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Abstract: Over the last decades, aquaculture production increased rapidly. The future development of
the industry highly relies on the sustainable utilization of natural resources. The need for improving
disease resistance, growth performance, food conversion, and product safety for human consumption
has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed
conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve
general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish.
However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal
tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are
commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic.
In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is
promising, but a solid understanding of the interactions involved is only in its infancy and requires
further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal,
which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity
to improve stress and disease resistance, which is among the most pressing problems in aquaculture.
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1. Introduction

In view of stagnating fishery landings reported over the past 50 years, only the rapidly
developing aquaculture industry can meet the increasing per capita demand for fish world-
wide. Over the past decades, global aquaculture production has nearly doubled every ten
years, which reflects the fastest growth in the food-producing sector [1]. Undoubtedly, the
sustainable utilization of scarce natural resources is a challenge for the future development
of the industry. Among the obstacles for future expansion, fish nutrition and the manage-
ment of fish diseases and health are among the most critical. Sustainable development
of the industry requires advanced disease and health management because the aquatic
environment renders fish particularly susceptible to ubiquitous pathogens [2]. However,
the administration of drugs such as antibiotics is associated with human health concerns,
and prophylactic alternatives are highly desirable.

Feeding costs represent 40–70% of expenditure in intensive fish farming [3], mainly
attributed to the protein-rich ingredients. In the past, fishmeal was the main protein
source in fish nutrition, but, nowadays, it has become a scarce, costly ingredient. As a
consequence, but also with regard to the vulnerable status of several industrial species,
such as the Peruvian anchoveta, alternative plant ingredients are used in the diets [4–6].
Unfortunately, plant-based ingredients can have several negative effects on fish nutrition
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that involve the antinutritional effects of secondary plant metabolites, suboptimal amino
acid composition, as well as mineral imbalances, which, in turn, may impact health and
immune status [7–9]. Such restraints can be remedied, at least partly, by improving the
digestion of these feedstuffs by making use of probiotic supplements and adjusting the
gut microbiota.

In 1907, Metchnikoff was the first to point out the positive role of bacteria in milk and
yogurt products. He assumed that these beneficial bacteria replace harmful microbes and
are, therefore, responsible for the prolonged life of Balkan farmers who consumed high
quantities of these products. In 1953, Kollath introduced the term probiotics, originating
from the Latin word pro and the Greek word bios “for life” [10]. Traditionally, probiotics
have thus been regarded as bioactive food additives, especially living bacteria, which have
a positive influence on digestion and, moreover, the microbiome of the gastrointestinal tract
(GIT) in general [11]. Verschuere et al. [12] expanded this definition, stating that probiotics
are live microbial additives that have a beneficial effect on the host by (1) modifying the
host-associated microbial community, (2) ensuring improved use of the feed or enhancing
its nutritional value, (3) enhancing the host response towards disease, and/or (4) improving
the quality of its ambient environment. Merrifield et al. proposed a slightly modified
definition for probiotics in aquaculture [13]. They defined that “a probiotic organism can be
regarded as a live or dead component of a microbial cell, which is administered via the feed
or to the rearing water, benefiting the host by improving disease resistance, health status,
growth performance, feed utilization, stress response, or general vigor. This is achieved,
at least in part, by improving the host’s microbial balance or the microbial balance of the
ambient environment”.

Intensification of aquaculture production exacerbates health threats of infectious dis-
eases, including those arising from immunosuppression by plant ingredients. Over the last
two decades, disease management has addressed new vaccines, immunostimulants, and
disinfection strategies; in particular, probiotics have a huge potential in today’s disease
management strategies. Administered probiotic strains can counteract the colonization
of pathogens by competitive exclusion. This may involve either competition for binding
sites, synthesis of antibacterial compounds, immune stimulation, or competition for nu-
trients [14]. Detailed reviews on the probiotic species and the respective fish host species
have been provided elsewhere [14–19]

In this review, we summarize the current knowledge and recent findings in probiotic
research. In particular, we address the concept of the core microbiome of the digestive sys-
tem, discuss the utilization of host-associated, native (autochthonous) bacteria, and present
modes of action that focus on the main site of host–microbe interaction, the gastrointestinal
tract (GIT).

2. The “Living Gut” and Its Core Microbiome

A proverbial galaxy of living microorganisms colonizes every aquatic habitat and
every aquatic organism. Constant confrontation and interaction with the microbes of the
environment surrounding an individual are an unavoidable fate throughout its life, starting
from an immature egg to the adult animal. The taxonomic composition of the ambient
microbiota is, therefore, highly variable, depending on climatic and seasonal conditions,
including environmental factors such as salinity or temperature [20–22]. Aquatic organisms,
such as fish, experience this variability and face continuous microbial invasions. However,
to maintain its basic intestinal functionality, the host also actively selects for symbiotic
and commensal microorganisms. Therefore, the gut microbiota is influenced by both
external factors and the selective pressure exerted by the host [23–26]. Compared to the
surrounding environment, the microbial communities associated with an organism are
regarded as relatively stable, particularly those in the GIT [27,28], which assures metabolic,
nutritional, and immunologic functionality. Nevertheless, to a certain degree, variable
chemical and physiological factors (e.g., pH, salinity, temperature) influence its composition
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dynamically [24,29–31]. Depending on the duration of their presence, either temporarily or
permanently, microbes are referred to as transient or persistent.

Potential microbial colonization in teleosts starts at the exposed host surfaces and
their apertures. In fish, these are primarily the skin, gills, and GIT, with mouth, pharynx,
and intestinal compartments. These surfaces are covered with protective mucous, which,
in association with a specialized resident microflora, usually prevents the penetration
of deleterious microbes [32]. Often, the persistent microbes strongly associated with
the intestinal membrane are symbiotic bacteria [33]. Indeed, persistent microbes in their
entirety must provide the host with immunogenic and metabolic integrity and functionality.
However, due to food intake and the large surface area, the GIT is the main entry site for
exogenous microorganisms, symbiotic, commensal, and pathogenic.

The microbial interactions within the GIT drastically affect the development and
performance of the host animal. It has been shown that the GIT crucially affects nutritional
conversion, gut physiology, and immune and stress response [34–36]. The pioneering
work of Rawls et al. [37,38] identified a core microbiome in zebrafish for the first time.
Accordingly, striking similarities in the microbiome of wild and farmed fish exist, which
implies a role for host selection of microbiota [39]. The concept of a core microbiome
also suggests that the coevolution of the microbiota and the fish host is stronger than the
possible influence of environmental bacteria. Several studies on gut bacterial community
censuses agree that the fish GIT harbors a bacterial load of approximately 108 bacterial cells
per gram [40–44], representing ~500 species that consist mainly of aerobic or facultative
anaerobe microbes. Indeed, the oxygen content in the fish gut is higher than in the human
gut, which, in part, explains the low abundance of anaerobic bacteria [45]. In many fish
species, Bacteroidetes, Firmicutes, and Proteobacteria comprise the dominant proportion
of the gut microbiota [46–48]. Among fish, herbivores harbor the highest diversity of the
microbiome [49] because they require bacteria such as Clostridium, Leptotrichia, or Citrobacter
to support the digestion of plant-derived cellulose [50]. Due to its compartmentalization
and microstructuring, the GIT provides multiple habitats with varying pH and O2 con-
centrations and, hence, realizes multiple ecological niches. This explains the huge species
diversity observed. Recent studies imply that the higher the microbial diversity in the gut,
the healthier the gut [51,52].

Although there is a broad consensus on the concept of a core microbiome, gut compo-
sition shifts dynamically. For example, the diversity of the gut microbiome in zebrafish
and Southern catfish increases with host age [36,53], while the microbial diversity in
Oncorhynchus mykiss decreases with a reduction in nutrients [54]. Surrounding habitats,
such as water and sediment, are the reservoirs for gut microbiota acquisition and enrich-
ment [55,56]. Although the taxonomic composition of the microbiota in terms of species
composition differs substantially, the functional composition measured from bacterial RNA
data is well conserved [49].

3. Species-Specific, Native Probiotics

Most of the probiotics used in aquaculture do not originate from the aquatic host
organism itself but from terrestrial sources or different environments. Some evidence
suggests that host-associated, native (autochthonous) probiotics reveal a higher perfor-
mance than those isolated from other sources (allochthonous). One possible explanation
is that autochthonous probiotics are better adapted to their natural habitat, the gut, than
allochthonous probiotics. Hence, autochthonous probionts are expected to be readily able
to colonize the host’s GIT and perform to a better extent [57]. Furthermore, microorgan-
isms seem to obtain the highest physiological activities in their natural habitat [58]. In
addition, the survival rate of probiotics is likely higher when they are applied in their
natural environment [57]. This suggests that large proportions of the gut microbiota have
coevolved with the host and consequently reveal some degree of species-specificity. Indeed,
interactions between multicellular organisms and microorganisms may promote beneficial
mutations to the bacteria [46].
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In the past, most studies regarding the specificity of probiotics have focused on lactic
acid bacteria (LAB); host specificity of the adhesion and colonization of microorganisms
remains controversial. Fuller was the first author to state that epithelial attachment is
host-specific [11], but later studies reported that LAB from one host may indeed adhere
to the epithelium of another species [59–63]. In sturgeon, the host specificity of LAB has
been reported repeatedly [64,65]. This led to the controversial hypothesis that specificity is
most apparent in ancient taxa such as sturgeon, whereas modern teleosts do not exhibit
such stringent specificity [19]. Nevertheless, due to their beneficial effects on livestock and
humans, several allochthonous LAB strains of terrestrial origin have been used successfully
in fish [19]. Such an administration is particularly effective during early development [66].
Nevertheless, disruption of gut integrity occurs for some LAB strains [65]. It seems,
therefore, advisable to check probionts for pathomorphological modification of the gut
during their evaluation. Several studies suggest that LAB strains are suitable probiotic
candidates due to their ability to withstand acidity and bile salts and adhere to the gut,
their lactic acid production (which partially inhibit the growth of pathogenic bacteria),
and their strengthening of the mucosal barrier. Still, one should keep in mind that other
studies could not confirm the beneficial effects (particularly when LAB from terrestrial
sources were used), which, in part, may be attributed to the relative aerobic conditions
in the fish gut (compared to terrestrial animals) [45]. Here, LAB may be outcompeted by
other bacteria.

Mucus is a gel-like layer that functions as a transit tissue and pathogen barrier [67,68].
It consists mainly of water, glycoproteins, lipids, and salts. Among the glycoproteins,
mucins are important for the successful adherence of microbes. Not surprisingly, Lacto-
bacillus species were reported to adhere to mucin as well as intestinal cells with specific
surface-associated proteins, including mucus-binding proteins (MUBs), surface layer pro-
teins (SLPs), surface-layer-associated proteins (SLAPs), and moonlighting proteins [69–71].
As a screening criterion, hydrophobicity is a desirable trait of probiotics that should gener-
ally be used in the analysis [72,73].

The isolation of probiotic candidates from fish relies on culture-dependent techniques
using selective and nonselective growth media. In practice, one should use several media
and differing culture conditions (e.g., nutrient and pH gradients) in order to increase
the diversity of isolates [74]. In fish, due to the dominance of aerobe and facultative
anaerobe bacteria in the gut (see above), but also because anaerobic bacteria are difficult
to handle, aerobic and facultative anaerobic bacteria are the prime targets of screening.
Once a probiotic candidate is established, the cultivation protocol can easily be adapted
to biotechnological production in a bioreactor. Most investigations on host-associated
bacteria have used farmed fish because the isolation of bacteria from wild fish must be
performed in the field and sterile work near the capture site is often difficult. Previous
findings indicate that the use of multistrain probiotics improves functionality and efficacy.
Provided that mutual inhibition can be excluded, the combination of multiple beneficial
isolates is recommended [75–77].

4. Modes of Action

Beneficial effects for finfish farmers exerted by probiotic applications encompass
nutritional, metabolic, and health effects. This particularly includes increased growth
performance and appetite, enhanced food conversion (e.g., by an enzymatic contribution
to digestion), improved feed value (macro- and micronutrients made available by the pro-
biotic), inhibition of pathogenic microorganisms (adherence and colonization), stimulation
of the immune system, increased stress resistance, and improved general vigor (Figure 1).
Furthermore, higher reproductive output, reduced malformations, and higher flesh quality
have been reported.
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Figure 1. Mode of action of probiotics, including increased growth performance and appetite,
enhanced feed conversion (e.g., by secretion of microbial digestive enzymes) or improved feed
value (macro- and micronutrients), increased stress tolerance, improved disease resistance due to the
inhibition of pathogenic microorganisms (adherence and colonization), improved health status by
stimulating the fish’s immune system, and enhancement of general vigor.

4.1. Growth

Numerous studies have found that probiotic administration often results in improved
growth performance [78–82]. In this regard, probiotics can act either directly by increas-
ing the appetite and growth regulation or indirectly via improved digestibility (see feed
conversion). In tilapia, weight can increase by up to 115.3% [78], but growth performance
might have been linked to the better feed conversion reported. Nevertheless, probiotics
actually stimulate the growth axis, increasing the transcription of insulin-like growth factor
1 (IGF-1) and the growth hormone receptor [81]. Furthermore, metabolism-related key en-
zymes such as glucokinase, hexokinase, glucose-6-phosphatase, and pyruvate kinase were
upregulated in the host. In addition, an extract of probiotic Rhodobacter sphaeroides induced
growth-associated genes and stimulated muscle growth, in particular [83]. The use of an
additive containing Bacillus subtilis, Bifidobacterium bifidum, Enterococcus faecium, Lactobacil-
lus acidophilus, Lactobacillus casei, Lactobacillus lactis, Lactobacillus plantarum, and Pediococcus
acidilactici reduced the expression of myostatin, thereby enhancing the growth of white mus-
cle [80]. Still, in a study on Lactobacillus acidophilus, the food-intake-stimulating hormone
ghrelin was downregulated [84]. In contrast, correlated to increased food intake, Giorgia
et al. [85] reported an upregulation of orexigenic genes (neuropeptide Y, agouti-related
protein, ghrelin) and a decrease in anorexigenic leptin. In this context, we recommend
that potential probiotics for use in practice be routinely tested for palatability [86,87]. If
one detects any adverse effects, it is advisable to enhance the taste and, thus, the appetite
with stimulating additives. In conclusion, probiotics modulate the regulation of growth
and appetite, either directly or indirectly (Figure 1). Additionally, the host-associated
microbiota seems to play an important role in the proper development and differentia-
tion of gut components. Here, an optimal microbiota is suggested to positively influence
the proliferation of epithelia cells, including the formation of mucosal layers [38,88]. For
example, Merrifield et al. [89,90] observed that feed-supplemented Pediococcus acidilactici
significantly enlarged the absorptive surface of the gut via an increased microvilli length
in the proximal gut of rainbow trout, whereas Bacillus subtilis, Bacillus licheniformis, and
Enterococcus faecium did not exhibit such an effect.

4.2. Feed Conversion

There are several studies on probiotics that report increased feed conversion, but
the actual mechanism is rarely revealed [91,92]. Significantly, germ-free zebrafish were
arrested in their differentiation and were subsequently unable to absorb proteins [88].
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Only establishing a complex microbiota restored nutrient uptake, suggesting that the gut
microbiota contributes substantially to the nutrient uptake and assimilation of the host.
Probiotics also convert less degradable compounds into forms that can be easily digested by
the host (Figure 2). Here, various microbial enzymes, such as lipases, phytases, amylases,
cellulases, trypsin, and other proteases, can be involved [93–97]. In addition, microbes can
stimulate the activity and secretion of host enzymes directly [98–100]. In modern aquafeeds,
supplemented with high amounts of plant ingredients, specific probiotics may increase the
digestion of feed components such as nonstarch hydrocarbons, cellulose, or chitin, which
are indigestible for the fish host. In addition, probiotics such as LAB may be sources of
vitamins [101–103]. However, it remains controversial if the host actually absorbs these
vitamins [104]. Furthermore, bacteria may represent a source of PUFA, but concentrations
vary substantially between bacteria species [74]. The Vibrio species are especially rich in
EPA and DHA [105–109]. Interestingly, high contents of DHA are observed particularly
in deep-sea fish and seem to be an evolutionary adaptation towards high pressure and
low temperature. Although screening techniques have improved, screening for PUFA-
producing bacteria is not commonly addressed [74,110,111]. These examples show that
probiotics can increase the nutritional value of the feed by increasing digestibility or
providing microbial metabolites such as cofactors, vitamins, or essential fatty acids.
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Figure 2. Nutrition- and growth-related effects (modes of action) of probiotics in the gastrointestinal
tract (GIT), including direct effects such as (1) secretion of digestive enzymes; (2) absorption of
(micro)nutrients such as cofactors, vitamins, and polyunsaturated fatty acids; (3) indirect effects,
including elevated nutrient uptake/absorption; (4) stimulation of enzyme secretion, as well as (5)
neuroendocrine stimulation of appetence and growth. For further details, refer to the text.

4.3. Stress Resistance

Stress resistance and immune stimulation may translate into improved disease re-
sistance, observed upon pathogen challenge. Therefore, in practice, it is often difficult to
differentiate between these modes of action. Here, we will focus on the probiotic effects that
modulate the hypothalamus–pituitary–interrenal axis (HPI axis) and regulate the oxidative
stress system. In fact, the use of probiotics in counteracting stress is desirable since stress
in the rearing facility often translates into an increased risk of disease transmission. In Nile
tilapia, administration of Saccharomyces cerevisiae and Bacillus spp. revealed lower plasma
cortisol concentrations upon transportation stress, suggesting better stress resistance after
probiotic treatment [112]. Similarly, after an evoked stress, sea bream larvae pretreated with
Lactobacillus plantarum and Lactobacillus fructivorans exhibited lower plasma cortisol lev-
els [113], suggesting higher stress tolerance upon probiotic treatment. Since cortisol has an
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immunosuppressive effect on antibody production, there is a clear linkage with the health
status (Figure 1). In a stress challenge trial, yeast-fed fish exhibited high tolerance to acute
heat stress as well as hypoxia exposure [114], but neither cortisol nor components of the
oxidative stress defense were determined. Still, typical signs of stress such as the darkening
of the skin or behavioral responses such as disoriented swimming, accelerated ventilation,
or flaring of the gills indicate an increased stress tolerance after probiotic treatment, but
no quantitative data exist. In gnotobiotic European sea bass (Dicentrarchus labrax) larvae,
Vibrio lentus in the diet lowered the glucocorticoid baseline level [34]. Similarly, feeding of
LAB Lactobacillus delbrueckii delbrueckii resulted in lower cortisol levels [115]. Before and
after a hypoxia challenge, decreased glucose and cortisol levels were also reported in Nile
tilapia treated with Aspergillus oryzae [116]. Controversially, antioxidant enzymes, as well as
heat shock protein HSP70, increased upon treatment. In contrast, in zebrafish treated with
Bacillus amyloliquefaciens R8, mRNA of antioxidant enzymes and HSP70 decreased [117].
Lower oxidative stress levels were also observed in zebrafish after probiotic treatment [118],
suggesting increased hepatic stress tolerance.

4.4. Health Status

We distinguish between an immunostimulation of the host’s immune system and
direct interactions of the probiotic with a respective pathogen after challenge. Below, we
refer to the latter as disease resistance. Still, there is a close interlinkage (Figures 1 and 3).
For example, probiotic-treated fish revealed an increased expression of innate immune-
related genes (IL-1β, IL-6, IL-21, TNF-α, TLR-1, -3, and -4) and, after exposure to pathogens
Aeromonas hydrophila and Streptococcus agalactiae, showed a higher survival rate than con-
trol fish, which confirms that the immune stimulation leads to an enhanced immune
response towards pathogens [117]. On the other hand, immunostimulation, including
lysozyme, serum peroxidase, alternative peroxidase, phagocytosis, and respiratory burst
activities, may not result in increased survival upon pathogen challenge [119]. Still, it
is widely accepted that the stimulation of innate immunity in terms of either gene or
protein synthesis, enzyme activity, or cellular response may benefit the organism during
pathogen exposure. Immune stimulation frequently involves immune parameters such as a
higher number of leukocytes [120,121], increased phagocytic activity [122–124], respiratory
bursts [122,125], immunoglobulin M (IgM) [126,127], ß-defensins [128], proinflammatory
cytokines (interleukin IL-8 and IL-1 β) [124,129], and the modulation of immunity-related
genes [129,130]. Probiotics can stimulate elements of the nonspecific immune system, such
as mononuclear phagocytes (monocytes, macrophages), neutrophils, and natural killer
(NK) cells [131]. It seems that different probiotics have different effects on the expression
of immune-related genes of a respective fish species [79]. Still, differences could also be
attributed to differences in experimental conditions and the strains of fish used.

Among the components of the innate immune response, the mucosal epithelium is one
of the oldest and most common. Accordingly, mucin glycoproteins form a physical barrier
that covers the epithelium and prevents the adhesion of pathogens. Mucin-producing cells
influence the distribution of the microbes by secretion of antimicrobial peptides (AMPs).
In striped catfish Pangasianodon hypophthalmus, the administration of a Bacillus mixture
increased AMP levels [132]. Germ-free fish can exhibit both an undeveloped immune
system and a downregulated immune response due to undeveloped intestinal vasculature
and gut-associated lymphoid tissue (GALT) [133]. However, the immune status is largely
restored once the microbiota is re-established [37,88].

Additionally, some microorganisms produce volatile, short-chain fatty acids (SCFAs),
mainly acetic, propionic, and butyric acids, which stimulate the immune system of the
fish [134,135]. Gut cell proliferation and differentiation, apoptosis, mucin production,
and lipid metabolism are largely mediated by SCFAs. Moreover, SCFAs are potent im-
munostimulators and improve lymphocyte function. Indeed, SCFAs play a key role in the
modulation of the immune system in higher vertebrates, including T-cell differentiation,
stimulation of heat shock proteins, and evocation of immune-related effects upon binding
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to G-coupled protein receptors, which are expressed in neutrophils, macrophages, and
monocytes [136,137].
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4.5. Disease Resistance

In recent decades, efficient vaccines against common viral, bacterial, or fungal diseases
infecting commercial livestock have been developed. However, especially in the early life
stages, fish vaccination is not possible due to an incomplete immune system [63]. Larvae
and fry are most susceptible to pathogens at these stages, and the resulting mortality is
highly relevant [138,139]. Here, probiotics may be particularly useful.

Most surveys on probiotic applications in aquaculture consider the ability to inhibit or
exclude pathogenic bacteria. The majority of the studies addressing disease resistance use
in vitro assays to identify antagonistic effects as one of the most important selection criteria
for candidate probiotics. However, it is essential to confirm such effects in an in vivo
challenge experiment. Improved resistance towards pathogens, expressed as higher sur-
vival rates, occurs in several aquaculture species, including tilapia [124,140], carb [141,142],
rainbow trout [143], cod [144], and several other species.

Prophylactic treatment of the host can lead to competitive exclusion of pathogen bac-
teria. Here, the probiotics compete with the pathogens for nutrients, oxygen, and binding
sites to mucosa or epithelial surfaces (Figure 3). Thereby, bacteria are able to prevent poten-
tial infections. Competition for binding sites inhibits pathogen adherence and colonization,
involving factors such as hydrophobicity, electrostatic interactions, lipoteichoic acids, and
passive and steric forces [145]. Indeed, Brunt and Austin [146] demonstrated that the
inhibition of pathogenic Lactobacillus garvieae and Streptococcus iniae by Bacillus species was
not a result of antibiosis via the production of antimicrobial compounds. Instead, under
iron-limited conditions, siderophore-producing probiotics such as Bacillus spp. outcompete
pathogens by depriving them of available iron ions [147]. Furthermore, several probiotic
organisms produce secondary metabolites that may inhibit pathogen growth, e.g., natural
antibiotics, hydrogen peroxide, organic acids, bacteriocins or proteases, antibiotics, and
lytic enzymes, which can eradicate harmful bacteria directly [14]. For example, Bacillus
velezensis produced four bacteriocin gene clusters and, additionally, lytic enzymes such as
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ß-1,3-glucanase [148]. In the genome of Bacillus subtilis, 4–5% of the genes are devoted to
the production of antibiotics [149].

Undoubtedly, the innate immune system plays a major role in shaping the microbiota
and, therefore, keeps the occurrence of pathogenic infections under control [150]. However,
adult wild-type zebrafish display a decreased abundance of Vibrio spp. compared to
zebrafish lacking adaptive immunity (rag1-/-), indicating that the innate immune system
alone cannot fully regulate all members of the microbiota in the intestine [150]. It has
also been suggested that the adaptive immune system, e.g., via T-cells, is involved in the
regulation of the microbial composition.

Since farmers cannot predict the onset of a disease, it is of utmost importance that the
probiotic is either administered as prophylactic during a susceptible life stage (e.g., larval
stage) or is persistent for a long time. Here, a persistent contribution to the microbiome
is highly desirable. In this context, the effects of a probiotic administered after the onset
of a disease should be investigated. We would recommend probiotic applications that
exert persistent proliferation in the GIT since prolonged administration could have adverse
effects (dysbiosis) on the host [97]. In addition, long-term administration of probiotics
could become obsolete.

4.6. General Vigor (Fitness)

Undoubtedly, immune stimulation and disease resistance are closely interlinked
with the physical performance of an individual. Still, few studies exist that indicate
better physical fitness due to probiotic administration [151,152]. In mice and humans,
probiotics can enhance exercise performance and reduce fatigue after exercise [153,154].
For example, a swimming exercise endurance test revealed improved muscle strength and
endurance, including increased hepatic and muscular glycogen and decreased lactate, after
four weeks of probiotic supplementation [153]. At the same time, dramatic changes in the
microbial community occurred. Indeed, several studies have reported increased microbial
diversity in athletes compared to non-athletes [155,156]. The mechanisms that influence
physical performance and potentially support improved general vigor upon probiotic
supplementation are still unknown. Additionally, probiotics may increase maximum
oxygen uptake, aerobic capacity, and training load [151]. Probiotic supplementation can
significantly increase SCFA production to generate more ATP required for exercise, but
with regard to the limited number of studies, it is unknown if other pathways might be
involved and further studies are needed. Other effects observed after probiotic applications
include a reduction of malformations [157,158] and accelerated maturation [159–161].

Interestingly, Lactobacillus rhamnosus IMC 501®® accelerates the reproductive perfor-
mance of female zebrafish (Danio rerio), as indicated by the gonadosomatic index and
gene expression of reproductive parameters such as aromatase, vitellogenin, and estradiol
receptors [162,163]. This may be driven by increased energy availability, supporting the
energy demand of developing gonads. Indeed, treatment with L. rhamnosus modulates
lipid metabolism, decreasing cholesterol and triglyceride content and rising fatty acid
levels [164].

5. In Vitro Screening for Candidate Probiotics

To reduce the actual costs, screening commonly involves in vitro assays. In gen-
eral, these assays should ensure that the probiotic candidates meet the following criteria:
(1) harmlessness towards the host, (2) absence of virulent and antibiotic resistance genes,
(3) reach target habitat intact (e.g., survival of stomach passage at low pH), (4) acceptance
by the host (adherence and host-specificity), and (5) in vivo as opposed to in vitro findings
(e.g., pathogen antagonism, dietary enzymes). In humans, regulatory authorities have tried
to standardize the in vitro assays by publishing detailed protocols and directives, but tests
are performed in a rather arbitrary manner. Here, a standardization of tests will improve
future screening efforts.
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For easy handling, culturing is carried out in aerobic conditions because target can-
didates are aerobic and facultative anaerobic bacteria. In addition, 16S-rRNA sequencing
is used for taxonomic classification. Moreover, genes involved in the response to low pH,
e.g., F1F0-ATPase or heat shock proteins such as DnaK, GroES, and GroEL, are determined.
However, to assess pH and bile tolerance in vitro, culturing approaches are easy to im-
plement and are mostly cost-effective. Here, simple approaches with modified PBS have
been carried out, but strategies including artificial gastric and pancreatic juices should
be preferred [165–167]. An utmost important aspect of candidate screening is the safety
of the respective candidate. Here, monitoring the minimum inhibitory concentrations
(MICs) for the most relevant antibiotics usually relies on EFSA (European Food Safety
Authority) protocols [168]. Additionally, blood agar plates are used to determine hemolytic
activity [169]. The screening of pathogenic traits may also assess the ability of a candidate
to bind to host cells, such as platelets [170]. The problem with the in vitro safety assays is
that virulence may simply not develop under the specific conditions of the assay and, thus,
remain undetected. Indeed, interaction with the host in vivo may only trigger virulence.
Adherence to the mucus or epithelium is essential to persistently colonize the GIT of the
host. Some probiotic strains are equipped with protein surface appendages such as pili
or fimbriae, which are identified microscopically or by screening the genome for the re-
spective encoding sequences. The adhesive capacity correlates with the hydrophobicity
of the bacterial cell surface, which is determined according to the partition into hydro-
carbons [171,172]. However, easy-to-perform surface hydrophobicity is often regarded
as rather outdated [173]. Recently, high-throughput adhesion screening methods have
utilized immobilized commercially available mucin [174].

As outlined, several bacteria contain high contents of essential fatty acids, cofactors,
or vitamins [175,176]. An analysis is usually carried out under standard culture condi-
tions using chromatographic methods, but conditions mimicking the proximal intestine
during culturing are preferential. Similarly, candidate screening may target extracellular
enzyme activity, allowing high throughput analysis. Most studies involve the monitoring
of antagonistic activity towards selected pathogens. This is commonly assessed using
simple inhibition assays performed on solid media, e.g., paper-disk diffusion assay or
well diffusion assay [74]. In vitro pathogen adhesion assays are used to assess competitive
inhibition. Again, conditions should mimic those in the intestine. Nevertheless, in vitro
production of antimicrobial compounds may not result in similar observations in vivo since
adverse effects may not be triggered. Vice versa, in vitro assays may not detect adverse
effects. In addition, the desired antimicrobial effects may not be restricted to pathogens
and, consequently, affect the entire microbiota, resulting in adverse effects in vivo.

6. Administration

Currently, in most studies, single-species probiotics are evaluated, but, as outlined
above, multistrain probiotics are recommended in many application areas. For spore-
forming species such as Bacillus, spores should be used as the delivery form because they
exhibit improved resistance towards hostile environments (reduced moisture of dry feeds,
low pH in the stomach). Probiotics, for which the intestinal tract is the intended site of
action, are primarily administered orally via the diet. Here, the enrichment of probiotic
cells on or in feeding pellets is the most common practice. In larvae, probiotics are typically
added to the rearing water or incorporated into the live feed, for example, Artemia, as
biological vectors [144]. For feed pellets, an easy-to-perform stepwise top coating technique
has been described [74].

Although the pH of the GIT is not as low in fish as in higher vertebrates [103], pH
sensitivity is an issue in probiotic administration. There are interspecific variations in pH
along the different compartments of the GIT. In general, herbivores tend to have higher
pH than omnivorous and carnivores. The channel catfish, as a typical representative of
carnivores, reveals a pH between 2–4 in the stomach and 7–9 in the duodenum, a stable
value of 8.6 in the upper intestine, and a near-neutral pH in the lower intestine [177].
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In larvae, particularly those with prominent metamorphosis, the pH is generally higher.
Hoehne-Reitan [178] reported, for example, an alkaline pH throughout the GIT until Day
24 after hatching. Still, after weaning, the pH in the stomach dropped to a minimum of
3.5. Furthermore, several teleosts are agastric (approximately 20% of the species) and do
not have acidic digestion. Experimentally, artificial gastric juices stimulate the passage
of the stomach [165,166,179,180]. As a rule of thumb, the lower the actual pH, the more
sophisticated the strategies of administration required, most of which are adopted from
application to higher vertebrates. These include delivery systems such as microencapsu-
lation in cellulose sulfate or calcium alginate [180], legume protein encapsulation [181],
hydrogels [182], and coated mucoadhesive films [183] or bioencapsulation in live biological
vectors [184]. The probiotic should be retained within the delivery system, and the system
should be stable until it is exposed to a specific set of environmental conditions (most
importantly pH, bile salts, and enzyme activities). Consequently, the biomaterials used
should be stable under acidic conditions in the stomach, and decomposition should only
occur after subjecting them to the pH of the small intestine or to pancreatic enzymes.

7. Conclusions

Undoubtedly, in the context of rapidly increasing global aquaculture production,
alternative ecofriendly methods for the prevention and therapy of diseases as well as
the improvement of growth performance are pressing issues. Here, probiotics offer the
tempting opportunity to modulate the GIT microbiome persistently, exerting beneficial
effects such as increased growth, feed conversion, health, disease, and stress resistance.
Interestingly, probiotics may be capable of degrading compounds that the fish host cannot
digest alone. Carbohydrate digestion and detoxification of antinutrients are the focus of
aquaculture research. Probiotic-derived chitinase, for example, may allow the use of novel
feedstuff such as insect meal or krill. Similarly, the probiotic digestion of secondary plant
metabolites with antinutritional effects may improve the rate of fishmeal replacement with a
respective plant feed ingredient. Multispecies probiotics exhibit better probiotic effects than
single-species applications. The modulation of the gastrointestinal microbiome through
dietary administration of probiotics represents a potential strategy to improve microbial
metabolite production, stimulate immune signaling, and increase defense mechanisms
against pathogens. However, modulation of the microbiome may induce adverse effects
and may even bear the risk of paving the road for pathogens. Therefore, we need to
deepen our knowledge of microbiome regulation. Additionally, species-specific studies
are required before a given probiotic is applied in a novel species. Moreover, the antiviral
activity of several Lactobacillus strains towards murine norovirus (MNV) has been reported,
and it will be interesting to see if microbes can also alter fish-specific viral infectivity [185].
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