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Abstract: Long-term climate change may strongly affect the aquatic environment in mid-latitude
water resources. In particular, it can be demonstrated that temporal variations in surface water
temperature in a reservoir have strong responses to air temperature. We adopted deep neural
networks (DNNs) to understand the long-term relationships between air temperature and surface
water temperature, because DNNs can easily deal with nonlinear data, including uncertainties, that
are obtained in complicated climate and aquatic systems. In general, DNNs cannot appropriately
predict unexperienced data (i.e., out-of-range training data), such as future water temperature. To
improve this limitation, our idea is to introduce a transfer learning (TL) approach. The observed
data were used to train a DNN-based model. Continuous data (i.e., air temperature) ranging over
150 years to pre-training to climate change, which were obtained from climate models and include a
downscaling model, were used to predict past and future surface water temperatures in the reservoir.
The results showed that the DNN-based model with the TL approach was able to approximately
predict based on the difference between past and future air temperatures. The model suggested that
the occurrences in the highest water temperature increased, and the occurrences in the lowest water
temperature decreased in the future predictions.

Keywords: reservoir water temperature; climate change; deep neural network; transfer
learning approach

1. Introduction

Global warming may strongly affect mid-latitude regions by the end of the twenty-
first century [1]. The increase in air temperature can potentially cause significant changes
in aquatic environments, as well as result in frequent occurrences of water-related dis-
asters in hydrological systems in the mid-latitude regions. For example, according to
previous studies, Hokkaido (Japan), which is a mid-latitude region, might experience
severe flood disasters due to an unexpected heavy rainfall event under the impact of future
climatic changes [2,3]. However, the impact of global warming on aquatic environments in
Hokkaido has rarely been studied as a specific region (e.g., Umeda and Ochiai [4]).

In general, past studies have reported the impacts of climatic change on the water
temperature of water bodies, such as reservoirs and lakes, using a simple method with
observed data. For example, a linear regression method was used to determine the relation-
ship between lake water temperature and weather conditions, such as air temperature and
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sunlight [5,6]. Although the linear regression easily shows a trend of the dependent vari-
able that responds to the independent variable, it inappropriately predicts the dependent
variable when the independent variable has strong nonlinearity, such as meteorological
and limnological data, including uncertainties from complex climatic factors and aquatic
systems (e.g., Mudelsee [7]). Conversely, non-linear methods (e.g., deep neural networks
(DNNs)) have been recently utilized in big-data sciences. DNNs can extract features even
from data that include nonlinear patterns. Therefore, they can be used for accurate pre-
diction once they are trained with a large number of nonlinear data [8]. In fact, certain
studies applied the DNN to lakes in a continental subarctic climate in mid-latitude regions
to predict water temperature profiles [9] and water quality [10].

However, DNNs cannot provide accurate predictions when they are applied to out-of-
range training data. That is, DNNs present inferior results while performing extrapolation,
despite being one of the useful interpolation schemes. For instance, even well-trained
DNNs with observed data may not predict accurately if unexperienced data are used,
such as future data on super typhoons projected by an atmospheric general circulation
model (GCM). This is one of the disadvantages of DNNs. To overcome the disadvantages
related to out-of-range predictions, we introduced a transfer learning (TL) approach [11] in
DNNs, which may achieve appropriate predictions even with unexperienced data. The TL
approach proposes that a model pre-trained with the source data having different features
can be reused with the target data. The model based on the target data can consider the
inherent features of the source data. A few studies have employed the TL approach for
flood predictions in hydrological systems [12,13]. However, the TL approach has not been
applied to aquatic systems, such as reservoirs and lakes.

Our unique aim is to estimate the local impacts of long-term climate change on reser-
voir environments (e.g., water temperature) using a DNN-implemented model coupled
with the TL approach. Therefore, our study first acquired locally downscaled data in a mid-
latitude area from past and future GCM projections. Then, we validated the DNN model
with and without the TL approach using the observed data. Finally, past and future predic-
tions using trained DNNs and downscaled data were performed to understand the trends
between past and future surface water temperatures that are affected by climate change.

2. Materials and Methods

This section describes the data acquisition for observation and downscaled projections
by a GCM, features of the DNN model and the TL approach, model evaluations, procedures,
and computational setups.

2.1. Data Acquisition
2.1.1. Target Site and Observed Data

In situ data (observed data) for surface water and air temperatures were obtained
from the reservoir of the Tokachi Dam (hereafter Tokachi Dam reservoir) (43.2402◦ N,
142.9388◦ E), which is exposed to a humid subarctic climate, and is located in an upstream
area of the Tokachi River watershed in the southeast portion of Hokkaido (Figure 1). The
reservoir has a narrow and deep V-type shape along the continuous mountains and the
catchment area of 592.0 km2. It is approximately 4 km long, 0.5 km wide, and 80 m deep
when it is at total water capacity (112,000,000 m3), and has a large flood surface area
(4.2 km2). We obtained the monthly meteorological data and surface water temperature
(–1–0 m) from 1984 to 2020, which was spontaneously measured between 10:00 and 15:00.
The surface water temperature was recorded as approximately 0 °C (e.g., 0.5 °C) when ice
cover appeared during winter. The number of data points was approximately 450. We
assumed that the data could be representative of typical values in each month. Figure 2a
shows the temporal variations in air and surface water temperatures observed near the
levee of the Tokachi Dam reservoir. Scattered plots between both datasets indicate a
moderate relationship with a linear regression of the coefficient of determination (R2), as
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shown in Figure 2b. Note that only air temperature is available as onsite weather data for
about a 35-year observation period.
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Meteorological Agency (JMA), and (S) is a source area at Kyushu.
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Figure 2. Observed data for air temperature (°C) and surface water temperature (°C) at Tokachi Dam reservoir: (a) temporal
variations and (b) the relationship between air and surface water temperatures with a linear regression line (R2 = 0.75).

Another monthly dataset (surface water and air temperatures) from 2003 to 2018
was obtained from 18 reservoirs located in southwest Japan (Kyushu) for the pre-training
process in the TL approach. The reservoir data were cyclically combined into one dataset
based on an annual period. This rough treatment is acceptable, because DNNs usually
learn patterns in time series data. The number of data points was approximately 3100.
Note that the size, location, and surrounding environment of these 18 reservoirs were
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different from those of the Tokachi Dam reservoir; however, we assumed that the effect of
air temperature on surface water temperature was greater than that of size, location, and
the surrounding environment. The characteristics of the 18 reservoirs at Kyushu are shown
in Appendix A.

Most observed data were publicly available in the database of dams in Japan [14].
Certain data were provided by the Hokkaido regional development bureau of the Ministry
of Land, Infrastructure, Transport, and Tourism (MLIT) in Japan.

2.1.2. General Circulation Model and Weather Research and Forecast Model Data

The study used a 112 km grid with 48 vertical layers for the spatial data, and the
sequential GCM data of 150 years for the temporal data, which were provided by running
the Meteorological Research Institute coupled GCM version 3 [15,16]. Using the GCM data
simulated for the past and future with the Representative Concentration Pathway (RCP) 8.5
scenario, we obtained a local dataset at the Tokachi Dam reservoir by means of dynamical
downscaling. The local data were obtained from a regional circulation model, i.e., the
Weather Research and Forecast (WRF) model [17,18], with a 9 km × 9 km grid, 40-layer
vertical resolution, and hourly time interval. The data were obtained from a study of Ishida
and Tanaka [19], in which the 150-year sequential meteorological data were simulated
using two-step nested domain downscaling in the Tokachi River watershed with the setup
of the Bougeault and Lacarrere scheme for planetary boundary layer parameterization,
the Dudhia scheme for short-wave radiation parameterization, and the rapid and accurate
radiative transfer scheme for long-wave radiation parameterization (refer to Ishida et al. [20]
in detail). The data were classified into past data (1950−2005) and RCP 8.5-based future
data (2006−2100) according to the computational setups for GCM data. Hereafter, the
downscaled data are referred to as WRF data.

Long-term air temperature was calculated as monthly averaged data from the WRF
data using only the data collected around mid-day (10:00−15:00) to approximately compare
it to the collecting setup of observation. We performed a preliminary data analysis related
to the reliability of the WRF data at the Tokachi River watershed and the monthly trends
of past and future WRF data. Figure 3a shows a comparison of monthly averaged air
temperatures during the period of 1960−2005 between the WRF data and observed data
at Obihiro City, which is approximately 50 km south of the Tokachi Dam reservoir. The
observed data at the Obihiro meteorological station were obtained from the past weather
database of the Japan Meteorological Agency (JMA) [21]. While comparing the observed
and WRF data, it can be noted that the data from the Obihiro meteorological station are
better than that from the Tokachi Dam reservoir, because the station recorded relatively
long-term data at the Tokachi River watershed. The past WRF data (1960−2005) averaged
over each month showed a strong relationship with the data observed by the JMA. In
addition, the difference between the past and future WRF data at Tokachi Dam reservoir
is shown with respect to months (Figure 3b). It can be observed that the frequency of
the higher air temperatures in the future WRF data obviously increase. Note that no bias
correction was applied.

2.2. Long Short-Term Memory Model

We employed a long short-term memory (LSTM) architecture [22] as a DNN. The
LSTM algorithm is a class of recurrent neural networks (RNNs) [23], which is a powerful
tool that deals with continuous data. The LSTM is an advanced RNN that can memorize
long-term trends in continuous data by solving the problems of RNN, such as vanishing
and exploding gradients. Our deep learning model involves LSTM as a training and
prediction engine (hereafter, referred to as the LSTM model). The LSTM model structure
consists of an LSTM layer, a fully connected layer, and two activation functions (Figure 4a).
The activation function has two functions: hyperbolic tangent and sigmoid. The hyperbolic
tangent function outputs a value ranging from −1 to 1 (i.e., f (x) = (ex − e−x)/(ex + e−x),
where x = input data (−∞, ∞)). The sigmoid function can nonlinearly normalize the
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input data from zero to one (i.e., f (x) = 1/(1 + e−x), where x is the same as the previous
variable). The LSTM model has several hyperparameters (e.g., the number of epochs and
batch size) that we tuned in preliminary tests for the adaptation of input data. The setup of
these hyperparameters is listed in Table 1. Detailed explanations for the LSTM model are
provided in our previous study [24].
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Table 1. Long short-term memory (LSTM) hyperparameters and other setups.

Hyperparameters
and Function Values or Equations Remarks

Number of LSTM layers 1
Number of nodes 20

Past and present time in input −6 to 0 Time interval = month
Lead time in output 1 Time interval = month

Batch size 100

Number of epochs 1000 Retaining the TL approach
and has the same number

Learning rate 0.01
Dropout rate 0.0

Reproducibility None

Optimizer Stochastic gradient descent
(SGD)

Activation function Sigmoid
Hyperbolic tangent

Range from 0 to 1
Range from −1 to 1

Loss function
Sum of squared residuals =

1
2

N1
∑

i=1
(Vci − Voi)

2

ci = model calculation, oi =
observed data, N1 = the

number of data

Error evaluation functions
RMSE =

√
1

N1

N1
∑

i=1
(Vci − Voi)

2 Same as above

NSE = 1 −
N1
∑

i=1
(Vci − Voi)

2/
N1
∑

i=1
(Voi − Vo)

2
Same as above, and <*> =

average

2.3. Transfer Learning (TL) Approach

The idea of the TL approach is to reuse a model that is trained on a certain (source)
dataset (i.e., a pre-trained model) on a different (target) dataset. The features extracted from
the pre-trained model can be passed to a new model that is trained using the target data by
reusing parts of the pre-trained model (Figure 4b). As shown in Figure 4b, the TL approach
in this study retrained only a fully connected layer 1000 times. The extracted features are
appropriately adapted to the new model after the inner parameters in the new model are
tuned. Therefore, the new model can involve features from the pre-trained model. Our
previous study [13] demonstrated detailed practical use of the TL approach.

2.4. Evaluation

The accuracy of the LSTM model in the observed data (Step 2 in Figure 5) was
evaluated using K-fold cross-validation [25]. We selected K = 10 for segmenting the data.
Nine segments were used for training, and the remaining segment was used for prediction.
This was repeated 10 times by changing the prediction segment. For quantitative error
evaluation, the root mean square error (RMSE) and Nash–Sutcliffe efficiency coefficient
(NSE) were employed, the equations of which are listed in Table 1.

2.5. Procedures and Setups of the Computation

The procedure of this study is as follows: (Step 1) data acquisition of the long-term
WRF data and 35-year observed data at the Tokachi Dam reservoir; (Step 2) training and
validation of the LSTM model with and without the TL approach; and (Step 3) presenting
past and future predictions using WRF data. These steps are illustrated in Figure 5.

Step 1 is explained in Section 2.1.2. Step 2 required the observed data, described in
Section 2.1.1, along with the LSTM model in Section 2.2, and the TL approach in Section 2.3.
Reproducibility calculations were set up as follows: Case 0 for a linear regression method
between surface water and air temperatures, Cases 1 and 2 for the LSTM model with
and without additional input data, respectively, and Case 3 for the LSTM model coupled
with the TL approach. Cases 2 and 3 added additional input data (i.e., air temperature
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difference within a time interval) to accurately capture the temporal patterns that changed
dramatically. The details of the setup are listed in Table 2.
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Table 2. Re-productivity calculation cases.

Name Model Input Data Transfer Learning

Case 0 Linear regression Air temperature No
Case 1 LSTM Air temperature No

Case 2 LSTM
Air temperature,

difference in
air temperature

No

Case 3 LSTM Same as above Yes

In Step 3, past and future predictions were conducted using the WRF data and trained
LSTM models with cross-validation (Section 2.4). Note that the models were trained using
all observed data before the past and future predictions. The future predictions using
future WRF data were separated into three periods—near-future (2006−2039), mid-future
(2040−2069), and far-future (2070−2100) predictions—to gain a long-term trend of surface
water temperatures when compared with those in past predictions.

Numerous uncertainties from long-term changes in water resources, including aquatic
environments, usually require a variety of computational conditions in climate change
modeling [26], which are impossible to set up in this study. Therefore, to simplify the
model calculations, the following assumptions were considered:

• air temperature strongly affects the surface water temperature;
• the humid subarctic climate in the Tokachi River watershed (the target) changes into a

humid subtropical climate at Kyushu (the source). Note that the TL approach possibly
adjusts the source climate to the target climate, although past air temperature at the
source was significantly higher than that at the target;

• the effect of water level variations is involved in the variations of surface water temperature;
• no sediment accumulation affects the topographical aspects of the reservoir;
• no geological changes occur in the surrounding environments;
• the effect of the presence or absence of ice cover is included in the values of the surface

water temperature;
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• the effect of the air−water interaction on surface water temperature is homogeneous
among lakes.

The program for the LSTM model was created using Python (version 3.6.4) incorpo-
rated with Python deep learning libraries in Keras [27].

3. Results

The validation of the LSTM model with the observed data was conducted in certain
cases, including a linear fitting function (e.g., linear regression) as a reference. Note that
the linear regression had cross-validation with 10-segment data (refer to Section 2.4.), as
well as the LSTM model. Figure 6 illustrates the temporal variations of the surface water
temperature in the re-productivity calculation cases when compared to the observed data
for approximately 35 years. Case 0 shows an undershoot below zero, which indicates
unreal surface water temperature values. Cases 1 and 2 have similar trends, and could
not capture relatively larger water temperatures. The surface water temperature curve in
Case 3 was shifted marginally upward from the lines observed for Cases 1 and 2. This was
caused by the features of the water temperatures at Kyushu using the TL approach.
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Case 0, strong relationships were evident with R2 > 0.8 and NSE > 0.9. The prediction in
Case 2 was marginally better than that in Case 1, with a 10% reduction in RMSE because of
the additional input of the air−temperature difference within a time step. The prediction
in Case 3 was marginally worse than that in Case 2, with a 7% increase in RMSE because of
the marginal effect of inherent features of surface water temperatures at Kyushu. However,
Case 3 was able to predict higher surface water temperatures in over 18 °C than Case 2
(Figure 7c,d). This feature suggests that Case 3 can be beneficial for a future prediction
under the global warming impacts.
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Figure 7. LSTM model outputs with the observed data in surface water temperature for four cases:
(a) Case 0 as a reference (a linear regression), (b) Case 1, (c) Case 2, and (d) Case 3, showing a relation
between Prd and Obs data with a linear regression line of R2. Dotted lines indicate zero Prd data.
The root mean square error (RMSE) and Nash–Sutcliffe efficiency coefficient (NSE) are defined in
Table 1. Prd = reproducibility calculation and Obs = observation.

We estimated the impacts of climate change on surface water temperatures in the
Tokachi Dam reservoir using past and future WRF data and the LSTM model, which was
verified with the observed data. First, the Case 2 model was utilized for both WRF datasets.
Second, the Case 3 model was applied to future WRF data based on the assumption that the
humid subarctic climate changes to a humid subtropical climate. Note that the Case 3 model
was not applied to past WRF data. Future predictions of surface water temperature with
the RCP 8.5-based WRF data were separated into three periods (near, mid, and far future
periods). We computed the number of water temperature values that were segmented in
2 °C intervals as a frequency ratio, which is the number of water temperature values divided
by the total number of values. This ratio indicates the segmented water temperature values
that increase or decrease during the three future periods and the past period. The difference
in the frequency ratios between the past and the three future periods was also calculated
to show positive and negative trends from past surface water temperatures. As observed
in Figure 8, the Case 2 model shows that lower water temperatures (1−3 °C) in the three
futures had an opposite trend to that in the past. This temperature range suggests that
winter ice covers may have melted down, possibly due to the impact of climate change
(i.e., the increase of air temperature). The ratios in middle-range temperatures (5−17 °C)
were scattered up and down weakly as the water temperature increased. High water
temperatures showed minimal differences among the four ratios. According to these
results, the ratios in the far future prediction were significantly weaker than those of the
other future periods, which was similar to past ratios. This far future prediction is not
consistent with the significant increase in air temperature in the future WRF data, as shown
in Figure 3b.
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Figure 8. Comparisons between the past and the three future predictions in the Case 2 model for
surface water temperature. Variations in the frequency ratios of the past and three future (near, mid,
and far) predictions and the three differences (future data subtracted by past data) with respect to
surface water temperature with 2 °C intervals.

We assumed that this inconsistency could be caused by the nature of DNNs, which
can predict only within the range of trained values. Therefore, the Case 3 model prediction
was conducted to overcome this limitation of DNNs. Figure 9 shows that lower water
temperatures (1−3 °C) in the three future ratios had an inverse trend to the past ratio,
similar to the result of the Case 2 model. The middle range of water temperatures indicates
that the different ratios of the three futures were considerably scattered, which was similar
to the other model. However, the difference ratios at the highest water temperature were
positive. These results support the trend ratio of future air temperature values. In particular,
the ratio of the far future prediction was high in the extreme ranges of water temperature
(i.e., 1 and 23 °C).
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In addition, we introduced a net heat-related factor to quantify the contribution of the
Case 3 model to an appropriate future prediction under the effect of global warming. The
net heat-related factor was defined in this study as the accumulation of the differences of the
frequency ratio between future and past predictions that was multiplied by surface water
temperature from 1 to 23 °C (i.e., ∑i(DFi·Ti), where DF = future – past in the frequency
ratio and T = surface water temperature) among the three future periods. In Figure 8, the
Case 2 model was adopted as the pre-trained model to the future WRF data; on the other
hand, the Case 3 model in Figure 9, to which the TL approach was implemented, was
applied for the future WRF data (Table 3). The net heat-related factors in Figure 9 obviously
were increased among the three future periods, rather than those in Figure 8 (Table 3). This
suggests that the Case 3 model with the TL approach was more appropriate for future
predictions under the effect of global warming.

Table 3. List of pre-training cases and net heat-related factors among three futures.

Result

Pre-Trained
Model

Applied to
the Past

WRF Data

Pre-Trained
Model

Applied to
the Future
WRF data

* Net Heat-Related Factor (Ratio ◦C)

Near Future Mid Future Far Future

Figure 8 Case 2 Case 2 −0.27 −0.23 0.04
Figure 9 Case 2 Case 3 0.03 0.06 0.06

* The net heat-related factor was defined as the accumulation of differences of the frequency ratio between future
and past predictions that was multiplied by surface water temperature from 1 to 23 °C.

4. Discussion

The prediction of surface water temperature using the LSTM model was accurate
based on the quantitative evaluation of R2 and NSE (refer to Figure 7). While comparing
the accuracy with other studies, our RMSEs (1.8–2.0 °C) were comparable to the outputs
from a single DNN, as used in past studies [9,28], although their computational setups
were different from ours in terms of the amount of data and the target of water temperature
profiles. Therefore, our LSTM model may be quantitatively reliable when considering the
availability of only a few reports in lake and reservoir environment studies.

The water temperature trends under long-term climate change impacts have been
revealed in limnology using relatively long observed data [5,6]. A simplified physical
model (e.g., a vertical−longitudinal dimension hydrodynamic model) simulated the future
trends using a GCM projection (e.g., the model proposed by Modiri-Gharehveran et al. [29]).
The simplified model simulated for a short-term period based on future meteorological
forcing, including the impact of climate change. However, continuous long simulations
have not been performed, potentially because of the expensive computational costs and the
lack of an adjustment scheme for observed data (e.g., data assimilation) for unexperienced
events (i.e., future water temperatures). Therefore, DNNs with the TL approach (Case 3
model) are more realistic and practical at this stage for the prediction of future climate
change impacts.

In general, DNNs must be first trained with known data, and then can be used to
predict unknown data based on the patterns observed from the training data. Therefore,
DNNs appear to be an interpolation scheme that estimate within the range between the
maximum and minimum values in the training data. This is a limitation of the DNNs in
our study, because surface water temperatures are unknown in future periods of climate
change. Our study marginally extended the limitation, even within the same range of
training data by introducing the TL approach to DNNs. However, the predicted surface
water temperatures were still constrained by the range of the training data. Therefore,
the maximum and minimum values of the setup affect the DNN predictions. For a more
realistic setup of the range, physical models (e.g., a hydrodynamic model) that are exposed
to future climate change [30] can be used. The physical models may simulate only extreme
events that provide maximum and minimum water temperatures, because physical models
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usually incur high computational costs for long-term simulations. Although choosing
appropriate maximum and minimum values with physical models is beyond the scope of
our study, it should be considered in future work.

Furthermore, physics-guided DNNs that incorporate a heat balance embedded physi-
cal model as an internal mode have recently been developed [9,28]. The accuracy of their
DNNs in water temperature was satisfied with smaller RMSEs (approximately 1.0 °C);
however, the reliability of long-term simulations for 100 years is unknown. This is because
an accurate physical model in limnology generally uses a data assimilation scheme that
constrains simulated outputs to observed data. In fact, future water temperatures affected
by future climate change are unknown. Therefore, a long-term simulation by a physical
module may cause the accumulated errors from the difference between predicted values
and virtual observed ones that we do not know in reality in future.

5. Conclusions

To understand the impacts of long-term climate change on mid-latitude reservoir
environments, we conducted past and future predictions of surface water temperature
using locally downscaled climate data from GCM projections (RCP8.5), along with the
LSTM model coupled with the TL approach. Our study provides the following findings:

1. The LSTM model that was validated with the observed data achieved accurate repro-
ducibility calculations with R2 > 0.8 and NSE > 0.9. In particular, Case 2 with two
input datasets, i.e., air temperature and difference in air temperature, was marginally
better than the other cases.

2. Past and future predictions with locally downscaled data showed that the LSTM
model with the TL approach (Case 3 model) was more realistic for future prediction
than that without the TL approach based on the difference between past and future
air temperatures. The Case 3 model suggested that the frequency ratios with respect
to the predicted surface water temperature were increased in the highest range of
water temperature and decreased in the lowest range, because the model predicted
higher water temperatures.

We proposed a method (a DNN with the TL approach) that improved the disadvantage
of DNNs and was implemented with unexperienced data (i.e., surface water temperature in
the future). However, DNNs are still constrained by the maximum and minimum ranges of
training data (i.e., the observed surface water temperature in our study). Physical models
may provide an appropriate range of unexperienced data based on physical processes
driven by future GCM projections. Therefore, DNNs coupled with physical models may
be required in future work.
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Appendix A

We obtained observed data from 18 reservoirs at Kyushu for a source in the TL
approach. The 18 datasets include monthly data of air temperature and surface water
temperature. Each dataset was connected with other datasets based on an annual cycle, and
then one sequential dataset was created. However, the created data are not time series data,
although they have seasonal characteristics. Figure A1a illustrates the temporal variations
of air and surface water temperatures. The scattered plots between both datasets are shown
in Figure A1b with a regression line of R2 (0.63). The characteristics of the 18 reservoirs are
listed in Table A1.
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temperatures with a linear regression line (R2 = 0.63).

Table A1. Reservoir characteristics at Kyushu.

Name Location Total Capacity
(m3)

Surface Area
(km2)

Catchment Area
(km2)

Ayakita 32.0975◦ N, 131.1422◦ E 21,300,000 0.82 149.3
Ayanann 32.0578◦ N, 131.1217◦ E 38,000,000 1.36 101.0
Dokawa 32.3553◦ N, 131.3453◦ E 33,900,000 1.54 143.0
Hikawa 32.5714◦ N, 130.7865◦ E 6,300,000 0.35 57.4

Hirowatari 31.7167◦ N, 131.2675◦ E 6,400,000 0.38 34.4
Houri 32.7158◦ N, 131.5736◦ E 5,774,000 0.28 45.2

Ichifusa 32.3200◦ N, 131.0128◦ E 40,200,000 1.65 157.8
Iwase 31.9428◦ N, 131.1403◦ E 57,000,000 4.13 354.0

Kawabe 31.4450◦ N, 130.4456◦ E 2,920,000 0.23 30.2
Matsuo 32.2839◦ N, 131.3714◦ E 45,202,000 1.95 304.1

Midorikawa 32.6273◦ N, 130.9089◦ E 46,000,000 1.81 359.0
Hase-miyazaki 32.1458◦ N, 131.3403◦ E 2,250,000 0.14 11.8

Nichinann 31.6369◦ N, 131.2758◦ E 6,000,000 0.41 59.2
Okita 32.5506◦ N, 131.6192◦ E 2,750,000 0.27 8.8

Tachibana 32.1322◦ N, 131.2700◦ E 10,000,000 0.29 70.5
Tashirobae 32.1367◦ N, 131.1197◦ E 19,270,000 1.02 131.5

Turuta (old) 31.9853◦ N, 130.4958◦ E 123,000,000 3.61 805.0
Urita 31.9267◦ N, 131.3086◦ E 720,000 0.07 4.4
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