
water

Article

Optimal Design of District Metered Areas in a Water
Distribution Network Using Coupled Self-Organizing Map and
Community Structure Algorithm

Xuan Khoa Bui, Malvin S. Marlim and Doosun Kang *

����������
�������

Citation: Bui, X.K.; Marlim, M.S.;

Kang, D. Optimal Design of District

Metered Areas in a Water

Distribution Network Using Coupled

Self-Organizing Map and Community

Structure Algorithm. Water 2021, 13,

836. https://doi.org/10.3390/

w13060836

Academic Editor: Andreas Lindhe

Received: 25 February 2021

Accepted: 16 March 2021

Published: 18 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Civil Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si,
Gyeonggi-do 17104, Korea; khoabx@khu.ac.kr (X.K.B.); malvinmarlim@hotmail.com (M.S.M.)
* Correspondence: doosunkang@khu.ac.kr; Tel.: +82-31-201-2513

Abstract: Operation and management of a water distribution network (WDN) by district metered
areas (DMAs) bring many benefits for water utilities, particularly regarding water loss control and
pressure management. However, the optimal design of DMAs in a WDN is a challenging task.
This paper proposes an approach for the optimal design of DMAs in the multiple-criteria decision
analysis (MCDA) framework based on the outcome of a coupled model comprising a self-organizing
map (SOM) and a community structure algorithm (CSA). First, the clustering principle of the SOM
algorithm is applied to construct initial homologous clusters in terms of pressure and elevation. CSA
is then coupled to refine the SOM-based initial clusters for the automated creation of multiscale and
dynamic DMA layouts. Finally, the criteria for quantifying the performance of each DMA layout
solution are assessed in the MCDA framework. Verifying the model on a hypothetical network
and an actual WDN proved that it could efficiently create homologous and dynamic DMA layouts
capable of adapting to water demand variability.

Keywords: district metered area; multiple-criteria decision analysis; pressure management; water
distribution networks; water network partitioning; self-organizing map

1. Introduction

The introduction of the divide-and-conquer paradigm in the early 1980s has simplified
the computation and control of leakage in a large water distribution network (WDN) [1].
The original network is decomposed into subsectors called district metered areas (DMAs).
Each DMA is separated from the remaining network via intervening valves, and flowmeters
are installed to measure the water quantities entering and leaving the DMA [2]. The method
for dividing a WDN into DMAs is generally called water network partitioning (WNP) and
comprises two phases: clustering and sectorization [3]. The clustering phase focuses on
defining the optimal configuration of the DMAs, and the sectorization phase physically
decomposes the network by determining the location of flow meters and gate valves.

The operation and management (O&M) of a WDN using DMAs has been proven
to have several merits, a few of which are listed as follows: (i) leakage control, which in
turn reduces the quantity of non-revenue water [4–6]; (ii) simple pressure management [7];
(iii) prompt identification of burst pipes and speedy repair [8]; (iv) protection of the network
from accidental or malicious contamination events [9,10]; (v) monitoring of water quality
and optimized sensor placement [11]. By contrast, installing the DMAs in a WDN has trade-
offs such as (i) increased capital cost due to device installation [12,13]; (ii) reduced pressure
redundancy due to valve-controlled isolation [14]; (iii) changed water age (WA) due to
altered flow paths, which may influence on the water quality in the network [15]. Thus,
the balance between merits and demerits should be considered during the implementation
of DMAs.
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A WDN hydraulic model is a planar graph with several vertices (i.e., nodes) intercon-
nected through edges (i.e., pipes). Therefore, a WDN inherits the attributes of most graph
theorems [16]. In other words, WNP is considered to have similarities with most graph
partitioning approaches and inherits their properties. Over the last decade, WNP has been
considerably explored and developed [17]. Although numerous approaches have been
proposed for WNP, most of them are based on graph theory and engineering judgment.
Exhaustive research [18] presented state-of-the-art methodologies for optimizing the two
phases of WNP.

The clustering phase is a crucial process in establishing the DMAs, as it determines the
shapes and dimensions of the DMAs while minimizing the number of boundary pipes. A lit-
erature review in this field revealed the following six most commonly used approaches
for water network clustering: (1) graph theory-based algorithm [19–22]; (2) traditional
modularity-based algorithm [23–28]; (3) adjusted modularity-based algorithm [29–32]; (4) mul-
tilevel recursive bisection (MLRB) [3,10,13,33]; (5) spectral clustering-based method [34–36];
(6) multi-agent approach [37–39].

Several studies have been designing dynamic DMAs rather than permanent DMAs to
overcome failures and enhance network reliability in abnormal cases. Giudicianni et al. [40]
proposed a method to create dynamic DMAs that allow the expansion of the existing
DMAs while maintaining the set of boundary pipes in each sub-area. Wright et al. [41]
presented the concept of reconfigurable DMAs to enhance the service pressure, reduce
leakage, and improve system resilience. Liu and Lansey [42] proposed an approach for
optimal DMA design based on multiple-phase optimization. Pesantez et al. [43] developed
a method to design DMAs by coupling geospatial tools (e.g., ArcGIS) and hydraulic
models (e.g., EPANET). Most recently, Santonastaso et al. [44] presented a highly practical
method, in which the position of existing valves in WDN was considered to adjust a generic
WDN partitioning algorithm by using a dual topology matrix, resulting in feasible DMAs
in reality.

In summary, many methods have been developed to divide a WDN into DMAs.
However, they are classified into two general classes involving two types of computer algo-
rithms: graph partitioning algorithms, and modularity index-based community structure
algorithms. The greatest weakness of these methods is that the size and number of DMAs
are fixed by the experimenter or have not been properly evaluated. This causes the WNP
approaches to have certain shortcomings, listed below:

1. Graph theory–based WDN partitioning, including spectral algorithms and MLRB,
requires that the size and number of clusters be determined in advance [3,13,34,35,42].
Unfortunately, the optimal number of clusters (i.e., number of DMAs) is generally
not known in advance. Thus, the determination of the optimal number of DMAs in a
given WDN has not been addressed heretofore.

2. A modularity index-based optimization approach for exploring the communities in a
WDN was focused on the network topology information, whereas specific hydraulic
properties of the WDN have not been considered adequately [25,26,45,46]. This means
that practical engineering aspects (i.e., weighting factors of nodes/links) were not
integrated/embedded into the model adequately, thus forming infeasible DMAs.

3. A set of standard criteria and their degree for designing and evaluating the DMA’s
performance is lacking. In reality, water utilities develop a strategy to design DMAs
that focus on pressure management to ensure minimal leakage. Thus, maintaining
a uniform pressure in each DMA is essential, especially in a water network with
multiple sources or irregular topographical conditions. Therefore, it is desirable to
propose a method that addresses these aspects.

4. Recently, an artificial neural network (ANN) approach, called self-organizing map
(SOM) [47], was applied to a WDN clustering [7,48]. However, the related studies did
not consider the hydraulic features and network topology of the generated DMAs.

This paper presents a novel approach for the optimal design of DMAs (i.e., number
and layout of DMAs) in a given WDN. A three-phase strategy is implemented. First, the
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SOM and community structure algorithm (CSA) [24] are coupled to decompose a WDN
into multiscale DMAs. Accordingly, an attribute matrix is constructed for training the SOM
by considering the network geometry, topology, and hydraulic properties at the nodes (e.g.,
elevation and pressure). Thus, the SOM allows the generation of initial clusters that are
homologous in terms of hydraulic properties. CSA is then coupled to refine these initial
clusters to create multiscale and dynamic DMA layouts automatically. Second, a heuristic
procedure based on the genetic algorithm (GA) is adopted for deciding the locations of gate
valves and flow meters along the boundary pipes for realizing alternative layouts. Finally,
a set of indices is proposed to evaluate the WNP performance of the alternative solutions.
Five indexes, i.e., demand similarity, pressure similarity, resilience, WA, and capital costs,
are considered to assess the performances of the WNPs. To this end, a multiple-criteria
decision analysis (MCDA) framework using the technique for order preference by similarity
to ideal solution (TOPSIS) [49] is employed to determine the optimal design of DMAs in
the network.

The remainder of this paper is organized as follows. Section 2 presents the method-
ology proposed in this study. The case study and application results are discussed in
Section 3. Finally, Section 4 summarizes and concludes the meaningful results obtained in
this study.

2. Methods
2.1. Characteristics of WDN

From a topological point of view, the structures of a WDN are modeled as a graph
and are represented using a matrix [50]. The following sections present the mathematical
structure and basic properties of a WDN using several matrices.

2.1.1. Adjacency Matrix

A WDN is presented mathematically by mapping onto a graph G = (V, E), where
V is the vertex set of n nodes representing the junctions, reservoirs, and tanks, and E is
the set of m edges containing pipes, valves, and pumps. The adjacency matrix A is the
most common representation of a graph, which indicates the vertices to which a given
vertex is adjacent. The adjacency matrix of an undirected network is square and symmetric.
Considering a pair of nodes i and j, A has elements Aij, defined such that

Aij =

{
1, if nodes i and j are connected,
0, otherwise.

(1)

The degree of a node (DoN), ki, reflects the number of edges connected to a vertex i
and is defined as

ki = ∑n
j = 1 Aij. (2)

The adjacency matrix is a fundamental technique used in mathematics for representing
and solving graphs. In the subsequent sections, advanced matrices are described based on
the adjacency matrix to measure the strength of the relationship between pairs of nodes in
the network.

2.1.2. Topology Similarity (TS) Matrix

The topology similarity (TS) index is used to quantify the closeness between node
degrees in a network [51]. In terms of the topology, the nodes in a pair are similar if they
share several neighbors. For a pair of nodes i and j, let Γi and Γj denote the set of neighbors
of nodes i and j, respectively. According to Salton et al. [52], the TS is defined as the number
of common neighbors of two nodes divided by the geometric mean of their DoNs:

TSij =

∣∣Γi ∩ Γj
∣∣√

ki × k j

, (3)
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where TSij is the topology similarity index of nodes i and j, and its value is bounded
between 0 and 1. A higher value indicates that two nodes are likely to be grouped into the
same cluster.

2.1.3. Hydraulic Similarity (HS) Matrix

The hydraulic similarity (HS) index is used to quantify the correlation between a pair
of nodes in a WDN based on its elevation and pressure. Consider a pair of nodes i and j.
They are similar in terms of hydraulics if the root-mean-square deviation (RMSD) of the
elevation and pressure is the lowest; in other words, the RMSD subtraction from 1 gives
the highest value. Nevertheless, distinguishing the linkage between a pair of nodes as
directly or indirectly connected may result in inaccurate identification of the network’s
clustering structure. Thus, the HS between a pair of nodes is formulated as follows:

HSij =

1−

√
e2

ij + p2
ij

2
, if nodes i and j are connected,

0, otherwise.

(4)

where eij and pij are the differences in elevation and pressure between nodes i and j. They
can be calculated by normalizing two data measurements, in which

eij =

∣∣∣∣Ei − Ej

Emax

∣∣∣∣ (5)

and

pij =

∣∣∣∣Pi − Pj

Pmax

∣∣∣∣ (6)

where Ei and Ej, and Pi and Pj are the elevations and pressures at nodes i and j, respectively.
Emax and Pmax are the maximum elevation and pressure among all nodes in the network,
respectively. The value of the HS index in Equation (4) ranges between 0 and 1; a higher
value indicates greater similarity between nodes in a pair in terms of hydraulics.

A DMA is formed by a set of nodes with the maximum similarity. In other words, a
DMA configuration should guarantee the following:

1. The pairs of nodes in the DMA have a high TS index and HS index;
2. The pairs of nodes within a DMA must be connected directly.

Figure 1 shows the flowchart of three main phases of the proposed method:

1. In the clustering phase, hydraulic and topological data are prepared. Then, SOM is
adopted to form homologous clusters before the CSA is applied for refining cluster
sizes into multiscale DMAs;

2. In the sectorization phase, flowmeters and gate valves are optimally located in the
boundary pipes identified in the clustering phase;

3. In the MCDA phase, TOPSIS is designed to rigorously evaluate the performance
of the multiscale DMA layouts that are obtained in the sectorization phase, aiming
to determine the optimal DMA layout in a given WDN. The detailed methodology
proposed for each phase is described in the following sections.
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Figure 1. Flow chart of the proposed approach.

2.2. Phase 1: Coupled Model of SOM and CSA for Clustering Dynamic DMAs
2.2.1. SOM-Based Clustering of Homologous Regions in WDN

The SOM is a specific type of ANN method developed by Kohonen [47]. A SOM is an
unsupervised clustering method that can learn/classify patterns from data without external
supervision. The original purpose of the SOM is to transform high-dimensional input data
into lower-dimensional data (generally two dimensions), thus making it easier to analyze
and visualize the topology of the input data. The main advantage of the SOM is that it
preserves the topology of the input data structure after training, thus revealing the optimal
number of clusters inherent to the input space by mapping it to a two-dimensional structure.
The structure of the SOM model is illustrated in Figure 2a. An in-depth discussion of the
SOM algorithm can be found in the literature [47,53]. A brief description of the SOM model
for clustering a WDN into homologous regions is provided subsequently.
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Figure 2. Illustration of self-organizing map (SOM) model: (a) two-layer SOM for community
detection; (b) schematic to illustrate the performance of SOM to determine district metered areas
(DMAs) in water distribution network (WDN).
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As seen in Figure 2a, a SOM contains a single layer of m neurons (C) directly connected
to n-dimensional input vectors (V) by random weights (W). Here, the length of an input
vector is equal to the number of nodes in a given WDN. As discussed in Section 2.1, the
topological and hydraulic relationship between pairs of nodes in a WDN is represented by
a matrix (X) given as

X = A + TS + HS, (7)

where A, TS, and HS are the adjacency matrix, TS matrix, and HS matrix, respectively. To
visualize the formulation, Equation (7) can be rewritten as

X = [x1, x2, . . . , xn], (8)

where n is the number of nodes in the network, X is a symmetric n × n matrix, and
xi = [xi1, xi2, . . . , xin]

T , for i = 1, 2, . . . , n. Thus, the SOM input vector is equivalent to
each column of X matrix (i.e., xi) and the larger the value of its element xij is, the more
possible that nodes i and j will be in the same cluster. To eliminate the sensitivity of the
scale variation, the input values are normalized before training the SOM.

The neurons of SOM (i.e., output layers) are generally arranged in a typical two-
dimensional structure. Higher-dimensional output layers are also possible but are generally
not encouraged because it is difficult to visualize layers with more than three dimensions.
In the SOM architecture, each neuron is a black box where a mathematical operation is
executed during the training time and reveals the topological structure of the input space.
The SOM size has a significant effect on the degree of stratification of the input space. A
small SOM size may aggregate much of the input’s spatial structure, whereas a large size
would result in many different strata. Hence, in this study, the output layer’s size was
determined by a self-adaptive approach based on the scale of variation of pattern values
at the nodes in Equation (8) to ensure that the maximum possible number of clusters is
formed from the input data. Figure 2b illustrates the utilization of a trained SOM for a
hypothetical WDN with a map size of 3× 1.

The weight vector of each neuron has the same dimension as the input pattern. It is
denoted by the following equation:

wj =
[
wj1, wj2, . . . , wjn

]T , j = 1, 2, . . . , m (9)

where wji is the weight vector that connects the jth neuron to the ith input layer; m is the
number of neurons in the output layer, and n is the total training nodes in the WDN.

The training process begins with all weights initialized randomly based on the princi-
pal components of the input data. Then, the SOM model calculates the similarity between
each input vector xi and the weight vector wj. The Euclidean distance is used to measure
the closeness between xi and wj as follows:

Sj = ‖X−wj‖ =

√
∑m

j = 1

(
xi − wji

)2, i = 1, 2, . . . , n (10)

where ‖ · · · ‖ represents the Euclidean norm. A smaller similarity value of S indicates that
the two vectors are very similar. Thus, the output neuron c with the weight vector that has
the smallest similarity is taken as the winning neuron.

c = argmin
j

{
‖X−wj‖

}
(11)

The weight vector of the winning neuron, as well as those within a certain radius of
the winning neuron, are adjusted and updated. The adjusted weight of the winning neuron
is given as follows:

∆wj = αhj
(
X−wj

)
(12)
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where α and hj are parameters of learning rate and topological neighborhood (i.e., neigh-
borhood radius), respectively. Hence, the updating weight vector at the time (t + 1) is
defined by the equation as follows:

wj(t + 1) = wj(t) + α(t)hj(t)
(
X−wj(t)

)
, (13)

where α(t) and hj(t) are learning rate parameters and neighborhood radius at time t,
respectively. Equations (11)–(13) are repeated sequentially for all neurons in the output
layer and cycled through until the weight vectors converge within a certain tolerance or
the defined number of iterations is reached.

In Equations (12) and (13), the learning rate α is a parameter that reflects the contri-
bution of each training input vector to the updated weight of the vector. It has a value
between 0 and 1 and is updated during the training time as

αt+1 = αt

(
1− 1

n

)
(14)

where n is the number of nodes in the WDN. The neighborhood radius (h) is a parameter
that influences the search of the neighboring winner neurons. The higher the value of h,
the more strongly the neurons are affected by the weight update of an individual neuron in
each training step. In this study, the Gaussian neighborhood function is used to determine
the radius of influence of the winner neurons.

2.2.2. CSA-Based Creation of Multiscale and Dynamic DMAs

An advanced tool for visualizing the clustering results from SOM is the U-matrix. In
U-matrix, each neuron maps the average Euclidean distance between each input node and
its nearest neighbors in a high-dimensional space onto the two-dimensional map within
the grids of the U-matrix. In other words, the neurons are the place to archive input nodes
and their neighbors with the closest similarities. Therefore, after the SOM training, the
neurons are considered initial clusters, and the potential number of homologous regions
is revealed.

On the other hand, because the input data is a high-dimensional space (i.e., n× n
matrix, where n is the number of nodes in the WDN) and contains various data patterns
(e.g., the variations in the topological and hydraulic values at the nodes), the visualization
of the cluster regions using the U-matrix may not be clear. Neurons in the SOM’s output
structure are then mapped on a real WDN being considered. By doing so, it is possible
to examine whether a node is assigned to a cluster while being physically outside of this
cluster. Therefore, the initial clusters may larger than the number of neurons in the SOM
structure, leading to a coarser and unbalanced layout (e.g., size and number of clusters).
This means that the initial clusters from the SOM model need refinement to reduce the
number of groups, increase the quality of clustering, and balance the number of nodes
allocated to each cluster to create practical DMAs in reality.

For these reasons, the CSA is embedded as an external method to evaluate and
strengthen the quality of clustering implemented via the SOM. After the initial clusters
have been attained from the SOM model, they are reconstructed into new clusters. All
initial clusters are compressed into a super-node that connects each other by external links
(i.e., links connecting boundary nodes in different clusters). The modularity-based CSA
proposed by Clauset et al. [24] is used to calculate the modularity index as follows:

Q = ∑
i

(
eii − a2

i
)
, (15)

where eij is one-half the fraction of links that join the nodes in cluster i to those in cluster j.
Thus, ∑i eii is the total fraction of links that occur within the clusters, and ai is the fraction
of all the ends of links that are joined to the nodes in the cluster i.
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The change in Q upon joining of two neighboring clusters i and j, whether make an
increasing or decreasing as follows:

∆Qij = 2
(
eij − aiaj

)
(16)

In each step, the algorithm searches for the maximum among the positive values of ∆Qij
and joins that corresponding pair of clusters to achieve the highest increase in modularity. For
this CSA, the modularity index is updated by adding max

(
∆Qij

)
to the previous step. At the

end of the iteration process, the number of communities decreases by 1.
By adopting this approach, the CSA performs two functions. The first is the automated

creation of multiscale DMAs by merging the clusters into new bigger clusters based on
the modularity index. The second is dynamic partitioning; thus, the DMAs obtained are
dynamic configurations. In particular, the new layout reconfiguration obtained after the
size-reducing multiscale DMAs in the present step always preserves the set of boundary
pipes in the previous steps [40]. In other words, a set of boundary pipes for any new DMA
layout always maintains a subset of the previous layout. Using the coupled model of SOM
and CSA allows to dynamically aggregate/disaggregate network to multiscale DMAs
while taking advantage of homologous clustering created by SOM. Whilst, the use of CSA
alone for clustering mainly focuses on modularity index, which is the quality measure
of network density to define the clusters with assuming that the density of a network
division is effective if there are many edges within communities and only a few between
them [24,25].

The flowchart in Figure 3 summarizes the procedure to develop the initial clusters
into multiscale and dynamic DMAs in the proposed method:

Figure 3. Flowchart of the clustering approach.

2.3. Phase 2: GA-Based Sectorization

The shape and size of each DMA were determined in the clustering phase, which
means a set of boundary pipes was identified. This second phase, called sectorization, aims
to determine the location of flow meters and gate valves among the boundary pipes to
decompose the network into independent DMAs.

A minimum number of flow meters should be installed to reduce the initial investment
budget and operating costs from the O&M perspective. In contrast, a greater number of
closed gate valves results in increased head loss and internal power dissipation. Thus,
it reduces resilience against the occurrence of a failure in the system. In essence, an op-
timization process can be implemented to achieve several user-oriented goals. Laucelli
et al. [4] proposed a method that simultaneously considers three objective functions for
optimal DMA segmentation, such as minimizing the number of flow meters and inter-
mitting customer demand while maximizing the reduction of leakage. Zhang et al. [45]
presented a framework to locate devices by minimizing the number of boundary pipes
and maximizing network pressure and WA uniformity. Campbell et al. [54] optimized
the sectorization tasks by integrating a series of energy, operation, and economic criteria.
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Recently, Giudicianni et al. [40] developed a heuristic framework for dynamic partitioning
of WDNs using multi-objective functions to address different goals for saving energy, water,
and cost. Similarly, various objective functions have also been reported in [29,30,42].

The objective functions for sectorization essentially vary among designers and depend
on the final goal of the WNP. Regarding energy, the total power of a WDN is categorized
into dissipated power at the pipes (i.e., internal power loss) and supplied power at the
node (i.e., external power supplied). In this study, the optimal position of gate valves
aims to maximize supplied power at the nodes. A heuristic procedure using the GA was
developed to maintain the hydraulic performance of the network at the lowest dissipated
power. This requires maximizing the nodal head after sectorization. It is formulated as the
following objective function:

max

(
γ

n

∑
i
(zi + hi)Qi

)
, (17)

where γ is the specific weight of water, and zi, hi, and Qi are the elevation, pressure, and
water flow at node i under peak demand conditions, respectively.

Nevertheless, the objective function is constrained by the expression of Equation (18)
to ensure that all nodal pressures must be equal or higher than the minimum required
pressure to serve all users.

hmin ≥ h∗, (18)

where hmin is the minimum nodal pressure in a network and h∗ is the minimum required
pressure. It varies among the countries/cities or according to the capability of the water
utilities. In addition, the maximum number of flowmeters is constrained to be less than or
equal to the number of DMAs in the network.

The GA is implemented as follows: each individual in the population set is a solution
represented by a sequence of binary chromosomes with a length equal to the number of
boundary pipes (Nbp) . At the boundary pipes, either a flowmeter or gate valve is installed.
Thus, the number of flowmeters (N f m) to be installed in the network is chosen, then

Ngv = Nbp − N f m (19)

in which Ngv corresponds to the number of gate valves to isolate the DMAs. Therefore, the
chromosome corresponding to the nth boundary pipe is set to 0 if a gate valve is installed
or to 1 if a flow meter is installed [3,34,40]. Each individual is evaluated by computing the
fitness value Equation (17) to choose the optimal solution.

2.4. Sample Network Demonstration of Phases 1 and 2

A sample WDN with 23 nodes and 28 pipes is presented here to illustrate the proposed
method. The layout of the network and hydraulic properties are shown in Figure 4a. The
elevation and pressure changes at the nodes dividing the network into three distinct regions
can be seen in Figure 4b.
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Figure 4. Sample network illustration: (a) WDN layout and (b) variation in pressure and elevation at nodes.

The network is abstracted to the A matrix, TS matrix, and HS matrix obtained based
on Equations (1), (3), and (4), respectively, and they are sequentially reported as three
matrices as shown in Figure 5a–c. The TS matrix is described by Equation (3) and quantifies
the topological similarity of a pair of nodes. According to Equation (4), the HS matrix
illustrates the correlation between the elevations and head pressures of a pair of nodes.
Before normalization for training the SOM, an integrated matrix created by adding up the
three attribute matrices of A, TS, and HS was obtained based on Equation (7) as shown in
Figure 5d.
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Figure 5. Construction of attribute matrices for the sample network. (a) Adjacency matrix (A) obtained from Equation (1);
(b) TS matrix obtained from Equation (3); (c) HS matrix obtained from Equation (4); (d) Input matrix (X) for training the
SOM obtained from Equation (7).

The pairs of nodes with the most similar values are grouped into a cluster. Therefore,
based on each column of the X matrix, node 1 has a greater tendency to connect with
nodes 2 and 3 to form a cluster, whereas nodes 4 and 15 are less likely to group with node 1.
Similarly, node 2 has a greater possibility to match nodes 1 and 3, followed by node 15. In
contrast, node 2 is less likely to be connected with nodes 4, 14, and 16.

For the sake of simplicity, SOM is applied and expressed according to the following
processes. Because of the differences in the scales of the values in the input matrix (X),
normalization is conducted to reduce the sensitivity before training the SOM. The SOM
input here is a 23 × 23 symmetric matrix (equal to the number of nodes in the WDN).
Based on the size of the training dataset, the SOM was arranged and visualized on the
two-dimensional grid map comprising 3 × 3 cells (i.e., nine neurons). After a total of
50,000 iterations, the initial DMA was created. It was visualized as a U-matrix of the SOM,
as shown in Figure 6a, and the nodes belonging to these DMAs were labeled as shown in
Figure 6b.
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Figure 6. Results of training a SOM model for a sample network: (a) U-Matrix map of 3 × 3 neurons; (b) nine initial clusters
obtained after training the SOM.

In the visualization results in Figure 6a, the nine neurons represented by blue hexagons
are fully connected in a mesh with multicolor regions to indicate the distance between two
neurons. The neurons connected by hexagons of lighter colors indicate a small distance
between each other. The darker the color, the greater is the distance between the neurons.
Although the configuration and number of clusters are empirically determined based on the
U-matrix, it is difficult to visualize because different colors’ strata are unclear. To produce a
clustering structure more visible, the SOM sample hits where the number of input items
matched to each neuron is mapped onto a two-dimensional plane. The configuration
in Figure 6b exposes nine initial clusters equivalent to the nine neurons in the U-matrix;
specifically, it reveals the nodes that are grouped into the same clusters. As shown in
Figure 6b, clusters 1, 2, 5, 6, 8, and 9 are generated by assembling the neighbor nodes, thus
creating homologous clusters. In other words, the nodes in each cluster are very similar
to each other in terms of the topology and hydraulic indices. Clusters 3, 4, and 7 include
only one node. This means that the nodes in these clusters are not homologous with the
remaining nodes in the network (i.e., heterogeneity in terms of elevation and pressure,
which does not allow the grouping of these nodes with the neighboring clusters). In short,
the SOM shows high performance in the detection of homologous clusters and outlier
clusters in the WDNs.

Because an initial macro DMA is generated and its size is unbalanced, it is not feasible
yet for O&M. Thus, the CSA proposed by Clauset et al. [24] is applied for two reasons. First,
CSA allows the detection of the dynamic DMA configuration by rescaling the initial DMAs
to obtain a new, larger DMA, in which a set of boundary pipes is a subset of the initial
layouts. Thus, it balances the size of the DMA and reduces the computational burden
on the subsequent sectorization phase. Second, using the results from the SOM, the CSA
will effectively reduce the running time to obtain a final DMA aggregation in a complex
network [55].

The CSA qualifies the communities in a network based on the modularity index (Q);
thus, the possible number of DMAs is determined using Q. As a rule of thumb, a DMA
layout is acceptable if the Q index is greater than 0.3 [55]. Figure 7a–h illustrates the change
in the DMA layout configuration by implementing the CSA, and Figure 7i shows the
variation in Q depending on the number of DMAs.



Water 2021, 13, 836 14 of 29

Figure 7. Post-partition results of the CSA: (a–h) multiscale DMA layouts (from 9 to 2 DMAs); (i) variation in modularity
index with the number of DMAs.
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A variance measurement was introduced to verify the results observed in the cluster-
ing phase. It indicates how far the nodal pressure deviates among the nodes in comparison
with the mean within the same cluster.

Var(Ci) =
1
n ∑

j∈Ci

(
hj − hmean

)2, (20)

where n is the number of nodes in the cluster Ci, and hj and hmean are the pressure at the
node j and the average pressure of all nodes in the cluster Ci, respectively.

Table 1 lists the variance of the pressure in each cluster for multiscale layouts, as
shown in Figure 7a–h. As can be seen, the SOM results for nine clusters create uniform
clusters in terms of the pressure, with an average variance of 0.0287. However, the CSA
subsequently reduces the number of clusters, resulting in a smooth increase in the variance.
Considering the layouts containing five to eight clusters (see Figure 7b–e), two facts can
be observed:

1. The pressure variance in these layouts is relatively small and varies gently;
2. The modularity index Q increases smoothly to a maximum of 0.5433 correspondings

to five clusters (see Figure 7i).

Table 1. Results for sample network clustering and comparison of performance.

No. of
Clusters Cluster Record Variance Record Average Variance Q

Index

9

C1 = {1,2,3}; C2 = {4,5,6,7};
C3 = {8}; C4 = {9,10,11,12};
C5 = {13}; C6 = {14,15,16};
C7 = {17}; C8 = {18,19,20};

C9 = {21,22,23};

Var(C1) = 0.0056; Var(C2) = 0.0873;
Var(C3) = 0; Var(C4) = 0.0135;
Var(C5) = 0; Var(C6) = 0.0423;
Var(C7) = 0; Var(C8) = 0.0261;

Var(C9) = 0.0838;

0.0287 0.4511

8

C1 = {1,2,3}; C2 = {4,5,6,7};
C3 = {8, 13}; C4 = {9,10,11,12};

C5 = {14,15,16}; C6 = {17};
C7 = {18,19,20}; C8 = {21,22,23};

Var(C1) = 0.0056; Var(C2) = 0.0873;
Var(C3) = 1.0898; Var(C4) = 0.0135;

Var(C5) = 0.0423; Var(C6) = 0;
Var(C7) = 0.0261; Var(C8) = 0.0838

0.1686 0.4767

7

C1 = {1,2,3}; C2 = {4,5,6,7};
C3 = {8,9,10,11,12,13};

C4 = {14,15,16}; C5 = {18,19,20};
C6 = {17}; C7 = {21,22,23};

Var(C1) = 0.0056; Var(C2) = 0.0873;
Var(C3) = 0.7191; Var(C4) = 0.0423;

Var(C5) = 0.0261; Var(C6) = 0;
Var(C7) = 0.0838

0.1377 0.5211

6

C1 = {1,2,3}; C2 = {4,5,6,7};
C3 = {8,9,10,11,12,13};

C4 = {14,15,16}; C5 = {18,19,20};
C6 = {17,21,22,23};

Var(C1) = 0.0056; Var(C2) = 0.0873;
Var(C3) = 0.7191; Var(C4) = 0.0423;
Var(C5) = 0.0261; Var(C6) = 0.0642;

0.1574 0.5422

5

C1 = {1,2,3}; C2 = {4,5,6,7};
C3 = {8,9,10,11,12,13};

C4 = {14,15,16};
C5 = {17,18,19,20,21,22,23};

Var(C1) = 0.0056; Var(C2) = 0.0873;
Var(C3) = 0.7191; Var(C4) = 0.0423;

Var(C5) = 0.0506;
0.1810 0.5433

4

C1 = {1,2,3,14,15,16};
C2 = {4,5,6,7};

C3 = {8,9,10,11,12,13};
C4 = {17,18,19,20,21,22,23};

Var(C1) = 7.1598; Var(C2) = 0.0873;
Var(C3) = 0.7191; Var(C4) = 0.0506; 2.0042 0.5422

3
C1 = {1,2,3,14,15,16};

C2 = {4,5,6,7,8,9,10,11,12,13};
C3 = {17,18,19,20,21,22,23};

Var(C1) = 7.1598; Var(C2) = 5.3974;
Var(C3) = 0.0506; 4.2026 0.4700

2
C1 = {1,2,3,4,5,6,7,8,9,10,11,12,

13,14,15,16};
C2 = {17,18,19,20,21,22,23};

Var(C1) = 6.1588; Var(C2) = 0.0506; 3.1047 0.3389
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On the contrary, in layouts with the number of DMA clusters less than five (see
Figure 7f–h), the variance in pressure in each cluster increases significantly, whereas the
Q indices decrease. This is because of the aggregation of clusters that are heterogeneous
in terms of pressure. For example, C1 and C4 in Figure 7e are joined to generate a new
larger cluster in Figure 7f, causing a significant increase in the pressure variance to 7.1598,
whereas the variances of the two original clusters were 0.0056 and 0.0423, respectively.

Although the CSA allows the preservation of the internal boundary pipes between
the clusters for each step, its drawback is that it optimizes the layouts by focusing on
maximizing the Q index. Therefore, considering from the Q index perspective, the number
of clusters in the potential layouts should vary from 2 to 5. Although the layouts with more
than five DMAs have an acceptable Q index (i.e., greater than 0.3), they are not preferable
since they require an excessive number of flowmeters to be installed. Nevertheless, with
regard to variance analysis, the number of reasonable clusters ranges from 5 to 9. Thus, a
post-analysis by comprehensive evaluation of the multiscale DMA layouts is proposed in
this paper. Section 2.5 presents the procedures for determining the optimal layout based
on the MCDA model.

2.5. Phase 3: MCDA-Based Comparative Analysis of Multiscale DMAs

In this section, an MCDA framework is introduced to determine the optimal DMA
layout. Accordingly, a set of criteria representing (1) the operational aspects (e.g., demand
and pressure similarity indices), (2) network reliability (resilience index), (3) water qual-
ity (WA), and (4) economic factors (capital costs) are investigated and comprehensively
evaluated for alternative DMA layouts.

2.5.1. Performance Indices of WNP
Demand Similarity Index (DSI)

The demand similarity index (DSI) quantifies the uniformity of the size of DMAs in a
WDN. For optimal O&M, the water demand in each DMA should be similar. The DSI is
calculated using the standard deviation of each DMA water demand compared with the
average demand as follows [36].

DSI =

√
∑k

d = 1(Qd −Qmean)
2

k
, (21)

where k is the number of DMAs in a WDN, Qd is the water demand at the dth DMA, and
Qmean is the average water demand of all DMAs. The smaller the value of the DSI, the
more uniform are the sizes of the DMAs in a WDN.

Pressure Similarity Index (PSI)

According to the fixed and variable area discharges (FAVAD) equation, the pressure
directly affects the leakage rate. Thus, the creation of DMAs with uniform pressure is
prioritized. The DMAs with similar pressure reduces the potential energy dissipation by
using the pressure relief valves (PRVs) and saving energy for the pumps. The following
equation formulates the pressure similarity index:

PSI =
k

∑
d = 1

Qd
Qtotal

√
∑n

i = 1(hi,d − hmean,d)
2/n

hmean,d
, (22)

where Qtotal is the total water demand of the network; hi,d, hmean,d, and n are the pressure
at the ith node, mean pressure, and the number of nodes at the dth DMA, respectively.

The first factor of summand in Equation (22) expresses the demand-weight factor of
the dth DMA, whereas the second factor reflects the normalized deviation of nodal pressure
within the dth DMA compared with its average pressure. The smaller the value of the
pressure similarity index (PSI), the more uniform the pressure within each DMA.
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Resilience Index (RI)

The RI is mainly correlated with the reliability of a WDN, which quantifies the ability
of the network to recover from system failures [56]. Here, RI is the ratio of the surplus
energy to the networks total energy, excluding the energy necessary to supply water to
meet the demand at the design pressure, and is expressed as follows:

RI =
∑nn

i = 1 qi(hi − hmin)

∑nr
r = 1 Qr Hr + ∑

np
p = 1 Qp Hp −∑nn

i = 1 qihmin
, (23)

where nn, np and nr are the number of demand nodes, pumps, and reservoirs in the
network, respectively; qi and hi are the water demand and pressure at the ith node; Qr
and Hr are the water discharge and total head, respectively, of the sources or tanks r; Qp
and Hp are the discharge and pumping head through the pumps, respectively; hmin is the
minimum required pressure for adequate service.

The higher the values of the RI indices, the better the performance of the WNP, which
indicates lower energy dissipation at the nodes, and thus better reliability and redundancy
of the WDN.

Water Age (WA)

WA is a surrogate indicator for evaluating water quality. It is calculated as the time
required for a parcel of water to travel from the source to the nodes in the network. Because
the WA affects the residual chlorine levels, it can be used as an appropriate index to
simulate the change in water quality in the WDN. The average WA of all the nodes in the
network is calculated as the demand-weighted WA, considering the contribution of nodes
with greater water demand, as follows:

WAoverall =
∑nn

i (qi ×WAi)

∑nn
i qi

, (24)

where WAi is the travel time for the water to reach the ith node from the source.

Capital Cost

According to Gomes et al. [12], the capital cost for constructing DMAs in the network
is the total cost of installing flowmeters and gate valves in the boundary pipes. Therefore,
the cost function for the designed DMAs is formulated as follows:

Cost = ∑
N f m
f m = 1 C f m

(
D f m

)
+ ∑Ngv

gv = 1 Cgv
(

Dgv
)
, (25)

where N f m and Ngv are the number of flowmeters and gate valves, respectively; C f m
(

D f m
)

and Cgv
(

Dgv
)

are the cost of the metering equipment and valve stations, respectively. The
cost varies depending on the diameters of the pipes.

2.5.2. Multi-Criteria Decision Analysis (MCDA)

The TOPSIS is a decision-making support tool that attempts to choose the best
solution among the alternatives by simultaneously considering the shortest distance
from the positive ideal solution, and the farthest distance from the negative ideal so-
lution. The primary process of the MCDA model based on TOPSIS is implemented in the
following steps.

Step 1: Construct and normalize the original decision matrix
Suppose there are n decision-making alternatives (i.e., DMA designs), and each alter-

native is evaluated based on m criteria (i.e., performance indices). The decision matrix D is
constructed as

D =
(
dij
)

m×n. (26)
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D =


d11, d12, · · · , d1n
d21, d22, · · · , d2n

...
. . .

...
dm1, dm2, · · · , dmn

 (27)

where dij indicates the performance index of the jth evaluation object for the ith
decision criterion.

Step 2: Standardization of criteria
For the standardization of various criteria to the same trend, the original decision

matrix D in Equation (27) is standardized to obtain the following equation:

S =
(
sij
)

m×n (28)

where sij is the normalized value of the jth evaluation object under the ith decision criterion,
sij ∈ [0, 1]. In the case of profitability criteria such as the resilience index (RI), a larger value
indicates better performance.

sij =

dij −min
j

dij

max
j

dij −min
j

dij
(29)

In the case of the cost criterion, WA, and similarity indices, a smaller value indicates
better performance.

sij =

max
j

dij − dij

max
j

dij −min
j

dij
(30)

Step 3: Normalize the decision matrix
This process aims to reduce the effects of different units and sizes of criteria.

rij =
sij√

∑n
i = 1 s2

ij

(31)

Step 4: The definition of weight for each indicator
The weight factors for the criteria reflect their relative importance in the decision-

making process, and critically affect the final score of the alternatives. In general, the
weights are determined by subjective and objective methods [57,58]; however, the expert
generally engages the decision-maker to appropriately structure the problem. In this study,
the weight factors are determined based on the sound engineering judgment that was
widely utilized in the early MCDA studies. Particularly, the identical weight of 0.2 is
assigned to each indicator, except for PSI and WA. Most studies indicated that controlling
uniform pressure in the DMAs is a critical task for water utilities to reduce the water
losses, leading to non-revenue water reduction [1,2,6,7,45]. To that end, the proposed
clustering method in this study aims to form homologous DMAs in hydraulic properties
(e.g., elevation and pressure). Therefore, PSI is deemed to be more important than the other
indicators and has a higher weight of 0.3. WA is considered a less critical criterion when
designing DMAs. Studies [59,60] pointed out that typically the water volume stored in the
network was nearly half of the daily water consumption. Thus, it is reasonable to assume
that water would be replaced twice a day in the network, which is a good indicator of the
water quality. Therefore, compared with other indicators, WA has a lower weight of 0.1.
The weight factors assigned to the indicators are summarized in Table 2.

Table 2. Weight factors for MCDA model.

Indicator DSI PSI RI WA Cost

Weight 0.2 0.3 0.2 0.1 0.2
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Step 5: Calculate the weighted normalized decision-making matrix.

vij = rij × wi (32)

where wi is the weight of the ith criterion.
Step 6: Determine the best and worst ideal solutions

D+
i =

(
max

i
vij

)
D−i =

(
min

i
vij

) , i = 1, 2, · · · , m (33)

where D+
i and D−i are the set of the best and worst ideal solutions for the ith criterion,

respectively.
Step 7: Calculate the distance from each alternative to the best ideal solution and the

worst ideal solution. 
E+

j =

√
m
∑

i = 1

(
vij − D+

i
)2

E−j =

√
m
∑

i = 1

(
vij − D−i

)2
, j = 1, 2, · · · , n (34)

where E+
j and E−j are the distance from jth object to the best and worst ideal solutions.

Step 8: Calculate the relative closeness to the ideal solution.

Cj =
E−j

E+
j + E−j

, j = 1, 2, · · · , n (35)

where Cj is the relative closeness of the jth object to the ideal solution.
Step 9: Rank the alternatives.
The assessment result is determined by ranking the alternatives based on the relative

closeness to the ideal solution. The best solution is identified according to the greatest
relative closeness to the ideal solution.

Cbest = max{C1, C2, · · · , Cn} (36)

3. Results and Discussion
3.1. Case Study

The proposed methodology was verified on an actual large WDN, the Wolf-Cordera
Ranch WDN located in Colorado, USA. The network was first introduced by Lippai [61]
and was originally designed to cover 9.70 km2 with the amount of water supply forecasted
at 441 L/s to meet the average daily demand until 2030. During a regular day operation,
including peak hour demand, the network is supplied by one source operated by one
pumping station in the highest network topography, as shown in Figure 8a. The minimum
pressure required for all nodes is considered to be 40 m. The main hydraulic and topological
characteristics of the un-partitioned Wolf-Cordera Ranch water network are summarized
in Table 3.
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Figure 8. Formation of DMAs in the Wolf-Cordera Ranch water distribution network through the proposed method: (a) the
original WDN, (b) the U-matrix with nodal hits labeled in each cluster, (c) SOM initial clusters abstracted to the WDN, and
(d) modularity indexes for the corresponding number of DMAs following the application of CSA.

Table 3. Main characteristics of the Wolf-Cordera Ranch water distribution network.

Physical Characteristics Value Main Hydraulic Features Value

No. of nodes 1592 Minimum pressure (m): 41.2
No. of pipes 1795 Mean of pressure (m): 70.8

No. of valves (PRVs) 2 Maximum pressure (m): 107.7
No. of reservoirs 1 Mean surplus pressure (m): 29.1

No. of pumping stations 1 Average WA (hour): 6.0
Main pipe diameters (mm) 200–600 Resilience index (RI) 0.877

Note that the proposed methods were developed in the MATLAB environment version R2020a, supported with
the Epanet-Matlab toolkit for hydraulic simulation. The program was run using an Intel Core i9-10920X @ 3.5 GHz
(24 CPUs) and 128 GB RAM on a Windows 10 environment.

3.2. Multiscale and Dynamic DMA Layouts

The adjacency matrix, TS matrix, and HS matrix were developed as described in
Section 2.1. Then, SOM was applied to form the initial cluster layouts. Following the
procedure to determine the optimal SOM architecture and number of nodes in the trained
network, the SOM with 49 neurons (i.e., a grid size of 7× 7) was produced to ensure that the
maximum number of clusters was formed from the training data. Figure 8b illustrates the
clustering results of the SOM application and represents the U-matrix and SOM hits. Within
each neuron (i.e., grid cell), the SOM sample hits indicate the number of network nodes and
the associated cluster to which the nodes belong. For example, the upper-leftmost neuron
has the label (31), which means that 31 nodes have very similar topological and hydraulic
mapping to that particular neuron. Neurons with a different number of nodes labeled on
them indicate that the SOM classified the network into different homogeneities depending
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on the input space pattern. The colored regions surrounding the neurons indicate the
distance between the neurons. The U-matrix and SOM hit maps were then labeled and
transformed into the applied WDN. As shown in Figure 8c, the initial clusters were found
by the SOM classification. These clusters are coarse and unbalanced in size. Therefore, the
CSA is adopted to obtain fine clusters and reduce their number to make the DMAs more
realistic and reliable.

Figure 8d shows the number of DMA solutions versus its modularity index (Q). As
shown in the figure, the Q index shows a maximum value of approximately 0.89 with
25 DMAs. The Q index of the layouts with less than 25 DMAs smoothly decreases and
falls to 0 when the number of DMAs reaches 1. Here, a desirable number of DMAs in the
partitioned layouts is considered for performance analysis based on two aspects: (1) the
layouts should have Q indices larger than 0.3, and (2) the number of DMAs in these layouts
should be less than 25. Although layouts with more than 25 DMAs show a sufficiently
high Q index, they are not encouraged to balance the financial investment and the number
of DMAs. Thus, the practical layouts with the number of DMA layers between 3 and 25
are evaluated. Figure 9 illustrates four DMA layouts resulting from the coupled model
of SOM and CSA. The sectorization results using the GA search for each DMA layout are
summarized in Table 4, and the positions of flowmeters and valves in the selected four
DMAs are indicated in Figure 9.

Figure 9. Sample of DMA layouts generated: (a) 6 DMAs; (b) 7 DMAs; (c) 9 DMAs; (d) 12 DMAs.

Table 4. Characteristic of boundary pipes obtained by GA for different DMA layouts.

No. of DMAs

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Nbp 9 10 12 13 15 23 25 27 30 33 35 36 38 39 44 48 51 53 54 55 56 58 59
Nfm 3 4 5 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23
Ngv 6 6 7 8 9 16 17 18 20 22 23 23 24 25 29 32 34 35 35 35 35 36 36

Note: Nbp, Nfm, and Ngv are the number of boundary pipes, flowmeters, and gate valves, respectively.
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Figure 9 shows the change in typical network configurations of the 6, 7, 9, and
12 DMAs. Starting from the six DMA layouts (see Figure 9a) as the initial state, we can
progressively see the decomposition. Figure 9b, DMA1 and DMA2 are decomposed from
DMA1 in the six DMA layouts, forming a new layout with seven DMAs. The seven DMA
design is further decomposed into a nine DMA design by sectorizing DMA5 and DMA7
into two smaller groups (Figure 9c); this DMA design is further decomposed, to finally
reach the twelve DMA layout as seen in Figure 9d. In this way, the new DMA layouts that
are created by top-down decomposing or bottom-up merging of DMAs always preserve
the former layouts (i.e., boundary pipes).

3.3. Comprehensive Evaluation of Alternative DMA Layouts

A set of 23 selected DMA layouts (from 3 DMAs to 25 DMAs) were comprehensively
evaluated based on their performance. As mentioned in Section 2.5, five criteria were
evaluated: (1) demand similarity, (2) pressure similarity, (3) system resilience, (4) WA, and
(5) investment cost. The performances of WNP on various criteria are shown in Figure 10.
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In general, the more DMAs created, the better is the PSI, as shown in Figure 10b.
However, a layout with a greater number of DMAs requires increased investment costs
owing to the higher number of devices that need to be installed along the boundary pipes
(see Figure 10e). The increase in the number of DMAs also causes a decrease in the RI due
to valve closure, as shown in Figure 10c. As expected, the DSI tends to decrease when the
number of DMAs increases overall. However, this trend is likely irregular; it fluctuates
when the number of DMAs ranges between 3 and 11, as seen in Figure 10a. This indicates
that the water demand distribution randomly changes over the application network. As
for WA, it tends to increase with the number of DMAs due to valve-controlled isolations.
However, there are exceptions; as shown in Figure 10d, the WA decreased slightly either in
the case of 12 DMAs or when the number of DMAs increased from 15 to 17. A significant
rise in the WA was observed when the number of DMAs ranged from 18 to 25. This can be
explained by the fact that the gate valves change the flow direction, thereby increasing or
decreasing the flow velocity, resulting in the WA variation.

A decision matrix of 5 × 23 was constructed to evaluate alternative DMA layouts
based on the performance criteria. The overall performance scores of the decision matrix
after the standardization process are listed in Table 5.

Table 5. Standardization of performance indices for 23 DMA layouts.

No. of DMAs
Criteria

DSI PSI RI WA Cost

3-DMAs 0.00 0.00 1.00 1.00 1.00
4-DMAs 0.48 0.20 1.00 1.00 0.96
5-DMAs 0.61 0.32 0.97 0.80 0.82
6-DMAs 0.56 0.41 0.97 0.80 0.82
7-DMAs 0.50 0.46 0.97 0.79 0.78
8-DMAs 0.68 0.62 0.67 0.70 0.62
9-DMAs 0.88 0.72 0.49 0.49 0.59

10-DMAs 0.83 0.75 0.53 0.41 0.56
11-DMAs 0.79 0.79 0.48 0.31 0.48
12-DMAs 0.87 0.81 0.48 0.34 0.46
13-DMAs 0.84 0.83 0.30 0.30 0.41
14-DMAs 0.83 0.85 0.30 0.30 0.40
15-DMAs 0.83 0.86 0.25 0.32 0.37
16-DMAs 0.84 0.88 0.25 0.32 0.37
17-DMAs 0.88 0.90 0.22 0.31 0.34
18-DMAs 0.93 0.93 0.06 0.14 0.19
19-DMAs 1.00 0.96 0.02 0.03 0.16
20-DMAs 0.99 0.97 0.00 0.00 0.14
21-DMAs 0.98 0.98 0.00 0.00 0.10
22-DMAs 0.98 0.99 0.00 0.00 0.06
23-DMAs 0.97 0.99 0.01 0.02 0.04
24-DMAs 0.97 1.00 0.01 0.01 0.02
25-DMAs 0.97 1.00 0.01 0.01 0.00

The performance of the individual DMA layouts was ranked by TOPSIS, as summa-
rized in Table 6. The overall results changed irregularly. However, the results show that
the 23 layout solutions can be divided into three groups based on their scores, which are
relative closeness to the ideal solution. The top scores ranged from 0.655 to 0.679 for the
layout solutions containing 5–7 DMAs, followed by a range of scores between 0.612 and
0.645 for designs with 8–10 DMAs. The medium score ranged between 0.509 and 0.576
for the layout containing 11–17 DMAs, and the low scores varied from 0.437 to 0.458 for
layouts containing 18–25 DMAs. The highest score calculated was 0.679 for the layout with
7 DMAs. Thus, the evaluation of indicators revealed that the layout containing 7 DMAs
was relatively the closest to the ideal solution and was ranked first among the 23 solutions.
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Table 6. Ranking of DMA layouts by the TOPSIS method.

No. of DMAs
Criterion

E+ E− C Rank
DSI PSI RI WA Cost

3 DMAs 0.0000 0.0000 0.0777 0.0425 0.0806 0.0933 0.1198 0.5621 10
4 DMAs 0.0244 0.0159 0.0777 0.0425 0.0775 0.0679 0.1213 0.6412 5
5 DMAs 0.0310 0.0248 0.0754 0.0341 0.0662 0.0595 0.1131 0.6552 3
6 DMAs 0.0285 0.0319 0.0754 0.0341 0.0659 0.0543 0.1141 0.6776 2
7 DMAs 0.0253 0.0363 0.0753 0.0338 0.0626 0.0531 0.1126 0.6794 1
8 DMAs 0.0343 0.0485 0.0524 0.0299 0.0497 0.0540 0.0982 0.6451 4
9 DMAs 0.0443 0.0563 0.0380 0.0208 0.0479 0.0604 0.0965 0.6151 6

10 DMAs 0.0419 0.0586 0.0415 0.0175 0.0448 0.0608 0.0960 0.6123 7
11 DMAs 0.0402 0.0619 0.0377 0.0133 0.0385 0.0679 0.0923 0.5761 9
12 DMAs 0.0438 0.0638 0.0375 0.0146 0.0367 0.0677 0.0946 0.5831 8
13 DMAs 0.0426 0.0650 0.0232 0.0127 0.0334 0.0796 0.0886 0.5267 11
14 DMAs 0.0419 0.0670 0.0232 0.0127 0.0319 0.0803 0.0892 0.5261 12
15 DMAs 0.0418 0.0677 0.0194 0.0135 0.0299 0.0837 0.0883 0.5132 14
16 DMAs 0.0425 0.0689 0.0194 0.0135 0.0296 0.0837 0.0894 0.5166 13
17 DMAs 0.0447 0.0702 0.0169 0.0131 0.0271 0.0868 0.0901 0.5093 15
18 DMAs 0.0471 0.0731 0.0049 0.0059 0.0150 0.1048 0.0886 0.4579 16
19 DMAs 0.0506 0.0753 0.0019 0.0014 0.0130 0.1097 0.0916 0.4552 17
20 DMAs 0.0500 0.0763 0.0000 0.0000 0.0112 0.1126 0.0919 0.4495 18
21 DMAs 0.0494 0.0768 0.0000 0.0000 0.0081 0.1145 0.0916 0.4446 19
22 DMAs 0.0497 0.0773 0.0000 0.0000 0.0051 0.1164 0.0921 0.4415 20
23 DMAs 0.0493 0.0775 0.0008 0.0008 0.0033 0.1167 0.0920 0.4406 21
24 DMAs 0.0491 0.0782 0.0007 0.0003 0.0015 0.1182 0.0924 0.4388 22
25 DMAs 0.0491 0.0784 0.0007 0.0003 0.0000 0.1192 0.0925 0.4369 23

Best ideal 0.0506 0.0784 0.0777 0.0425 0.0806
Worst ideal 0.0000 0.0000 0.0000 0.0000 0.0000

Note: E+ and E− denote the distance from the evaluated object to the best and worst ideal solutions (obtained by Equation (34)), respectively,
while C is the relative closeness of the evaluation object to the ideal solution (obtained by Equation (35)).

The obtained results were compared with those reported by Liu and Han [36], which
applied the spectral method for the same Wolf-Cordera Ranch network. The proposed
method in this study generates DMA layouts that achieve superior results compared to
conventional methods. First, instead of permanent DMAs, the approach proposed here can
create dynamic DMAs in which homologous pressures in each DMA are controlled. Second,
due to the CSA algorithm’s advantage, with the same number of DMAs, the number of
boundary pipes was found to be less than that reported using the spectral method. This
plays a vital role in reducing the cost of establishing the DMAs in the network. Third, by
proposing an exhaustive analysis of the performance of WNP, the approach proposed here
determines the degree of influence of decision-making criteria more plausible. As a result,
the best layout was found to be the one with 7 DMAs, compared to the reported 12 DMA
layout in the results of Liu and Han [36].

3.4. Evaluation of the Optimal DMA Layout

This section aims to evaluate the operability of the selected optimal layout of
7 DMAs (Figure 11a). The performances of the optimal layout with 7 DMAs are shown
in Figure 11b–e. Figure 11b shows the sizes of the DMAs in terms of the water demand
and the number of nodes. As shown, the water demand in each DMA varies from 24.1 to
120.7 L/s, with the two largest DMAs being DMA5 and DMA7, whereas the number of
nodes changes from 134 for DMA6 to 309 for DMA5. The difference in the water demand
between the DMAs can be explained by the fact that the proposed algorithm tends to create
DMAs that are homologous in pressure without water demand-based clustering. This
is acceptable because, in reality, the water consumption shows random spatial-temporal
changes across the network owing to user demand. Figure 11c–e shows the box-whisker
plots of various performance indices. Although the Wolf-Cordera Ranch network has
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an irregular topography with significant variation in the elevation (see Figure 11c), the
pressure variations in the DMAs are not significant and the median values are similar to
each other as seen in Figure 11d. This is because the proposed algorithm tends to cluster
the nodes with similar pressure. The highest-pressure zone was found in DMA1 because
it is located in the region with the lowest elevation. On the contrary, DMA6 and DMA7
are located in the higher elevation zones that are close to the reservoir; thus, the pressure
is slightly lower than in other zones. The WA tends to increase as the distance from the
source to the DMAs increases as seen in Figure 11e. The WA of DMA6 shows wide ranges
due to several ending-nodes with very low base demand. In addition, having big and
widely spread demand nodes, DMA7 shows a wide range of WA.

Figure 11. Performance of optimal layout with 7 DMAs operating under the normal condition: (a) DMA layout; (b) bar
chart representing the size of each DMA; (c–e) show the variations in elevation, pressure, and WA, respectively, in
each DMA.
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3.5. Dynamic Operation of DMAs

An abnormal operating condition with fire flows was simulated for the selected
7 DMAs layout. Here, the pressure-driven analysis was conducted to simulate the abnormal
condition more realistically. Note that a minimum nodal pressure of 14.1 m (20 psi) should
be maintained in the entire network during the fire event to supply the network adequately.
A central role of the system operation with DMAs is that it provides adequate fire flow
and is available for customers at a certain level. This role must be satisfied even when
the network is decomposed into DMAs. It was assumed that the fires took place at two
separate DMAs at the peak demand hour. A fire flow of 95 L/s (approximately 1500 GPM)
was applied equally to the two DMAs. For simplicity, it was assumed that the fire coincided
at DMA-1 and DMA-2 because they are critical DMAs with nodes located farthest from
the source. Figure 12a shows the original 7 DMAs layout with the locations of the fire
occurring nodes.
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Figure 12. Simulation of fire-flow scenario: (a) original 7 DMAs layout with fire events; (b) network adaptation by merging
DMAs 1, 2, and 3 into one larger DMA; (c) contour plot of pressure for original 7 DMAs layout under fire events; (d) contour
plot of pressure after DMAs merging by opening the gate valves under fire events.

The analysis revealed that when two fires coincided at two separate DMAs, one at
node 12,586 of DMA1 and the other at node 12,886 of DMA2, the network operated at
a lower pressure than the required minimum standard (i.e., 14.1 m). Figure 12c shows
that the pressures in the upper zones of DMA1, DMA2, and DMA3 were lower than the
required pressure of 14.1 m because the head loss in those zones increased owing to the
fire flows. To adapt to this situation, the DMAs were merged by opening the gate valves. A
dynamic layout can be created by opening some gate valves to merge neighboring DMAs
into a larger DMA. In this case, the network was rescaled to a layout containing 5 DMAs
by grouping DMA1, DMA2, and DMA3 to a new larger DMA, as depicted in Figure 12b.
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This was implemented by opening the internal gate valves installed at the boundary pipes
21,244 and 21,775. The nodal pressure in the new layout (i.e., with 5 DMAs) was markedly
improved; all nodes within the DMAs guaranteed a higher pressure than the minimum
requirement of 14.1 m, as shown in Figure 12d. Furthermore, the pressures in DMA5 and
DMA7 were found to increase slightly. This was because opening the gate valves changed
the flow directions and reduced head losses.

4. Conclusions

This paper presented an approach for optimizing the design of DMAs in a WDN based
on a three-phase strategy. First, the clustering phase generated DMA layouts using a hybrid
model of SOM and CSA. Second, in the sectorization phase, the GA was used to locate
flowmeters and gate valves for creating isolated DMAs optimally. Finally, five quantitative
indicators were introduced to comprehensively evaluate alternative DMA layouts using
an MCDA. Following the suggested three phases, the optimal DMA layout for a given
WDN was determined both in number and size. The proposed three-phase method was
tested on a hypothetical network and an actual complex WDN. The results revealed that
the proposed method could auto-create DMAs in terms of homologous pressure by taking
full advantage of the SOM model. Moreover, by taking the principle of CSA, the generated
configurations of DMAs are dynamic. The dynamic configuration means that new DMA
layouts are simplified by aggregation/disaggregation approach while always preserve the
set of boundary pipes at each level. Thus, under abnormal conditions such as a fire event,
the existing DMA layouts can be transformed dynamically by size-rescaling to make the
network more resilient under an emergency.

Constructing the input data for clustering with SOM is crucial. As demonstrated in
this study, DMA layouts were generated based on the nodal information without pipe
weights. As a future study, it will be interesting to create an input space not only for
training SOM but also for any generic WNP algorithms that extend more engineering
aspects of WDN, such as existing valves, tanks, pumps, pipe flows, and pipe diameters, to
design practical DMAs. The weight factors in MCDA play a critical role in determining
the optimal DMA layout. Here, weight factors were determined based on the sound
engineering judgment without an objective validation method. Further justification for
the determination of the weight factors would be required. Furthermore, an optimization
algorithm for identifying the optimal location of gate valves and flowmeters could be
extended to consider the influence of tanks, pumps in the O&M of DMAs.
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8. Ferrari, G.; Savić, D. Economic Performance of DMAs in Water Distribution Systems. Procedia Eng. 2015, 119, 189–195. [CrossRef]
9. Di Nardo, A.; Di Natale, M.; Musmarra, D.; Santonastaso, G.F.; Tzatchkov, V.; Alcocer-Yamanaka, V.H. Dual-use value of network

partitioning for water system management and protection from malicious contamination. J. Hydroinform. 2014, 17, 361–376.
[CrossRef]

10. Di Nardo, A.; Di Natale, M.; Musmarra, D.; Santonastaso, G.; Tuccinardi, F.; Zaccone, G. Software for partitioning and protecting
a water supply network. Civ. Eng. Environ. Syst. 2015, 33, 55–69. [CrossRef]

11. Ciaponi, C.; Creaco, E.; Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Musmarra, D.; Santonastaso, G.F. Reducing Impacts of
Contamination in Water Distribution Networks: A Combined Strategy Based on Network Partitioning and Installation of Water
Quality Sensors. Water 2019, 11, 1315. [CrossRef]

12. Gomes, R.; Marques, A.S.A.; Sousa, J. District Metered Areas Design Under Different Decision Makers’ Options: Cost Analysis.
Water Resour. Manag. 2013, 27, 4527–4543. [CrossRef]

13. Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Santonastaso, G.F.; Tzatchkov, V.; Varela, J.M.R. Economic and Energy Criteria for
District Meter Areas Design of Water Distribution Networks. Water 2017, 9, 463. [CrossRef]

14. Herrera, M.; Abraham, E.; Stoianov, I. A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution
Networks. Water Resour. Manag. 2016, 30, 1685–1699. [CrossRef]

15. Armand, H.; Stoianov, I.; Graham, N. Impact of network sectorisation on water quality management. J. Hydroinform. 2017, 20,
424–439. [CrossRef]

16. Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424,
175–308. [CrossRef]

17. Saldarriaga, J.; Bohorquez, J.; Celeita, D.; Vega, L.; Paez, D.; Savic, D.; Dandy, G.; Filion, Y.; Grayman, W.; Kapelan, Z. Battle of the
Water Networks District Metered Areas. J. Water Resour. Plan. Manag. 2019, 145, 04019002. [CrossRef]

18. Bui, X.K.; Marlim, M.S.; Kang, D. Water Network Partitioning into District Metered Areas: A State-Of-The-Art Review. Water
2020, 12, 1002. [CrossRef]

19. Perelman, L.; Ostfeld, A. Topological clustering for water distribution systems analysis. Environ. Model. Softw. 2011, 26, 969–972.
[CrossRef]

20. Lifshitz, R.; Ostfeld, A. Clustering for Analysis of Water Distribution Systems. J. Water Resour. Plan. Manag. 2018, 144, 04018016.
[CrossRef]

21. Scarpa, F.; Lobba, A.; Becciu, G. Elementary DMA Design of Looped Water Distribution Networks with Multiple Sources. J. Water
Resour. Plan. Manag. 2016, 142, 04016011. [CrossRef]

22. Gomes, R.; Marques, A.S.; Sousa, J. Decision support system to divide a large network into suitable District Metered Areas. Water
Sci. Technol. 2012, 65, 1667–1675. [CrossRef]

23. Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99,
7821–7826. [CrossRef]

24. Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111.
[CrossRef]

25. Diao, K.; Zhou, Y.; Rauch, W. Automated Creation of District Metered Area Boundaries in Water Distribution Systems. J. Water
Resour. Plan. Manag. 2013, 139, 184–190. [CrossRef]

26. Campbell, E.; Ayala-Cabrera, D.; Izquierdo, J.; Pérez-García, R.; Tavera, M. Water Supply Network Sectorization Based on Social
Networks Community Detection Algorithms. Procedia Eng. 2014, 89, 1208–1215. [CrossRef]

27. Perelman, L.S.; Allen, M.; Preis, A.; Iqbal, M.; Whittle, A.J. Automated sub-zoning of water distribution systems. Environ. Model.
Softw. 2015, 65, 1–14. [CrossRef]

28. Ciaponi, C.; Murari, E.; Todeschini, S. Modularity-Based Procedure for Partitioning Water Distribution Systems into Independent
Districts. Water Resour. Manag. 2016, 30, 2021–2036. [CrossRef]

29. Giustolisi, O.; Ridolfi, L. New Modularity-Based Approach to Segmentation of Water Distribution Networks. J. Hydraul. Eng.
2014, 140, 04014049. [CrossRef]

30. Giustolisi, O.; Ridolfi, L. A novel infrastructure modularity index for the segmentation of water distribution networks. Water
Resour. Res. 2014, 50, 7648–7661. [CrossRef]

31. Creaco, E.; Cunha, M.; Franchini, M. Using Heuristic Techniques to Account for Engineering Aspects in Modularity-Based Water
Distribution Network Partitioning Algorithm. J. Water Resour. Plan. Manag. 2019, 145, 04019062. [CrossRef]

http://doi.org/10.1007/s11269-013-0421-1
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000768
http://doi.org/10.1016/j.compchemeng.2017.08.007
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001114
http://doi.org/10.1016/j.envsoft.2018.02.013
http://doi.org/10.1016/j.proeng.2015.08.874
http://doi.org/10.2166/hydro.2014.014
http://doi.org/10.1080/10286608.2015.1124867
http://doi.org/10.3390/w11061315
http://doi.org/10.1007/s11269-013-0424-y
http://doi.org/10.3390/w9070463
http://doi.org/10.1007/s11269-016-1245-6
http://doi.org/10.2166/hydro.2017.072
http://doi.org/10.1016/j.physrep.2005.10.009
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001035
http://doi.org/10.3390/w12041002
http://doi.org/10.1016/j.envsoft.2011.01.006
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000917
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000639
http://doi.org/10.2166/wst.2012.061
http://doi.org/10.1073/pnas.122653799
http://doi.org/10.1103/PhysRevE.70.066111
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000247
http://doi.org/10.1016/j.proeng.2014.11.251
http://doi.org/10.1016/j.envsoft.2014.11.025
http://doi.org/10.1007/s11269-016-1266-1
http://doi.org/10.1061/(ASCE)HY.1943-7900.0000916
http://doi.org/10.1002/2014WR016067
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001129


Water 2021, 13, 836 29 of 29

32. Simone, A.; Giustolisi, O.; Laucelli, D.B. A proposal of optimal sampling design using a modularity strategy. Water Resour. Res.
2016, 52, 6171–6185. [CrossRef]

33. Alvisi, S. A New Procedure for Optimal Design of District Metered Areas Based on the Multilevel Balancing and Refinement
Algorithm. Water Resour. Manag. 2015, 29, 4397–4409. [CrossRef]

34. Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Weighted spectral clustering for water distribution
network partitioning. Appl. Netw. Sci. 2017, 2, 1–16. [CrossRef]

35. Di Nardo, A.; Giudicianni, C.; Greco, R.; Herrera, M.; Santonastaso, G.F. Applications of Graph Spectral Techniques to Water
Distribution Network Management. Water 2018, 10, 45. [CrossRef]

36. Liu, J.; Han, R. Spectral Clustering and Multicriteria Decision for Design of District Metered Areas. J. Water Resour. Plan. Manag.
2018, 144, 04018013. [CrossRef]

37. Izquierdo, J.; Herrera, M.; Montalvo, I.; Pérez-García, R. Agent-based division of water distribution systems into district metered
areas. In Proceedings of the 4th International Conference on Software and Data Technologies, Sofia, Bulgaria, 26–29 July 2009;
pp. 83–90.

38. Herrera, M.; Izquierdo, J.; Pérez-García, R.; Montalvo, I. Multi-agent adaptive boosting on semi-supervised water supply clusters.
Adv. Eng. Softw. 2012, 50, 131–136. [CrossRef]

39. Hajebi, S.; Barrett, S.; Clarke, A.; Clarke, S. Multi-agent simulation to support water distribution network partitioning. In
Proceedings of the 27th European Simulation and Modelling Conference, Lancaster, UK, 23–25 October 2013; pp. 163–168.

40. Giudicianni, C.; Herrera, M.; Di Nardo, A.; Adeyeye, K. Automatic Multiscale Approach for Water Networks Partitioning into
Dynamic District Metered Areas. Water Resour. Manag. 2020, 34, 835–848. [CrossRef]

41. Wright, R.; Stoianov, I.; Parpas, P.; Henderson, K.; King, J. Adaptive water distribution networks with dynamically reconfigurable
topology. J. Hydroinform. 2014, 16, 1280–1301. [CrossRef]

42. Liu, J.; Lansey, K.E. Multiphase DMA Design Methodology Based on Graph Theory and Many-Objective Optimization. J. Water
Resour. Plan. Manag. 2020, 146, 04020068. [CrossRef]

43. Pesantez, J.; Berglund, E.Z.; Mahinthakumar, G. Geospatial and Hydraulic Simulation to Design District Metered Areas for Large
Water Distribution Networks. J. Water Resour. Plan. Manag. 2020, 146, 06020010. [CrossRef]

44. Santonastaso, G.F.; Di Nardo, A.; Creaco, E. Dual topology for partitioning of water distribution networks considering actual
valve locations. Urban Water J. 2019, 16, 469–479. [CrossRef]

45. Zhang, K.; Yan, H.; Zeng, H.; Xin, K.; Tao, T. A practical multi-objective optimization sectorization method for water distribution
network. Sci. Total. Environ. 2019, 656, 1401–1412. [CrossRef]

46. Zhang, Q.; Wu, Z.Y.; Zhao, M.; Qi, J.; Huang, Y.; Zhao, H. Automatic Partitioning of Water Distribution Networks Using Multiscale
Community Detection and Multiobjective Optimization. J. Water Resour. Plan. Manag. 2017, 143, 04017057. [CrossRef]

47. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [CrossRef]
48. Rana, S.M.M.; Boccelli, D.L.; Marchi, A.; Dandy, G.C. Drinking Water Distribution System Network Clustering Using Self-

Organizing Map for Real-Time Demand Estimation. J. Water Resour. Plan. Manag. 2020, 146, 04020090. [CrossRef]
49. Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Optimizing Hospital-Wide Patient Scheduling; Springer:

Cham, Switzerland, 2014; pp. 58–191.
50. Giudicianni, C.; Di Nardo, A.; Di Natale, M.; Greco, R.; Santonastaso, G.F.; Scala, A. Topological Taxonomy of Water Distribution

Networks. Water 2018, 10, 444. [CrossRef]
51. Zhou, T.; Lü, L.; Zhang, Y.-C. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 623–630. [CrossRef]
52. Salton, G.; McGill, M.J. Introduction to Modern Information Retrieval; McGraw Hill Book Company: New York, NY, USA, 1983.
53. Miljkovic, D. Brief review of self-organizing maps. In Proceedings of the 2017 40th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 1061–1066.
54. Campbell, E.; Izquierdo, J.; Montalvo, I.; Pérez-García, R. A Novel Water Supply Network Sectorization Methodology Based on a

Complete Economic Analysis, Including Uncertainties. Water 2016, 8, 179. [CrossRef]
55. Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [CrossRef]
56. Todini, E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2000, 2,

115–122. [CrossRef]
57. Ouma, Y.O.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS:

Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [CrossRef]
58. Chung, E.-S.; Abdulai, P.J.; Park, H.; Kim, Y.; Ahn, S.R.; Kim, S.J. Multi-Criteria Assessment of Spatial Robust Water Resource

Vulnerability Using the TOPSIS Method Coupled with Objective and Subjective Weights in the Han River Basin. Sustain. J. Rec.
2016, 9, 29. [CrossRef]

59. Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Meliá, D.M.; Ribelles-Aguilar, J.V. Combining Skeletonization, Setpoint Curves, and
Heuristic Algorithms to Define District Metering Areas in the Battle of Water Networks District Metering Areas. J. Water Resour.
Plan. Manag. 2018, 144, 04018023. [CrossRef]

60. Salomons, E.; Skulovich, O.; Ostfeld, A. Battle of Water Networks DMAs: Multistage Design Approach. J. Water Resour. Plan.
Manag. 2017, 143, 04017059. [CrossRef]

61. Lippai, I. Water System Design by Optimization: Colorado Springs Utilities Case Studies. In Pipelines 2005; American Society of
Civil Engineers (ASCE): Reston, VA, USA, 2005; pp. 1058–1070.

http://doi.org/10.1002/2016WR018944
http://doi.org/10.1007/s11269-015-1066-z
http://doi.org/10.1007/s41109-017-0033-4
http://doi.org/10.3390/w10010045
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000916
http://doi.org/10.1016/j.advengsoft.2012.02.005
http://doi.org/10.1007/s11269-019-02471-w
http://doi.org/10.2166/hydro.2014.086
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001267
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001243
http://doi.org/10.1080/1573062X.2019.1669201
http://doi.org/10.1016/j.scitotenv.2018.11.273
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000819
http://doi.org/10.1007/BF00337288
http://doi.org/10.1061/(ASCE)WR.1943-5452.0001289
http://doi.org/10.3390/w10040444
http://doi.org/10.1140/epjb/e2009-00335-8
http://doi.org/10.3390/w8050179
http://doi.org/10.1103/PhysRevE.69.066133
http://doi.org/10.1016/S1462-0758(00)00049-2
http://doi.org/10.3390/w6061515
http://doi.org/10.3390/su9010029
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000938
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000830

	Introduction 
	Methods 
	Characteristics of WDN 
	Adjacency Matrix 
	Topology Similarity (TS) Matrix 
	Hydraulic Similarity (HS) Matrix 

	Phase 1: Coupled Model of SOM and CSA for Clustering Dynamic DMAs 
	SOM-Based Clustering of Homologous Regions in WDN 
	CSA-Based Creation of Multiscale and Dynamic DMAs 

	Phase 2: GA-Based Sectorization 
	Sample Network Demonstration of Phases 1 and 2 
	Phase 3: MCDA-Based Comparative Analysis of Multiscale DMAs 
	Performance Indices of WNP 
	Multi-Criteria Decision Analysis (MCDA) 


	Results and Discussion 
	Case Study 
	Multiscale and Dynamic DMA Layouts 
	Comprehensive Evaluation of Alternative DMA Layouts 
	Evaluation of the Optimal DMA Layout 
	Dynamic Operation of DMAs 

	Conclusions 
	References

