called super-critical regime.
Therefore, the wave resistance is identically zero if Fr < Frp (in the sub-critical regime).
When the compression parameter Q̃ is relatively small, the wave resistance Fs1 sharply
increases from zero to some finite value when the Froude number increases and passes
through the critical value Frp. Then, when the Froude number further increases, the wave
resistance smoothly but non-monotonically decreases. The lift force Fs2 in the sub-critical
regime is positive and increases sharply when Fr approaches Frp; then, it sharply decreases
when Fr > Frp and becomes negative. When the compression parameter increases, the
jumps of wave resistance and lift force decreases in the vicinity of the critical value Frp.
For big Froude numbers, the effect of compression of the ice cover on the wave resistance
decreases (see Figure 3, left).

To determine the hydrodynamic loads for the radiation problem, it is necessary to
determine a number of generated waves in the far-field zone at the big distance from the
cylinder centre. To this end, it is convenient to construct the (Fr, σ)-plane and determine
regions in this plane where the number of generated waves is different. Examples of such
diagrams are given in [18] for the thickness of ice plate h1 = 1 m.

Figure 4 shows the configurations of the regions Gj (j = 1, ..., 6) with the different
number of generated waves for the thickness of the ice cover h1 = 0.5 m and several values
of the compression parameter Q̃ = 0, 1.2, 1.8, 1.95. In the case of normal dispersion, the
(Fr, σ)-plane is divided into four regions Gj (j = 1, 2, 3, 4) (see Figure 4a,b), whereas, in the
case of the anomalous dispersion, into six regions (see Figure 4c,d). Small vertical arrows
on the horizontal axis show the values of σ∗, and small horizontal arrows on the vertical
axis show the values |Frg| (see Table 1) where Frg = Ug/

√
ag, σ∗ ≡

√
a/g[ω(kg)−Ugkg],

and kg is such that the group velocity of FGWs, cg in Equation (7), has a minimum Ug at
k = kg.

Table 2 shows the number of waves in the far-field zone and their direction of propa-
gation for each region shown in Figure 4 (x < 0 pertains to the downstream propagating
waves and x > 0 to the upstream propagating waves).

The values of radiation loads (the added mass and damping coefficients) calculated
by using Equations (22) and (64) for the Froude number Fr = 0.5 and various values of the
compression parameter Q̃ are shown in Figures 5 (for µij) and 6 (for λij). The dimensionless
values of these quantities are defined as follows:

µij =
µij

ρ a2 , λij =
Ωλij

ρ g a
, (i, j) = 1, 2. (68)

As shown in Figures 5 and 6, the hydrodynamic loads smoothly depend on the
oscillation frequency only when Q̃ = 0 since, in this case, for all frequencies and fixed
Froude number Fr = 0.5, the boundaries of the regions Gj are not crossed (see Figure 4a).
In all other investigated cases of the compression parameter Q̃ = 1.2, 1.8, 1.95, there are
sharp changes in the values of the hydrodynamic loads in the vicinity of the frequencies
corresponding to the boundaries of the regions Gj. The hydrodynamic loads in the vicinity
of these frequencies can significantly exceed the corresponding values for the uncompressed
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ice when Q̃ = 0. For a given Froude number Fr = 0.5, the diagonal coefficients of the
added mass matrix in the cases of uncompressed ice and rigid cover practically coincide;
they are indistinguishable in Figure 5a,b.

Figure 4. Configuration of the domains Gj (j = 1, ..., 6) for different values of the compression parameter
Q̃ : 0 (a); 1.2 (b); 1.8 (c); and 1.95; (d). The thickness of the ice plate was h1 = 0.5 m.

Figure 5. (Color online.) The dependence of the added mass coefficients: µij (i, j) = 1, 2 on the

dimensionless frequency of cylinder oscillation for Q̃ = 0, 1.2, 1.8, 1.95 and fixed Froude number
Fr = 0.5. Crosses show the values of µ11 and µ22 for the fluid covered by a rigid lid.
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Table 2. The number of waves in the far-field zone.

Gj k(1)
2 k(2)

2 k(1)
3 k(2)

3 k(3)
3 k(1)

4 k(2)
4 k(3)

4

G1 x < 0 x > 0 x > 0 - - x < 0 - -

G2 x < 0 x > 0 x > 0 x < 0 x > 0 x < 0 - -

G3 - - x > 0 x < 0 x > 0 x < 0 - -

G4 - - x > 0 - - x < 0 - -

G5 - - x > 0 - - x < 0 x > 0 x < 0

G6 - - x > 0 x < 0 x > 0 x < 0 x > 0 x < 0

Similar dependences of the hydrodynamic loads on the oscillation frequency are
shown in Figures 7 and 8 for the Froude number Fr = 1. In Figure 7a,b, the values of the
added mass coefficients are practically indistinguishable for Q̃ = 1.8 and Q̃ = 1.95. When
the Froude number increases, the frequency dependences of hydrodynamic loads notable
change even in the case of Q̃ = 0. In the vicinity of the frequency σ = σ∗, there is a sharp
change in the coefficients, since the considered value of the Froude number Fr = 1 is close
to the value of Frg for Q̃ = 0 (see Table 1).

As is well known, at the superposition of the slow translational and oscillatory motion
of a circular cylinder in a water with the free surface, the Timman–Newman symmetry
conditions are satisfied [25]:

µ12 = −µ21, λ12 = −λ21. (69)

In the considered problem of cylinder motion under a compressed ice cover, the
fulfillment of these conditions is observed for Fr = 0.5 and Q̃ = 0, 1.2, 1.8, as well as for
Fr = 1 and Q̃ = 0, 1.2.

Figure 6. (Color online.) The dependence of the added damping coefficients: λij (i, j) = 1, 2 on the dimension-
less frequency of cylinder oscillation for Q̃ = 0, 1.2, 1.8, 1.95 and fixed Froude number Fr = 0.5.
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Figure 7. (Color online.) The dependence similar to those shown in Figure 6 but for Fr = 1.

An interesting feature of the considered problem is the possibility of appearance of
negative values for the diagonal damping coefficients λ11 and λ22 for the Froude numbers
corresponding to the decrease in the wave resistance with increasing cylinder velocity (the
so-called falling wave resistance section). According to Figure 3, this phenomenon of wave
resistance is observed when Fr > 5 for all considered compression parameters. For the
illustration, we show in Figure 9 the diagonal damping coefficients for Fr = 7.

Figure 8. (Color online.) The dependence similar to those shown in Figure 6 but for Fr = 1.



Water 2021, 13, 822 17 of 21

Figure 9. (Color online.) The dependences of the diagonal damping coefficients λ11 (a) and λ22 (b) on the
dimensionless frequency Q̃ = 0, 1.2, 1.8, 1.95 and Froude number Fr = 7.

Negative damping coefficients, apparently, were obtained for a first time by Newman [26]
when he calculated the hydrodynamic loads exerting on an ellipsoid uniformly moving under
the free surface of a homogeneous fluid and simultaneously oscillating along one of six
degrees of freedom. It was noted that this phenomenon occurs only at high speeds of motion.
Usually, the wave resistance increases when the speed increases at relatively low speeds, but
then, when the speed becomes high enough, the wave resistance decreases when the speed of
a body further increases. In this range of the velocities, the motion of an oscillating body in a
fluid can be accompanied by the radiation instability when the amplitude of oscillations
increases with time due to the pumping of energy into the oscillatory mode from the
kinetic energy of the translational motion. The physical analysis of this phenomenon was
carried out by [27] with the example of the motion of a small-radius sphere in a two-layer
fluid. The complete solution of the linear radiation problem for a circular cylinder in a
uniform flow of an infinite two-layer fluid made it possible to determine the dependences
of hydrodynamic loads on the speed of the body and frequency of oscillations. Using these
results, a system of ordinary differential equations was derived to describe the motion
of a cylinder with two degrees of freedom, and the possibility of onset of non-decaying
oscillations of the body was shown [21].

As the particular case of the radiation problem, let us consider radiation caused by
the submerged oscillating cylinder without a translational speed, U = 0. In this case,
the solution presented above significantly simplifies. In the expression for the radiation
force τjk in Formula (22), only the diagonal terms are non-zero, τ11 = τ22 6= 0. The
detailed solution to this problem is presented in [18]. The effect of ice compression on the
hydrodynamic loads is illustrated in Figure 10. In this figure, one can see the frequency
dependences of the added mass µ = µjj/(πρ a2) (Figure 10, left) and damping coefficient
λ = λjj/(πρ a2Ω) (Figure 10, right) for a few values of the parameter Q̃ = 1.2, 1.4, 1.8.
In the first two cases, the normal dispersion of FGWs takes place, whereas, in the latter
case, the dispersion is anomalous so that FGWs with the negative group velocities appear
in the range of dimensionless frequencies 0.312 < σ < 0.415 (see Figure 4c). As shown
in Figure 10, in the presence of ice compression, the extreme values of hydrodynamic
loads significantly increase in the vicinity of frequencies where the group velocity of FGWs
becomes very small or changes its sign.
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Figure 10. (Color online.) The frequency dependences of the added mass µ (a) and damping
coefficient λ (b) for a few values of the parameter Q̃ = 1.2, 1.4, 1.8.

6. Conclusions

As shown in this paper, ice cover provides a significant influence on the hydrodynamic
loads of a cylinder in a uniform current. Even in the case when there is no mean flow and
the cylinder experiences only oscillations, the added mass and damping coefficient can
significantly differ from those values when there is no ice cover. Moreover, ice compression
plays an important role by providing an increase in hydrodynamic loads within certain
intervals of frequency of cylinder oscillation. The dependences of the added mass and
damping coefficient on frequency have a resonant character (see Figures 5–10) with the
extremal values in the vicinity of such frequencies where the group velocity of FGWs
becomes very small or changes its sign. Such a situation when the group velocity is
opposite to the phase velocity in a certain range of wavenumbers and the anomalous
dispersion of FGWs occurs is realisable when the rate of ice compression is sufficiently
high. The critical values of ice compression when the anomalous dispersion arises and
then the buckling phenomenon appears were evaluated.

We also investigated the dependences of hydrodynamic loads (the added mass, damp-
ing coefficients, wave resistance and lift force) exerted on the cylinder that is uniformly
moving and oscillating. It was shown that there is such a regime of motion when negative
values for the damping coefficients occur. Such a phenomenon is well-known in the case of
a body moving with oscillations beneath a free surface [26,27]. Here, we demonstrated that
a similar phenomenon can occur in the ocean covered by compressed ice and investigated
the dependence of the effect on the degree of compression. As shown in Figure 9, the
maximal negative value of the damping coefficients decreases with the increase of ice
compression and shifts toward the high frequencies.

The results obtained can be useful in the design of underwater pipelines and other
engineering constructions in the marine zones covered by ice. Tidal flows and other
currents can produce significant loads on the constructions and lead to the development of
instabilities with big-amplitude oscillations. Here, a rather idealised model was considered
where the viscosity and nonlinearity effects were neglected. The influence of these factors
on the flow around a cylinder and hydrodynamic loads deserves further study but leads
to a significant complication of the problem. Solution of such a problem cannot easily
be obtained by analytical methods; however, contemporary numerical packages such as
ANSYS CFD can be used. It is also worth mentioning that, as shown in [28], the influence
of nonlinearity in the problem of moving loads on ice sheets becomes notable for rather
big-amplitude FGWs. The influence of viscosity and nonlinearity in the general problem
of ocean waves and ice interaction is reviewed in [1]. When our paper was ready and
submitted for publication, we become aware of an interesting preprint [29] where the
two-dimensional nonlinear problem of steady flow around a body submerged in water
covered by an elastic sheet is considered. Compression forces are ignored in this paper but
can be considered in the future.

Any experimental work in this field is also a topical problem. To the best of knowledge,
there are no publications reporting experimental data on forces exerted on a submerged
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and oscillating cylinder in the ice-covered ocean or sea. In a recently published paper
by [30], the results of laboratory experiments of investigation of hydrodynamic forces
exerted on a semi-submerged cylinder in water with a free surface under an oscillatory flow
are reported. Based on the main hydrodynamic features, a novel empirical formula for
the prediction of the lift forces on a cylinder is proposed. In our paper, the hydrodynamic
forces are calculated numerically on the basis of the derived analytical formulae. Further
experimental work in this field is highly desirable.
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Nomenclature

ρ water density
ρ1 ice density
h1 thickness of the ice plate
g acceleration due to gravity
E Young’s modulus of elastic plate
ν Poisson ratio
D = Eh3

1/[12(1− ν2)] ice rigidity
Q longitudinal ice stress
Q0 first critical value of the stress parameter when the anomalous dispersion occurs
Q∗ = 2

√
ρgD second critical value of the stress parameter when the ice buckling occurs

M = ρ1h1 parameter describing the inertial property of ice
cp phase velocity of FGWs
cg group velocity of FGWs
a cylinder radius
Ω frequency of cylinder oscillations
Fr ≡ U/

√
ga Froude number in terms of the cylinder radius a

Fs1 ≡ Fs1/
(
πρ g a2) normalised wave resistance in the stationary flow

Fs2 ≡ Fs2/
(
πρ g a2) normalised lift force in the stationary flow

τjk a complex matrix of radiation forces
µjk a real matrix of added masses
λjk a real matrix of damping coefficients
µ = µjj/(πρ a2) normalised added mass coefficient
λ = λjj/(πρ a2Ω) -normalised damping coefficient

Abbreviations

The following abbreviation is used in this manuscript:
FGW flexural-gravity wave
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