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Abstract: River valley bottoms have hydrological, geomorphological, and ecological importance and
are buffers for protecting the river from upland nutrient loading coming from agriculture and other
sources. They are relatively flat, low-lying areas of the terrain that are adjacent to the river and bound
by increasing slopes at the transition to the uplands. These areas have under natural conditions,
a groundwater table close to the soil surface. The objective of this paper is to present a stepwise GIS
approach for the delineation of river valley bottom within drainage basins and use it to perform a
national delineation. We developed a tool that applies a concept called cost distance accumulation
with spatial data inputs consisting a river network and slope derived from a digital elevation model.
We then used wetlands adjacent to rivers as a guide finding the river valley bottom boundary from
the cost distance accumulation. We present results from our tool for the whole country of Denmark
carrying out a validation within three selected areas. The results reveal that the tool visually performs
well and delineates both confined and unconfined river valleys within the same drainage basin.
We use the most common forms of wetlands (meadow and marsh) in Denmark’s river valleys known
as Groundwater Dependent Ecosystems (GDE) to validate our river valley bottom delineated areas.
Our delineation picks about half to two-thirds of these GDE. However, we expected this since farmers
have reclaimed Denmark’s low-lying areas during the last 200 years before the first map of GDE was
created. Our tool can be used as a management tool, since it can delineate an area that has been the
focus of management actions to protect waterways from upland nutrient pollution.

Keywords: river valley bottom; GIS; cost distance accumulation; groundwater dependent ecosystems

1. Introduction

The rise in the availability of high-quality spatial data, especially the representation
of digital terrain models (DEMs), has brought an increase in the number of Geographic
Information System (GIS) professionals striving to create methods to best describe and
extract different landscape features.

Delineation of valley bottom across drainage basins is becoming increasingly impor-
tant due to an acceptance of the drainage basin area as the essential management unit for
sustainable water and land management [1]. The valley bottoms act as an intermediate
pathway for nutrients coming from the uplands, either as surface flow, diffuse flow to wet
areas on floodplains, or directly through stream-bed connected to underlying groundwater
bodies and have the potential to reduce nutrients thereby protecting the surrounding
aquatic environment [2,3].

The Dictionary of Earth Science defines the valley floor as “The broad, flat bottom of a
valley. Also known as valley bottom or valley plain.” [4]. This can be described conceptually
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as an area of low slopes bounded by increasing slopes at the transition to the uplands
(Figure 1). Valley bottoms are landscape features with hydrological, geomorphological,
and ecological importance [5–7].
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formation. The valley is cut out of the landscape by erosion, either glacial or fluvial, or by 
tectonic processes. The formation of river valleys could fall in either of these processes or 

Figure 1. Conceptualization of the river valley bottom at a section of the Villestrup stream, Denmark,
showing the valley bottom as a flat to low slope area adjacent to a river and bounded by increasing
slopes (Photo by the Danish Nature Agency).

By description, the river valley bottom delineates the river and its corresponding
active floodplain [8,9]. The floodplain is the area adjacent to a river, i.e., stretching from the
riverbank to the edge of the river valley. Confined, partly confined, or laterally unconfined
(Figure 2) are classifications commonly used to distinguish valley bottoms [10]. Confine-
ment of valley bottom is the percentage of natural waterway that borders a confining
margin on either bank [8]. In some situations, the valley bottom boundary can coincide
with the valley confining margin [8].
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Figure 2. Different types of valley confinement modified from [10].

The river valley bottom is formed by a combination of erosion, deposition, and peat
formation. The valley is cut out of the landscape by erosion, either glacial or fluvial, or by
tectonic processes. The formation of river valleys could fall in either of these processes
or a combination depending on the situation. It can be difficult to distinguish the rate
of glacial or fluvial erosion as both glaciers and rivers occupied valleys at the same time,
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which makes separating their contribution to valley formation a challenge [11]. However,
some researchers have found a greater role of glacial erosion when compared to river
erosion [12–15], while others found a lower rate of glacial erosion or little difference
between the two [16–19]. Yet, depending on the type, valley formation during the glacial
time was often a combination of these different processes, while during the postglacial
period, the formation was mostly related to fluvial erosion and deposition.

Several GIS tools that delineate the valley bottom broadly fall into two categories:
flooding or slope algorithms [20]. The flooding algorithm works by filling water within the
flat valley area finding a suitable water depth threshold that delineates the valley bottom.
The slope algorithm works by finding a suitable threshold of the slope of the terrain that
delineates the flat area of the valley bottom. Existing tools normally fall within these two
categories (Table 1). Height Above River (HAR) uses a flooding algorithm that propagates
river centerline elevations outward from the river using a distance-weighted average and
subtracts the result from the elevation [21]. Another tool that uses the flooding algorithm
is River Bathymetry Toolkit (RBT), which works by detrending the DEM to remove the
longitudinal slope and floods the result to investigate the extent of the stream or in this
case the valley bottom [22]. The Multi-resolution Valley Bottom Flatness (MRVBF) is a
slope-based algorithm that uses several neighborhood calculations moving from small
to large in an attempt to capture both small and large valleys, which are then combined
into one single index [5]. Fluvial Corridor Toolbox is a workflow that contains several
tools for extracting and classifying fluvial features. The workflow consists in part of a
slope-based algorithm that extracts valley bottoms by calculating an altimetric reference
plan along the river subtracting that from the original elevations to obtain a detrended
elevation. This is subjected to a threshold to capture elevations that are then classified as
the valley bottom [23]. Finally, Valley Bottom Extraction Toolbox (V-BET) is a relatively
recent tool that uses a slope-based algorithm that works as a function of the drainage basin
and scales results depending on the location within the basin [20].

Table 1. Some existing valley bottom delineation tools, their data requirements, and defining algorithm.

Tool Data Requirements Algorithm Reference

(1) Height Above River (HAR) DEM and stream network Flooding [21]
(2) River Bathymetry Toolkit (RBT) DEM Flooding [22]
(3) Multi-resolution Valley Bottom

Flatness (MRVBF) DEM Slope [5]

(4) Fluvial Corridor Toolbox DEM Slope [23]
(5) Valley Bottom Extraction

Toolbox (V-BET) DEM and stream network Slope [20]

Tools that use the flooding algorithm such as HAR and RBT have limitations of scaling
up to the entire drainage basin since they use a single flood depth [20]. This implies
that a flooding depth that delineates the valley bottom at the downstream side of the
drainage basin results in an underestimation of the valley bottom at the upstream areas.
Correspondingly, a flooding depth that delineates the valley bottom at the upstream side
would result in an overestimation at the downstream areas [20]. Slope-based algorithms
such as MRVBF and V-BET also have scale issues whereby slope thresholds that work
for larger valleys fail to work on smaller confined ones leading to an exaggeration of the
valley bottom and vice versa [20]. These scaling issues proved to be prevalent during our
preliminary testing of the existing tools displayed in Table 1.

Our incentive for developing a new tool for the delineation of river valley bottom
was to improve on existing methods by giving delineations that are more accurate while
keeping the tool relatively simple to use. Due to their ideal location as a flat part of
the landscape, valley bottoms can create conflicts of land uses between humans and the
ecosystems [24,25]. Our approach made it possible to map whole drainage basins upscaling
to a national map. We used Denmark with an area of about 43,000 km2 as an example.
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The overall objective of this paper is to present a stepwise GIS approach for the
delineation of river valley bottom within drainage basins and use it to perform a national
delineation. We hypothesize that based on novel GIS techniques along with spatial inputs
such as a DEM, river network, and wetland areas, we can carry out our delineation tackling
issues of scaling. The need for an accurate river valley bottom delineation tool is warranted
in studies that support policy for protecting watercourses from upland nutrient pollution.

2. Materials and Methods
2.1. Study Area

Denmark is located in Northern Europe (Figure 3) and covers an area of about
43,000 km2. The country consists of the peninsula Jutland and an archipelago of 443
named islands, the largest being Zealand and Funen. The country is comparatively flat
with a mean elevation of about 31 m above sea level and the highest point standing at
about 172 m above sea level. A large part of the terrain consists of rolling plains with sandy
coastlines and large dunes located in Northern Jutland. It consists of several streams with
the largest being the Gudenå (149 km), Skjern Å (96 km), and Storå (100 km) [26]. Danish
landscapes are a result of multiple glaciations during the Quaternary period (last 2.6 Ma)
where ice covered Denmark several times. During the 100,000 years of the last glaciation
period (Weichselian glaciation), the ice advance came from the Baltic, Norway, Sweden,
and again from the Baltic and ended at the Main Stationary Line (MSL in Figure 3) [27].
The East Jutland ice advance (19,000 BP) came from the southeastern direction and ended
at the East Jutland ice border (E in Figure 3). This was followed by the Baelthav readvance
(18,000 BP) coming from a southeastern direction going through northwestern Zealand, the
Great Belt, southern and eastern Funen, and southeastern Jutland ending at the Baelthav
ice border (B in Figure 3) [28].
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Figure 3. The location of Denmark within Europe enlarged to show the major geomorphological
regions that stem from the major ice advances within the last glaciation (arrows). MSL = Main
Stationary Line, E = East Jutland ice border, B = Baelthav ice border [28].

2.2. Data

We used four datasets in the development of our river valley bottom delineation
tool (Figure 4). First, a DEM of Denmark (Figure 4a). This is LIDAR data collected and
processed by the Danish Agency for Data Supply and Efficiency. It has a resolution of
40 cm and can be downloaded freely (www.sdfe.dk, accessed on 2 April 2018). For the
development of the tool, we resampled the LIDAR data using bilinear interpolation to a

www.sdfe.dk
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10 m spatial resolution. We did this to remove noise in the data and reduce computation
time. Second, we used a GIS feature layer containing a river network of about 27,000 km
long, spanning the entire country (Figure 4b). This dataset is prepared by the Danish
Centre for Environment and Energy (DCE) at Aarhus University, Denmark, and is available
in their database. The third dataset is a GIS feature layer of 142 river drainage basins
(Figure 4c) also prepared by the DCE. Finally, we used a GIS feature layer of mapped
historic wetland areas (Figure 4d). These are digitized from old topographical maps and
cover an area of about 7500 km2 of the country [29]. We carried out a validation of the tool
at three areas (Bjerringbro/Hvorslev, Tåstrup, and North Funen) all having GIS feature
layers representing Groundwater Dependent Ecosystems (GDE) (Figure 5). These data
come from a study that digitized GDE from an old Danish map (ca. 1770–1867) [30]. This
is the earliest Danish detailed map (1:5000) representing the most undrained landscape
condition before the introduction of tile drainage in the 1850s. Of the digitized nature types,
meadow and marsh were used to represent the most widespread wetland types of GDE in
river valleys in Denmark [31].
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Figure 4. Spatial data used to develop the river valley bottom delineation tool consisting of (a) Digital
Elevation Model (DEM) in meters above sea level (m.a.s.l), (b) river network, (c) drainage basins
(highlighted is the Gudenå drainage basin located in the peninsula of Jutland, which we subsequently
use to illustrate our delineation approach), and (d) wetlands.
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Figure 5. Spatial data used to validate the river valley bottom delineation tool consisting of three areas:
(a) Bjerringbro/Hvorslev, (b) Tåstrup, and (c) North Funen with expertly digitized Groundwater
Dependent Ecosystems (GDE) consisting of the nature types meadow and marsh [30].

3. Methodology
3.1. Cost Distance Accumulation

We created a tool that uses a stepwise approach to delineate the river valley bottom
using GIS techniques. We used the Python programming language, primarily ArcPy, a site
package that is useful in customizing ESRI ArcGIS functions for geographic data analysis,
management, and automation. The primary methodology that we used was cost distance
accumulation. It works by quantifying surface movement based on the potential accumu-
lative effort (known as cost) that is required to move from an origin (source) to outward
locations (destinations). The source locations are assigned cost distance accumulations of
zero and the algorithm calculates cost distance accumulations outward based on resistance
factors encountered with each move. These factors can be a representable magnitude of
a form of resistance that the user wants to model (e.g., slope, friction, wind, etc.). The
result is often used to calculate the least costly or effortless path to traverse between two
locations (e.g., best hiking route, least costly route for a pipeline, wildlife corridor habitats,
etc.). We calculated cost distance accumulation using the river centerline as the source
and the slope of the terrain as the cost limiting the calculation within the boundary of
drainage basins. We hypothesize that we are going to experience a greater increase in the
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cost distance accumulation at the boundary of the river valley bottom, which consists of
increasing slopes when compared to the valley bottom. We demonstrate the algorithm in
Figure 6, as well as Equations (1)–(3).

a(i)perpendicular =
cost(i)+cost(i + 1)

2
, where i = 1, 2, 3 . . . n (1)

a(i)diagonal = 1.4142
(

cost(i)+cost(i + 1)
2

)
, where i = 1, 2, 3 . . . n (2)

Cost accumulation =
n

∑
i=1

a(i), where i = 1, 2, 3 . . . n. (3)
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Figure 6. Cost distance accumulation algorithm demonstrating movement from a starting point
(source) to an ending point through a path that incorporates perpendicular and diagonal movement.
Equations (1)–(3) illustrate the computation of the costs and accumulation.

This concept was first introduced as the DTW index with an application of modelling
soil moisture conditions [32–35]. Their model accumulates the slope values within cells
but does not consider the gradient of the slope values at the nodes. Our approach models
the least-cost paths by accumulating the gradient of the slope calculated at the nodes.

3.2. A Stepwise GIS Approach

We processed the input DEM using a fill operation to eliminate any localized peaks
and sinks before the analysis. Figure 7 illustrates the first two steps using the Gudenå
drainage basin (ca. 2700 km2) located in the peninsula of Jutland (highlighted in Figure 7c).
At step 1, the tool calculated a slope raster using the 10 m DEM shown in Figure 7a. It then
conditioned the resulting slope raster by replacing values of zeros with a value close to zero
but not zero (e.g., 0.001), resulting in a conditioned slope raster as seen in Figure 7b. We do
this because the algorithm of cost distance accumulation is a multiplicative process and
does not work with values of zero. At step 2, it calculated the cost distance accumulation
within the drainage basin using the river network layer as the input source data and the
conditioned slope raster as the input cost (Figure 7b). This resulted in a cost distance
accumulation raster for the drainage basin as seen in Figure 7c. The cost distance accumu-
lation increases depending on the magnitudes of the slopes starting from zero at the river
network centerline.
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Figure 7. Initial steps that our approach takes to delineate the river valley bottom using an example
of the Gudenå drainage basin. At Step 1, using (a) the DEM as input, we calculate slope and condition
it to remove values of zeros, which results in (b) a conditioned slope raster. At Step 2, we use (b)
together with the river network as inputs to calculate (c) the cost distance accumulation within the
drainage basin.

We then needed a basis to extract the river valley bottom from the cost distance accu-
mulation raster. Figure 8 illustrates the subsequent steps that lead to the final delineation
of the river valley bottom for the drainage basin. We based our delineation on calculating
an estimate of the threshold cost distance accumulation that corresponds to the bound-
ary of the river valley bottom using wetland areas that are adjacent to rivers. The tool
first extracted wetland areas adjacent to rivers (Figure 8a) through a spatial analysis of
proximity between input wetland and river layers. To extract a non-skewed cost distance
accumulation threshold value, we filtered out zero and high outlier cost distance accumu-
lation values located within the extracted wetlands adjacent to rivers (Step 3 in Figure 8).
The zero values correspond to values that fall directly at the river system (source) and the
high values are far from the river valley bottom boundary towards the uplands. The tool
extracted cost distance accumulation values ranging from greater than zero to a maximum
of 500 (Figure 8b). The choice of this range comes from plotting the distribution of these
values which results in a decay curve that plateaus before reaching 500 (Figure 9). The tool
then calculated the mean of these values that we used as a threshold cost distance accu-
mulation for extracting the river valley bottom for the drainage basin (Step 4 in Figure 8).
For the Gudenå drainage basin, the threshold cost distance accumulation is 90 as seen in
Figure 9. The final delineated river valley bottom extracted using this threshold is shown
in Figure 8c. We then created a loop that repeated this process until all Danish drainage
basins were processed and finally combined into one single layer.

We carried out a validation of the stepwise GIS approach by doing a percent overlap
analysis using our delineated river valley bottom and GDE that are adjacent to rivers within
the three validation areas (Figure 5). The analysis entailed finding an overlap between our
river valley bottom delineation and the GDE. It was then converted to a percentage by
dividing its area by the area of the extent that is covered by our river valley delineation.
We hypothesized that some of the delineated river valley bottom areas will contain some
GDE habitat areas with meadow and marsh.
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Figure 8. Subsequent steps that our approach takes to delineate the river valley bottom. At Step 3, using (a) wetland areas
adjacent to rivers as input, we extract (b) the cost distance accumulation values falling within and filter them to remove
outliers (extracting only values between zero and 500). At Step 4, we use (b) to calculate the mean of the values, which we
use as a basis to delineate (c) the river valley bottom from the cost distance accumulation of the drainage basin.
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Figure 9. Distribution of cost distance accumulation values in the range greater than 0 to 500 within
wetlands adjacent to rivers in the Gudenå drainage basin showing the mean value (value of 90) of
cost distance accumulation (red vertical line), which we use as the threshold for our river valley
bottom delineation. Count on the Y-axis represents the number of cost distance accumulation raster
cells within each band.

4. Results
4.1. River Valley Bottom Map of Denmark

We ran the tool for the entire of Denmark delineating an area about 8500 km2 of the
river valley bottom, which is approximately about 20% of the country. We present the
resulting map and zoom into the areas that we subsequently use for validation (Figure 10).
When overlaid on a relief map generated by the 10 m DEM, the delineation visually looks
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good and falls on the low areas of the terrain as we expected. The tool delineates both
confined and unconfined river valleys within the drainage basins. Confined river valleys
can be seen as the narrow, mostly headwater river valley bottom sections, while unconfined
river valleys are wider downstream sections.
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4.2. Validation

Our validation explored the area that GDEs close to rivers occupy within the delin-
eated river valley bottom. This resulted in an overlap area between GDE and delineated
river valley bottom that we represent as a percentage of the river valley bottom extent
area, which is the area that covers the overlap and areas outside the overlap. We calculated
this for the areas of Bjerringbro/Hvorslev, Tåstrup, and North Funen (Figure 11). We also
present a summary of the validation results in Table 2. These percent overlaps can be
translated as the approximate amount of area within our river valley bottom delineation
that is wet. This implies that the larger the overlap, the better our tool can predict the river
valley bottom since most of these areas are wet and/or have the groundwater table close to
the surface.
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Figure 11. Validation of the developed river valley bottom delineation tool showing the areas of
overlap between the delineated river valley bottom and GDE, and the extent to which the river valley
bottom covers for the three validation areas.

Table 2. Validation results showing the valley bottom and Groundwater Dependent Ecosystems
(GDE) intersection area, valley bottom extent, and overlap.

Area Valley Bottom and GDE
Intersection (km2)

Valley Bottom
Extent (km2) Overlap (%)

Bjerringbro/Hvorslev 5.2 9.5 55
Tåstrup 10.6 15.7 67

North Funen 24.2 43.9 55

5. Discussion

Our tool delineates the river valley bottom using the slope as the determining factor
for the cost distance accumulation algorithm. This gives an advantage when scaling, since
a flat area will increase the cost distance accumulation at a slower pace while a steep area
increases it at a faster pace. This solves the issue of scaling, since confined headwater valleys
will increase the cost distance accumulation rapidly at a short distance away from the
river centerline, whereas unconfined valleys will increase the cost distance accumulation
at a slower pace. The net result is that the threshold cost distance accumulation value for
capturing the river valley bottom boundary is at relative distances for different types of
valleys. This means that the threshold value at confined headwater valleys close to the river
will be achieved at roughly the same cost distance accumulation as that of the unconfined
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valley that is further downstream. This can be seen in the results in Figure 10 where
confined headwater valleys and unconfined downstream valleys are both automatically
captured within the different areas. The wetlands input gives a further guide to finding
the threshold cost distance accumulation value through working out a mean of the values
found within the flat valley area, which, in turn, gives a more accurate delineation.

We acknowledge the similarities between the tool we developed and the DTW index.
There is, however, an underlying difference in computation. The DTW model computes
the accumulative slope values along a least-cost path by summing up the cell’s slope
values. Our method uses the ArcGIS function Cost Distance Accumulation calculating the
accumulated cost distance by considering nodes. The cost distance accumulation is the sum
of an average of the slopes at the nodes when moving between cells. This provides a better
approximation of the effect of modelling movement in space compared to the DTW index.

It is quite difficult to carry out a validation of the river valley bottom since there is no
measurable quantity [5]. Therefore, we opted to use the GDE as a proxy of finding if our
delineated river valley bottom is in agreement with nature types commonly found within
these areas. Our validation revealed that more than 55% and in one case 67% (Table 2
and Figure 11) of our delineated river valley bottoms contain GDE. We expected this since
farmers have been reclaiming the low-lying areas in Denmark during the last 200 years
when the first map was created. A study revealed that Danish GDE have been historically
decreasing where the total area halved, moving from the beginning of the 19th century to
the second half of the century [30]. We see this reduction in the low overlap values that
we get with our river valley bottom since our tool delineates both the dry and wet valley
bottom. We believe that the validation would have given better results if the first mapping
was conducted before the reclamation of these areas. The three areas used for the validation
of the model are the only existing available data that we have. It is a monumental task to
digitize old topographical maps on a national scale.

The tool performs well but has some limitations. The first limitation applies to the
coastal areas where the delineation picks up strips of the beach due to its low elevation
(Figure 12a). Another limitation is in very wide laterally unconfined areas such as fluvial
plains in downstream coastal areas. Due to the size of the floodplain, the tool sometimes
fails to delineate the entire low-lying area and resolves to delineate valleys from individual
rivers (Figure 12b). There are also limitations concerning input data such as only being able
to delineate a river valley bottom in areas that have river data. It is, therefore, important
to use a good layer of the river system with the right level of detail as input. In addition,
the DEM resolution should be at the level of detail of capturing the confined headwater
valleys, e.g., if the interest was in capturing valleys that are less than 10 m then a 10 m
DEM would be insufficient for the task.
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Figure 12. Limitations of our river valley bottom delineation tool showing (a) limitations at coastal
areas in which the tool delineates strips of the beach and (b) limitations with wide laterally unconfined
valleys where, in some cases, the tool fails to delineate the entire low-lying area delineating valleys
from individual rivers only.

6. Conclusions

This study presents a new GIS tool for the delineation of the river valley bottom
across multiple drainage networks. This is an important management tool since it can
delineate an area that has been the focus of management actions in terms of protecting
rivers against upland nutrient pollution. We use novel, automatic GIS techniques and
illustrate the development of the tool through steps using the Gudenå drainage basin in
Denmark. The main method is cost distance accumulation using a river network as the
source and slope derived from a Digital Elevation Model (DEM) as cost. We then find a
threshold river valley bottom boundary using wetland areas adjacent to rivers as a guide.
We run these steps for all drainage basins of Denmark eventually creating a national map
of the river valley bottom. The tool visually performs well by extracting valley bottoms
that appear to be within the lowest areas of the terrain adjacent to the river network.
We validate the resulting tool by finding an overlap of the delineated river valley bottom
with Groundwater Dependent Ecosystems (GDE) at selected areas. The validation reveals
that at least half to two-thirds of the river valley bottom contains GDE, which is what we
expected since the GDE data we used to validate was collected at a historical time during
which farmers had already started reclamation of low-lying areas. However, the tool has
limitations such as delineating beach areas in river coastal outlets and sometimes fails to
delineate the whole low-lying area in wide unconfined valleys. Additionally, the tool will
only delineate a river valley bottom at an area that contains river data, and therefore a
good river network with the right level of detail should be used as input. We expect that
the resulting map can be used for planning and policy support in terms of managing the
economic use of river valley bottom areas in Denmark, e.g., agriculture.
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