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Abstract: This study presents the results derived from micropaleontological and organic geochem-
ical analyses of mud breccia samples obtained (through gravity coring) from five mud volcanoes
(Gelendzhik, Heraklion, Moscow, Milano, Leipzig) located at the Olimpi mud volcano field on the
Mediterranean Ridge accretionary complex. A thorough calcareous nannofossil semi-quantitative
analysis was performed to determine the biostratigraphic assignment of the deep-seated source strata.
Mudstone/shale clasts of different stratigraphic levels were identified and assigned to the Miocene
nannofossil biozones CNM10, CNM8–9, CNM7, CNM6–7, and Oligocene CNO4/CNO5. A single
mudstone clast from the Gelendzhik plateau, assigned to the biozone CNM10, demonstrated unique
micropaleontological and geochemical characteristics, suggesting a sapropelic origin. Subsequently,
the total organic carbon (TOC) content and thermal maturity of the collected mud breccias was
evaluated using the Rock-Eval pyrolysis technique, and their oil and gas potential was estimated. The
pyrolyzed sediments were both organic rich and organic poor (TOC >0.5% or <0.5%, respectively),
with their organic matter showing characteristics of the type III kerogen that consists of adequate
hydrogen to be gas generative, but insufficient hydrogen to be oil prone. However, the organic matter
of the late Serravallian (CNM10) sapropelic mudstone was found to consist of a mixed type II/III
kerogen, implying an oil-prone source rock.

Keywords: mud breccia; calcareous nannofossil analysis; biozone; Rock-Eval pyrolysis; offshore
southern Crete Island

1. Introduction and Geotectonic Setting

Mud volcanoes (MVs) are very common structures on the eastern Mediterranean
seafloor, distributed in areas under a compressional tectonic regime. In total, more than
250 MVs have been identified on the Mediterranean ridge (MR), while such structures are
absent throughout the neighboring tectonically inactive Hellenic backstop, even though
extensional stresses may prevail in places. MVs are considered as the most important
pathways for the release of overpressure caused primarily by tectonic movements and
secondarily by the production of diagenetic fluids (biogenic and/or thermogenic) within
deep-seated sediments.

Many studies have been carried out during the past decades in order to determine the
MVs’ spatial distribution in the eastern Mediterranean basin (Figure 1) (e.g., [1–5]), their
sedimentological and geochemical characteristics [6–10], and their possible relation to gas
hydrates and gas seeps [11–15].
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Figure 1. Spatial distribution of the mud volcanoes (see the yellow bullets) in the eastern Mediter-
ranean basin. The thick dashed lines indicate the northern and southern boundaries of the central 
Mediterranean Ridge, while the red arrow indicates the approximate location of the Olimpi mud 
volcano field. Modified from Mascle et al. [5]; see [16] for the explanation of the additional infor-
mation shown on the map. 

Based on Mediterranean Sea studies, the sediments extruded during the eruptive 
activity of MVs comprise mixtures of a poorly sorted clayey, silty, and sandy matrix 
along with angular to round coarser material (i.e., pebbles, cobbles, or even larger clasts), 
which usually do not share the same stratigraphic origin. The established term for these 
sediments is “mud breccia”. Cita et al. [17] were the first authors to use the previous term 
aiming to describe the material expelled from the Prometheus MV, which consists of a 
grey clay- and silt-sized matrix supporting centimeter-sized sub-rounded clasts of 
semi-indurated sediment [18]. 

The Olimpi mud volcano field (OMVF) is located on the central-northern MR (Fig-
ure 1) and includes several mud domes/complexes. The MR is a relatively deep 
(~1700–2000 m) and a wide ridge on the bed of the eastern Mediterranean Sea, running 
along an area extending from Calabria, south of Crete Island, to the southwest edge of the 
Turkish coast, and from there, eastwards south of Cyprus Island. The MR is being up-
lifted by compressional stresses, triggered by the collision and subsequent subduction of 
the African plate beneath the Eurasian, Aegean, and Anatolian plates. Hence, the MR is 
actually the accretionary wedge/prism of this subduction zone, while the marine region 
offshore of southern Crete is considered as a forearc basin (e.g., [19,20]. The compres-
sional tectonic regime developed in the MR consists of the latest event of the cyclic tec-
tono-metamorphic process that took place during the migration of the Hellenic orogenic 
belt towards the most external (southern) units [19,21]. A thick continental crust devel-
oped because of the stacking of the Cretan nappe piles (e.g., Mani/Plattenkalk, Ar-
na/Phyllites-Quartzites, Gavrovo, Pindos) during the Oligocene–early Miocene under a 
N-S trending compressional deformation [22]. 

During the Miocene–Pliocene, the lithospheric plate convergence zone and, subse-
quently, the tectonic compression migrated southwards to the Mediterranean region 

Figure 1. Spatial distribution of the mud volcanoes (see the yellow bullets) in the eastern Mediterranean basin. The thick
dashed lines indicate the northern and southern boundaries of the central Mediterranean Ridge, while the red arrow
indicates the approximate location of the Olimpi mud volcano field. Modified from Mascle et al. [5]; see [16] for the
explanation of the additional information shown on the map.

Based on Mediterranean Sea studies, the sediments extruded during the eruptive
activity of MVs comprise mixtures of a poorly sorted clayey, silty, and sandy matrix along
with angular to round coarser material (i.e., pebbles, cobbles, or even larger clasts), which
usually do not share the same stratigraphic origin. The established term for these sediments
is “mud breccia”. Cita et al. [17] were the first authors to use the previous term aiming
to describe the material expelled from the Prometheus MV, which consists of a grey clay-
and silt-sized matrix supporting centimeter-sized sub-rounded clasts of semi-indurated
sediment [18].

The Olimpi mud volcano field (OMVF) is located on the central-northern MR (Figure 1)
and includes several mud domes/complexes. The MR is a relatively deep (~1700–2000 m)
and a wide ridge on the bed of the eastern Mediterranean Sea, running along an area
extending from Calabria, south of Crete Island, to the southwest edge of the Turkish
coast, and from there, eastwards south of Cyprus Island. The MR is being uplifted by
compressional stresses, triggered by the collision and subsequent subduction of the African
plate beneath the Eurasian, Aegean, and Anatolian plates. Hence, the MR is actually the
accretionary wedge/prism of this subduction zone, while the marine region offshore of
southern Crete is considered as a forearc basin (e.g., [19,20]. The compressional tectonic
regime developed in the MR consists of the latest event of the cyclic tectono-metamorphic
process that took place during the migration of the Hellenic orogenic belt towards the
most external (southern) units [19,21]. A thick continental crust developed because of
the stacking of the Cretan nappe piles (e.g., Mani/Plattenkalk, Arna/Phyllites-Quartzites,
Gavrovo, Pindos) during the Oligocene–early Miocene under a N-S trending compressional
deformation [22].

During the Miocene–Pliocene, the lithospheric plate convergence zone and, sub-
sequently, the tectonic compression migrated southwards to the Mediterranean region
offshore of southern Crete and offshore of southern Peloponnese [23]. As a result, the com-
pression in the Mediterranean basin led to the onset of the MR development. At the same
time, Crete and Peloponnese, which previously experienced compressional stresses, were
subjected to a N-S trending extensional tectonic regime. In the Miocene–early Pliocene,
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crustal extension in Crete caused the uplifting of the lower nappes [22,24], and sedimentary
basins were developed onshore and offshore (backstop area) Crete and Peloponnese.

The mud volcanism is most probably related to backthrusting processes along the
northern boundary of the accretionary wedge, near the Hellenic backstop region [25]. The
ongoing (since Miocene–Pliocene) tectonic compressional deformation in the MR has been
considered as the triggering process for the development of MVs since the early Pleistocene.
For example, the first eruptive activity of the Napoli MV was estimated between 1.25 and
1.5 Ma, while the first eruption of the Milano MV was estimated at 1.75 Ma [6,7].

The sediments extruded onto the seafloor during the MV eruptions may originate
from sub-salt formations of pre-Messinian age or from source beds of the Messinian
age (e.g., [10]) and consist of a mixture of clasts of variable lithology and consolidation,
supported by very stiff to very soft sandy mud matrix having clay as the dominant fraction
(e.g., see Appendix A in Panagiotopoulos et al. [26]). In terms of petrology, most of the
clasts of the mud breccia matrices are considered to be derived from the North African
passive margin, except of various ophiolite-related lithoclasts that are probably derived
from higher thrust sheets of Crete [25].

The scope of the present study was to perform micropaleontological and organic
geochemical analyses on mud breccia deposits obtained from five MVs (Gelendzhik, Her-
aklion, Moscow, Milano, and Leipzig) of the OMVF using gravity coring, in order to shed
light on the deep-seated sub-salt formations of the region, since there is lack of a deep-well
drilling in this particular MR area. To the best of our knowledge, the only stratigraphy in
the host sediment of the OMVF, albeit very shallow, is the one provided by Cita et al. [27]
through a core analysis, which revealed that the occurrence of pelagic sequences of the
Holocene to Middle Pleistocene are composed mainly of marl and sapropel, as well as
tephra layers as minor, isochronous lithologies.

2. Materials and Methods
2.1. Sediment Collection and Sample Treatment

The sediment cores investigated in this work were collected from the crests of the
relevant MVs (see Figure 2a for coring locations and core names) and initially examined
by Panagiotopoulos et al. [26]. According to the previous study, the sampling locations
were selected based on the intensity of the backscatter signal recorded during a swath
bathymetry survey in the OMVF (Figure 2a–c) carried out by the R/V Aegaeo in 2016.
The sediment sampling was performed using a gravity corer (Benthos Inc., Massachusetts,
USA) with a 3-m-long core barrel (Benthos Inc., Massachusetts, USA). Because of the highly
incohesive nature of the majority of the mud breccia deposits, the recovery length of the
retrieved cores was generally incomplete (70–132 cm).

In the laboratory, 100–200 g of material was initially recovered from 14 mud breccia
facies (see Figure 3 and [26]) and, then, clasts were carefully removed from the sediment
matrix. In total, 42 samples (14 matrices and 28 clasts) were collected and described
regarding their color (using the Munsell soil color chart), distinct features (e.g., fissilities),
lithology (a representative example is displayed in Figure 4), and degree of consolidation
(see Tables A1–A5 in Appendix A). The degree of the sediment matrix consolidation was
already determined by Panagiotopoulos et al. [26], while the consolidation degree of
clasts was estimated by the present study using the empirical testing criteria referred to in
Appendix A.
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jected to Rock-Eval pyrolysis, while the second half was used to produce smear slides for 
the microscopical study of the calcareous nannofossil content, according to standard 
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Figure 2. (a) Bathymetric digital terrain model of the Olimpi mud volcano field (grid interval: 50 m; 
ellipsoid: WGS84; projection: UTM35N; reference datum: mean sea level) and sediment coring lo-
cations (the core labels appear in white color). (b) Seabed reflectivity in the Olimpi mud volcano 
field (grid interval of 50 m), with the yellow-colored patches representing strong backscatter signal. 
(c) Location of the Olimpi mud volcano field (inset map). From Panagiotopoulos et al. [26]. 

Figure 2. (a) Bathymetric digital terrain model of the Olimpi mud volcano field (grid interval: 50 m;
ellipsoid: WGS84; projection: UTM35N; reference datum: mean sea level) and sediment coring
locations (the core labels appear in white color). (b) Seabed reflectivity in the Olimpi mud volcano
field (grid interval of 50 m), with the yellow-colored patches representing strong backscatter signal.
(c) Location of the Olimpi mud volcano field (inset map). From Panagiotopoulos et al. [26].
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Figure 3. Images of the gravity cores recovered from the five MVs, showing the coring depth below 
seafloor (bsf) and the various mud breccia facies. The red arrows indicate the sampling core inter-
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Figure 4. Image of a representative mud breccia facies from the Olimpi mud volcano field 
(LEV5GC core from the Moscow MV). 

2.2. Micropaleontology and Biostratigraphy 
Concerning the calcareous nannofossil analysis, a semi-quantitative determination 

was conducted in up to 300 fields of view per slide in randomly distributed longitudinal 
traverses using a Leica DMLSP (Leica Microsystems GmbH, Wetzlar, Germany) optical 
polarizing light microscope at a 1250× magnification. The traverses represented both low- 
and high-density material content in an effort to make accurate nannofossil determina-

Figure 3. Images of the gravity cores recovered from the five MVs, showing the coring depth below seafloor (bsf) and the
various mud breccia facies. The red arrows indicate the sampling core intervals. Modified from Panagiotopoulos et al. [26].
For a detailed description of the cored sediments see Panagiotopoulos et al. [26].
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Figure 4. Image of a representative mud breccia facies from the Olimpi mud volcano field (LEV5GC core from the
Moscow MV).

All samples were split in two equal halves. The first half was completely homogenized
using a mortar and pestle and an amount of at least 100 mg per sample was subjected
to Rock-Eval pyrolysis, while the second half was used to produce smear slides for the
microscopical study of the calcareous nannofossil content, according to standard tech-
niques [28,29].
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2.2. Micropaleontology and Biostratigraphy

Concerning the calcareous nannofossil analysis, a semi-quantitative determination
was conducted in up to 300 fields of view per slide in randomly distributed longitudinal
traverses using a Leica DMLSP (Leica Microsystems GmbH, Wetzlar, Germany) optical
polarizing light microscope at a 1250× magnification. The traverses represented both
low- and high-density material content in an effort to make accurate nannofossil determi-
nations and trace even the rarest species. The semi-quantitative abundances of the taxa
encountered were recorded as follows: A, abundant: ≥1 specimen/1 field of view; C,
common: ≥1 specimen/10 fields of view; F, few: 1 specimen/10–50 fields of view; R, rare:
1 specimen/>50 fields of view.

The zonal assignment follows the biostratigraphic scheme of Agnini et al. [30], which
incorporates the biochronologic information from Backman et al. [31] and is correlated to
the Martini [32] biozones (see Table 1).

It should be noted that sample preparation restrictions, due to the nature of the
examined sediment (i.e., minute clasts within a consolidated sediment matrix), could result
in the contamination of the nannofossil assemblages and organic matter content. Hence,
the grinding and homogenization process of the matrix and minor clasts could artificially
produce a sample characterized by various organic matter types and diverse nannofossil
assemblages. Further, the occurrence of clasts containing organic matter and nannofossils
of dissimilar stratigraphic origin could be explained by the presence of an amount of
residual matrix that was not sufficiently scraped off from the surface of the clasts during
the sample preparation, resulting in its amalgamation with the clast.

2.3. Organic Geochemical Analysis

The samples, after being pulverized and dried at 40 ◦C, were subjected to the Rock-
Eval pyrolysis technique [33–35] in the Institute of Petroleum Research (IPR)—FORTH, us-
ing a Delsi Rock-Eval VI system. The determined parameters are presented in Tables A1–A5
of Appendix A.

Briefly, during the Rock-Eval pyrolysis the rock sample is heated in an inert (nitrogen)
atmosphere. Hydrocarbons already present in the sample are volatized at 300 ◦C and
recorded as the S1 peak. As the analysis proceeds at higher temperatures (up to 850 ◦C),
hydrocarbons generated from the kerogen are recorded as the S2 peak (see Figure A1 in
Appendix A for representative well-defined S2 peaks), which is an indicator of thermal
maturity. Carbon dioxide and carbon monoxide produced during the pyrolysis are also
recorded (S3 peak). Subsequently, the residual carbon is determined during oxidation of the
sample (S4 peak). Considering the experimental data, the Tmax, total organic carbon (TOC),
mineral carbon (MinC) content, hydrogen index (HI = 100 × S2 × TOC−1), and oxygen
index (OI = 100 × S3 × TOC−1) are calculated based on Emeis and Kvenvolden [36].

The HI and OI parameters are used to characterize the origin of the organic matter.
Marine organisms and algae, in general, are composed of lipid- and protein-rich organic
matter, where the ratio of H to C is higher than in the carbohydrate-rich constituents of
land plants. HI may reach up to 600 mg g−1 in geological samples. OI is correlated with
the ratio of O to C, which is high for polysacharride-rich remains of land plants and inert
organic material (residual organic matter) encountered as background in marine sediments.
OI values do not usually exceed 240 mg g−1.
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Table 1. Biozones determined by the nannofossil study of the clast samples. The index species suggest the stratigraphic
range of the samples, while the reworked species can provide valuable information about the basin’s evolution. The
correlation with Martini [32] biozones appears in parentheses. (*) Miocene–Pliocene species associated with potential
contamination caused by the upward migration of mud breccia.

Biostratigraphic
Scheme Index Species

Main Long-Range
Species (or/and

Reworked)
Reworked Samples

CNM10
(NN7) D. kugleri

C. pelagicus,
C. floridanus,

H. carteri,
D. deflandrei,
S. moriformis

S. disbelemnos, S. dissimilis,
H. ampliaperta, S. delphix,

C. abisectus, D. nodifer, R. lockeri,
R. bisecta, S. ciperoensis, R. hillae,

S. predistentus, Z. bijugatus,
H. recta, D. lehmanii, Eiffelithus sp.

Also (*): P. lacunosa?,
Gephyrocapsa sp. <3 µm

LEV1GC 4–6 clast 1,
LEV1GC 4–6 clast 2,

LEV1GC 65–67 clast 1,
LEV5GC 100–102 clast 2

CNM8–9 (NN6) R. pseudoumbilicus,
C. macintyrei

C. leptoporus,
C. mesostenos,

C. pelagicus, H. carteri,
D. deflandrei,
S. moriformis

S. heteromorphus, S. cometa,
S. disbelemnos,

R. bisecta, S. ciperoensis,
D. barbadiensis, R. lockeri,

R. hillae, R. reticulata,
Z. bijugatus, C. fomosus,

C. abisetus, C. gerrardii, R. daivesi,
D. lehmanii Zeugrhabdotus sp.,
Cruciplacolithus sp., Eiffellithus

sp., W. barnesiae, undetermined
Cretaceous sp. Also (*):

P. lacunosa?, Gephyrocapsa <3 µm,
S. abies

LEV1GC 18–20 clast 1,
LEV7GC 40–43 clast 1,
LEV7GC 40–43 clast 2
LEV7GC 78–80 clast 2,
LEV9GC 10–13 clast 1,
LEV9GC 98–100 clast 3,
LEV9GC 128–130 clast 3

CNM7
(NN5)

S. heteromorphus,
C. miopelagicus

C. pelagicus,
C. floridanus,
D. deflandrei,
S. moriformis,
C. mesostenos,

R. perplexa

R. bisecta, D. barbadiensis,
W. barnesiae, Micrantholithus sp.

LEV5GC 123–125 clast 2,
LEV9GC 128–130 clast 2

CNM6–7 (NN4)
S. heteromorphus,

Helicosphaera
ampliaperta

C. pelagicus,
C. floridanus,
D. deflandrei,

S. moriformis,
C. mesostenos,

R. perplexa

S. cometa, S. dibelemnos,
C. abisetus, R. bisecta, S.

predistentus, D. barbadiensis,
R. lockeri, D. lehmanii,

undetermined Cretaceous sp.,
E. turriseiffelii

LEV3GC 65–67 clast 1,
LEV5GC 70–72 clast 1,
LEV9GC 67–69 clast 1,
LEV9GC 98–100 clast 2

CNO4/CNO5
(NP24)

S. distentus,
S. predistentus,
S. ciperoensis

C. pelagicus,
C. floridanus,
D. deflandrei,

S. moriformis,
C. mesostenos,

C. abisectus, R. bisecta,
Z. bijugatus

D. barbadiensis, C. eopelagicus,
B. parca, Eiffelithus sp., R. infinitus LEV5GC 40–42 clast 1

Assemblage
mainly featuring

the CNO3-
CNO4/CNO5

biozones
(NP23-NP24)

S. distentus,
S. predistentus,

S. peartiae

C. formosus,
C. floridanus,
D. deflandrei.

C. formosus, D. multiradiatus,
D. barbadiensis, Arkhangelskiales

sp. Also (*): C. miopelagicus,
D. kugleri, D. discissus, D. durioi,

D. exilis, H. carteri,
R. pseudoumbilicus, U. jafari,

S. abies

LEV5GC 10–12 clast 1,
LEV5GC 100–102 clast 1
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3. Results
3.1. General Lithological Description and Dating of Samples

The 28 examined clasts were classified as mudstones, shales, carbonate mudstones,
sandstone (sample LEV9GC 67–69 clast 2), and carbonate interlaminated sandstone/mudstone
(sample LEV9GC 98–100 clast 1). Mudstones, however, dominated the clast lithology. For
further details, see Tables A1–A5 in Appendix A.

The14 examined sediment matrices were mixtures of clay, silt, and sand and can be
classified as sandy mud. A detailed description of the mud matrices of the cored sediments
in the OMVF has already been provided by Panagiotopoulos et al. [26].

Concerning the biostratigraphic dating accomplished through the calcareous nanno-
fossil analysis (Tables 1 and A6, Tables A7–A47 in Appendix A), most of the clast samples
were assigned to the early-middle Miocene (CNM6–7, CNM7, CNM8–9. and CNM10
biozones [30]). However, for the first time, Oligocene clasts (see Figure 5 and Table 1) were
also identified in the broader Olimpi/Prometheus 2 area.
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Figure 5. Example of an age-diagnostic assemblage list showing the relative abundances of the 
nannofossil species in the total assemblage of the LEV5GC 40–42 clast 1 sample. The coexistence of 
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Figure 5. Example of an age-diagnostic assemblage list showing the relative abundances of the nannofossil species in the
total assemblage of the LEV5GC 40–42 clast 1 sample. The coexistence of Sphenolithus distentus and Sphenolithus predistentus
(their microscopic image appears at the right) and Sphenolithus ciperoensis defines the CNO4/CNO5 biozone. The identified
Cretaceous species along with some Paleogene (pre-Oligocene) species are considered as reworked.

The rest of the clasts could not be accurately or reliably dated (see Tables A2–A5
in Appendix A) because of: (i) the significant reworking and/or mixing observed in
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the sediment samples; these clasts were labeled as “mixed Oligocene–Miocene”; and (ii)
the lack of nannofossil content or limited occurrence of specimens (probably reworked);
these clasts were labeled as “undetermined”. The latter category also included the samples
LEV3GC 65–67 clast 2 and LEV9GC 128–130 clast 1, due to insufficient sedimentary material
for nannofossil biostratigraphic analysis.

Regarding the examined matrices, an age of mixed Oligocene–Miocene may be sug-
gested for almost all samples, since characteristic species from completely different bio-
zones were identified (see Table A6, Table A9, Table A11, Table A14, Table A17, Table A23,
Table A26, Table A29, Table A30, Table A33, Table A36, Table A40, and Table A44 in
Appendix A, as well as Figure 6). Only one sample (LEV3GC 2–5 matrix) appeared to be
barren of nannofossils.
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3.2. Organic Geochemical Analysis

The Rock-Eval analysis provides information about the richness, the quality, and the
maturation level of the organic matter in sediments and rocks. Characteristic nomograms
for the evaluation of the Rock-Eval experimental data are shown in Figures 7–9, according
to Espitalie et al. [33], Espitalie et al. [37], Hunt [38], and Jackson et al. [39]. Samples
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with OI values >240 mg g−1 (due to both matrix mineralogy and level of organic enrich-
ment) and/or TOC values <0.3% are not shown in Figures 7 and 8 because these data are
considered of limited reliability for kerogen characterization.
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3.2.1. Total Organic Carbon

The TOC values of the clasts fluctuated between 0.03% and 2.02%, while the TOC
contents of the matrix samples varied between 0.25% and 0.94%. Two semi- to well-
consolidated coarse-grained clasts from the Leipzig MV, i.e., one sandstone and one carbon-
ate mudstone/sandstone (LEV9GC 67–69 clast 2 and LEV9GC 98–100 clast 1, respectively),
exhibited very low values (0.03% and 0.26%, respectively), while one mudstone (LEV1GC
4–6 clast 1) from the Gelendzhik MV, dated as the middle Miocene (late Serravallian,
CNM10), demonstrated the highest value.

3.2.2. Organic Matter Quality (Kerogen Type) and Thermal Maturation

Most of the data points associated with both clasts and matrices showed a distribution
near the type III kerogen curve (Figures 7 and 8). Nevertheless, the organic-rich mudstone
(LEV1GC 4–6 clast 1) from the Gelendzhik MV plateau (see above) may be characterized as
a mixed type II/III kerogen (Figures 7 and 8).

In general, the analyzed samples were considered as “immature” for petroleum
hydrocarbon generation, showing Tmax values lower than the oil window onset (Tmax
of 435 ◦C) [33]. However, three clasts, i.e., the Miocene (CNM6–7) mudstone/carbonate
mudstones LEV3GC 65–67 clast 1, LEV5GC 70–72 clast 1, and LEV9GC 67–69 clast 1,
from the Heraklion, Moscow, and Leipzig MVs, respectively (see Table A2, Table A3, and
Table A5 in Appendix A, as well as Figure 8), and one mixed Oligocene–Miocene matrix
sample (LEV7GC 78–80) from the Milano MV (see Table A4 in Appendix A) were nearly
“mature” (Tmax of 430–434 ◦C). In addition, based on Figure 9, the above-mentioned
mudstone (LEV1GC 4–6 clast 1) from the Gelendzhik MV could be considered as a material
of “good” hydrocarbon-generation potential.

Finally, the broad scattering of the data points in the HI vs. OI plot (Figure 7) indicates
multiple sources for the organic matter of the investigated mud breccias.

3.2.3. Carbonates

The MinC contents of the pyrolyzed samples were used for the calculation of the
carbonate contents by applying the equation of Jiang et al. [40]: Qcarbonates = 7.976 × MinC.
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According to the results (see Tables A1–A5 in Appendix A), only four clasts contained
Qcarbonates > 50% and, thus, they were characterized as carbonate mudstones.

4. Discussion
4.1. Stratigraphic Origin Evidence

It is considered that the clasts can lead to safer conclusions regarding their stratigraphic
origin compared to the mud matrices, which are rather an irregular mixture of several
stratigraphic layers during their upward movement through thick sections of sedimentary
rocks. In contrast, the clasts reflect more reliably the characteristics of the source rocks,
because they are the result of the high consolidation of sedimentary material in the deep-
seated strata that have been removed and migrated to the seabed surface because of the
tectonic overpressure (related with backthrusting) developed in the region. The variability
in the macroscopic characteristics of the clasts (i.e., color, fissility, grain size; see Figure 4)
suggests that the clasts do not share the same stratigraphic origin. This interpretation is
further supported by the microscopic observations made during the nannofossil analysis.

Previous studies have suggested that the clasts from the broader Olimpi/Prometheus
2 area should be of Burdigalian–Langhian and early Serravallian age, containing re-
worked Oligocene, Eocene, and Cretaceous nannofossils [6,7,41–43]. In the present study,
Burdigalian–Langhian mudstone/shale clasts (assigned to biozones CNM6–7; see Table 1)
were common, while the latest Serravallian and Oligocene clasts were also identified. It
is worth mentioning that the newly diagnosed Oligocene clasts from the OMVF include
nannofossil assemblages, which are quite similar to the typical nanno-assemblages of the
age-equivalent Gavrovo flysch (e.g., [44–46]).

The LEV1GC 4–6 clast 1 sample, a mudstone from the Gelendzhik MV (see Section 3.2.1),
shows some interesting features regarding both its microscopic image and geochemical
values: (i) it is characterized by a great abundance of both calcareous and siliceous micro-
fossils, which indicates increased water column primary production (e.g., [47]) by the time
of sediment deposition (CNM10—latest Serravallian age); and (ii) the Rock-Eval pyrolysis
of this clast showed a high TOC value (~2%) together with a high HI and a relatively low
OI (438 and 91 mg g−1, respectively; see Table A1 in Appendix A), which indicate low
oxygen availability during the sediment deposition. Therefore, it is quite possible that
anoxic/hypoxic conditions were triggered near the seafloor by the increased productivity
in the euphotic zone together with enhanced organic matter preservation, resulting in
the formation of deposits of sapropelic nature (e.g., [48–50]). Based on the previous inter-
pretations, we believe that the LEV1GC 4–6 clast 1 sample originated from a sapropelic
source rock.

The oldest known sapropels in the Mediterranean sedimentary sequences are consid-
ered to be of the Langhian age (~15.4 Ma) and can be found onshore northern Cyprus [51]
as well as in the central part of the island, predominantly in marly successions (Kottafi Hill
section, ranging up to CNM10 [52,53]). In addition, sapropel layers as old as the Langhian
age (with the oldest layer assigned to the CNM7 biozone) were discovered offshore western
Cyprus [54] during the leg 42A (site 375) of the Deep Sea Drilling Project (DSDP). In the
latter study, a distinct sapropel was identified, whose characteristics are analogous to the
LEV1GC 4–6 clast 1 sample regarding its age and organic content (~2%). Considering the
fact that recent sapropels (Plio–Pleistocene and Holocene formations; e.g., [48–50,55]) are
well studied and correlated across the Mediterranean basin, we suggest that the sapropel-
like material of LEV1GC 4–6 clast 1 could originate from the equivalent deposits recorded
in the sequences of the DSDP site 375.

Concerning the analyzed mud matrices, almost all samples were found to contain
mixed assemblages consisting mostly of Miocene–Oligocene nannofossils together with
older (reworked) species of Eocene and Cretaceous. The mixed assemblages in the mud
matrices provide strong evidence that the investigated MVs are fed by multiple source
rocks. However, one sample (LEV3GC 2–5 matrix) appeared to be barren of nannofossils
(see Table A2 in Appendix A), emphasizing the great degree of heterogeneity in the mud
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breccia deposit. It can be suggested that the mixing of sediments took place at two stages:
(i) an initial mixing of sediments coming from different sources occurred when they entered
the MV’s feeder conduit and (ii) a further mixing occurred during the dynamic extrusion
of the mudflows onto the seafloor.

4.2. Significance of the Reworked Nannofossil Species

Almost every examined clast included ~10% of reworked Miocene, Oligocene, Eocene,
and Late- and Early-Cretaceous nannofossils, (see Table A7, Table A8, Table A10, Table A12,
Table A15, Table A18, Table A19, Table A20, Table A21, Table A22, Table A24, Table A25,
Table A28, Table A31, Table A32, Table A34, Table A37, Table A38, Table A41, Table A42,
Table A43, Table A46, and Table A47 in Appendix A). These reworked specimens from
older strata can provide valuable information concerning the stratigraphy and geological
history of the MR.

In particular, it was observed that:

• The middle Miocene (CNM7, CNM8–9 and CNM10) clasts embraced reworked nan-
nofossils of the early-middle Miocene, Oligocene, Eocene, and Cretaceous;

• The early-middle Miocene (CNM6–7) clasts included reworked nannofossils of the
Oligocene, Eocene, and Cretaceous;

• The Oligocene (CNO4/CNO5) clasts comprised reworked nannofossils of the Eocene
and Cretaceous.

In addition, a remarkable observation was the absence of Paleocene species from all
investigated clasts, which might be the result of severe thinning of Paleocene strata in the
fold and thrust belt zone. Actually, the only indication that would support the existence of
Paleocene material is the presence of Discoaster multiradiatus, whose first occurrence takes
place at the base of CNP11 (NP9 biozone [32]).

The presence of reworked nannofossils in both Miocene and Oligocene assemblages
of the analyzed clasts indicates the following: (i) subaerial/subsea exposure and erosion of
Cretaceous and Eocene sequences during the Oligocene; (ii) subaerial/subsea exposure
and erosion of the Oligocene, Eocene, and Cretaceous sequences during the early-middle
Miocene; and (iii) subaerial/subsea exposure and erosion of the early-middle Miocene,
Oligocene, Eocene, and Cretaceous sequences during the middle Miocene. It should
be noted that intense sediment transport and redeposition is a common feature of the
sedimentary processes in active forearc basins (e.g., formation of deep-sea flysch turbidites;
see [56] and references therein).

However, it is not clear if the erosion and redeposition of the older sediments took
place in subaerial or subsea conditions, even though a combination of both conditions
would be more realistic. The subaerial exposure and erosion scenario can be supported
by the high OI values calculated for most of the clasts after the Rock-Eval pyrolysis runs
(see Tables A1–A5 in Appendix A), which is a typical characteristic of the type III kerogen
that indicates high terrestrial inputs [57]. The subsea erosion scenario, e.g., caused by
intense turbidity current activity, is supported by the fact that the region southern of Crete
is tectonically very active and experiences both compressional and extensional stresses
(e.g., [21,22]). In such environments, steep slopes are formed and frequently fail due to
seismic shaking, creating favorable conditions for the development of strong turbidity
currents [56].

4.3. Organic Geochemistry Evidence

From a statistical point of view, the TOC content threshold for non-reservoir shale-type
(source rock) sediments in oil provinces is considered the value of 0.5% [35]. Consequently,
the source rock hydrocarbon-generative potential is considered as “poor” for TOC contents
<0.5%, “fair” for values of 0.5–1%, “good” for values of 1–2%, and “very good” for values
greater than 2% ([58]; see Table 2). Concerning the matrix samples, only four exceeded the
TOC threshold of 0.5%, while the rest of them were considered as “poor” (see Tables A1–A5
in Appendix A and Table 2). In contrast, the clast samples appeared to be richer in organic
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content; 12 of them appeared as “fair”, while the sapropelic mudstone clast (LEV1GC 4–6
clast 1) from the Gelendzhik MV plateau was classified as “very good” (TOC = 2.02%).
Taking into account that the clasts can provide better evidence concerning the region’s
deep stratigraphy, it can be concluded that ~46% of the randomly sampled clastic material
originated from Miocene source rocks of “fair” and “very good” hydrocarbon-generating
potential, buried ~2 km below the MR seafloor [26].

Table 2. Source rock hydrocarbon-generation potential based on the TOC contents of the pyrolyzed
sediment samples. Redrawn and modified from Peters [58].

Source Rock Generative
Potential

TOC
% dw Sample Type

Poor <0.5 10 matrices, 15 clasts
Fair 0.5–1 4 matrices, 12 clasts

Good 1–2
Very Good >2 1 clast

The suggested type III kerogen for the majority of analyzed samples (clasts and
matrices) indicates a higher (terrestrial) plant contribution to the organic matter accumu-
lation [57], which is in accordance with previous studies (e.g., [26,59]). Kerogen III is
commonly considered as more favorable for gas enrichment than for oil generation [33].
Only the CNM10 LEV1GC 4–6 clast 1 sample, interpreted as being derived from a sapro-
pelic formation, tended to approach the curve of the type II kerogen (see Figure 7). Kerogen
II is primarily composed of marine organic materials (phytoplankton, zooplankton, and
bacteria) together with allochthonous organic matter (originating, for example, from higher
plants) [57] and is more prone to generating oil [33].

Based on Figure 8, all analyzed mud breccia samples were considered as “immature”
to nearly “mature” for hydrocarbon-generation potential. Because the thermal condition
for oil generation ranges from 100 to 150 ◦C [57], all cored sediments were subjected to tem-
peratures lower than 100 ◦C. However, there is a possibility that four samples, i.e., LEV3GC
65–67 clast 1, LEV5GC 70–72 clast 1, LEV9GC 67–69 clast 1, and LEV7GC 78–80 matrix,
which were characterized as nearly “mature” (see Section 3.2.2), were subjected to a heating
close to 100 ◦C. Previous investigations have also led to a similar interpretation regarding
the thermal maturity of clasts and matrix (e.g., [10,59], supporting the results of this study.

During the Rock-Eval pyrolysis performance, some samples demonstrated anomalous
S2 signals. These anomalies concerned nine clasts (LEV1GC 4–6 clast 2, LEV1GC 18–20
clast 1, LEV1GC 65–67 clast 1, LEV5GC 10–12 clast 2, LEV5GC 40–42 clast 2, LEV5GC
123–125 clast 1, LEV5GC 123–125 clast 2, LEV7GC 40–43 clast 1, and LEV9GC 67–69
clast 2) and two matrix samples (LEV1GC 65–67 and LEV3GC 2–5), and appeared as
bimodal S2 peaks (Figure 10a–d), probably indicating mixtures of organic matter from
dissimilar stratigraphic horizons, from contrasting environments (terrestrial and marine),
or of different thermal maturity. For this reason, the Tmax values estimated from the
peaks of the S2 profiles of these samples were considered as highly uncertain; according
to Yang and Horsfield [60], numerous factors can artificially modify the Tmax values and
influence the maturity judgments. Nevertheless, the moderate to major reworking of the
nannofossil assemblages of most of the above-mentioned clasts supports the interpretation
of the organic matter mixing.
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5. Conclusions

This study provides important information concerning the (pre-Messinian) sub-salt
sediments of the eastern Mediterranean basin, south of Crete, which is an underexplored
marine region lacking deep exploratory wells.

A biostratigraphic dating of mud breccia deposits (including clasts and mud matrices)
from the Olimpi mud volcano field, based on a meticulous calcareous nannofossil analysis,
led, for the first time, to the determination of one Oligocene (CNO4/CNO5) mudstone
clast, two Oligocene (the assemblage mostly indicating the CNO3-CNO4/CNO5 biozones)
mudstone/shale clasts, and four Serravallian (CNM10) mudstone clasts, with the rest of
the analyzed sediments being assigned to the biozones CNM6–7, CNM7, and CNM8–9.
Previous studies have dated analogous sediments from the broader Olimpi/Prometheus
2 area as Burdigalian–Langhian and early Serravallian. Almost all examined samples
included Miocene, Oligocene, Eocene, and Cretaceous reworked nannofossils.

Both clasts and matrices of the cored mud breccias were subjected to Rock-Eval pyrol-
ysis in order to evaluate the sediments’ source rock potential for hydrocarbon generation.
For this evaluation, the total organic carbon (TOC) values, kerogen type, and thermal
maturation were determined. The results showed (i) the distribution of the majority of
the data points associated with the pyrolyzed sediments close to the type III kerogen
curve, (ii) organic-rich (TOC >0.5%) and organic-poor sediments (TOC <0.5%), and (iii)
“immature” (Tmax <434 ◦C) to nearly “mature” (Tmax of 430–434 ◦C) material.

On the other hand, the pyrolysis results remarkably revealed one CNM10 mudstone
clast from the Gelendzhik MV plateau with a high TOC content (~2%) and composed of
organic matter of a mixed type II/III kerogen (oil prone). In addition, the high hydrogen
index and relatively low oxygen index of the previous clast together with its enhanced
calcareous and siliceous microfossil content provide good evidence that the source of this
material is a sapropelic rock.

Finally, we believe that the data provided by the current investigation can be signif-
icant for the oil and gas exploration of the wider study area (offshore southern Crete),
since they shed light on the occurrence and stratigraphic position of hydrocarbon source
rocks, although they are estimated to be below the thermal condition for oil generation.
Because the Mediterranean Ridge accretionary complex is a highly-tectonized region, it is
reasonable to assume that the lateral extension of the determined Miocene source rocks
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might potentially occur deeper in the stratigraphic column of the broader Olimpi mud
volcano area, thus reaching the oil/gas window maturities.
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Appendix A

The information derived from the macroscopic examination and biostratigraphic and
geochemical analyses of the collected mud breccia samples is presented in the Tables A1–A5
provided below. This information includes:

• Sampling intervals and sample types (matrix or clast);
• Percentages of nannofossils in the images captured by the Leica DMLSP optical

polarizing light microscope, dating of sediments and rock types;
• Macroscopic observations such as consolidation degree of samples, sediment color,

fissility occurrence, and characteristic sound during samples’ homogenization that is
indicative of quartz presence;

• Parameters measured during each Rock-Eval pyrolysis run such as S1, S2, and
S3 peaks;

• Parameters calculated from the Rock-Eval experimental data such as Tmax, HI, and
OI, and TOC, MinC, and carbonate contents.

The consolidation degree of the matrix intervals has already been described by Pana-
giotopoulos et al. [26]. The consolidation degree of the investigated clasts was determined
using an empirical method, following the criteria described below:

• Soft: the rock can be broken between fingers;
• Soft to semi-consolidated: the rock can be broken between fingers and a hard object

(e.g., mortar or table surface) with normal effort;
• Semi-consolidated: the rock can be broken between fingers and a hard object (e.g.,

mortar or table surface) with a lot of effort;
• Semi- to well-consolidated: the rock can be broken between pestle and mortar with

normal effort;
• Well-consolidated: the rock can be broken between pestle and mortar with a lot

of effort.

All nannofossil assemblages identified during the present study together with their
semi-quantitative determination are displayed in the Tables A6–A47 provided below. Note
that the counted specimens are expressed vs. the number of fields of view (see Section 2.2
for details).

Finally, Figure A1 illustrates representative Rock-Eval pyrograms showing typical
unimodal and almost symmetric S2 curves.
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Table A1. Gelendzhik MV (LEV1GC core).

Core
Interval

(cm)
Samp.
Type

Nannofossils
(%) Dating Rock Type Consolid.

Degree Color Remark OI
mg g−1

HI
mg
g−1

Tmax
◦C

TOC
%

MinC
%

S1
mg
g−1

S2
mg
g−1

S3
mg
g−1

Carbonate
%

4–6 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud soft
greenish

grey
(10GY5/1)

quartz
sound 228.09 39.33 421 0.89 1.85 0.01 0.35 2.03 14.76

4–6 clast 1 70–80 CNM10 mudstone soft pale yellow
(5Y8/3) 91.09 437.62 413 2.02 4.66 0.39 8.84 1.84 37.17

4–6 clast 2 10 CNM10 mudstone semi-well
very dark

grey
(N3/)

331.15 114.75 ? 0.61 0.35 0.01 0.7 2.02 2.79

18–20 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud firm
greenish

grey
(10GY5/1)

quartz
sound 366.04 58.49 426 0.53 1.24 0.01 0.31 1.94 9.89

18–20 clast 1 50 CNM8–9 mudstone semi
greenish

grey
(5GY6/1)

95.38 155.38 ? 0.65 0.36 0 1.01 0.62 2.87

65–67 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud firm

dark
greenish

grey
(10GY4/1)

431.91 87.23 ? 0.47 1.01 0.02 0.41 2.03 8.06

65–67 clast 1 <10 CNM10 mudstone semi grey
(N5/) 354 116 ? 0.5 0.8 0.02 0.58 1.77 6.38

Table A2. Heraklion MV (LEV3GC core).

Core
Interval

(cm)
Samp.
Type

Nannofossils
(%) Dating Rock Type Consolid.

Degree Color Remark OI
mg g−1

HI
mg
g−1

Tmax
◦C

TOC
%

MinC
%

S1
mg
g−1

S2
mg
g−1

S3
mg
g−1

Carbonate%

2–5 matrix almost
barren undetermined sandy mud very soft

dark
greenish

grey
(10GY4/1)

quartz
sound 32 200 ? 0.25 0.06 0 0.5 0.08 0.48

25–27 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very stiff
greenish

grey
(7.5GY5/1)

quartz
sound 138.3 34.04 418 0.94 2.8 0.01 0.32 1.3 22.33

65–67 clast 1 30–40 CNM6–7 mudstone soft pale yellow
(5Y8/3) 126.8 131.96 434 0.97 5.04 0.01 1.28 1.23 40.2

65–67 clast 2 ? undetermined mudstone soft light grey
(N7/) 142.67 41.33 416 0.75 4.59 0 0.31 1.07 36.61
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Table A3. Moscow MV (LEV5GC core).

Core
Interval

(cm)
Samp.
Type

Nannofossils
(%) Dating Rock Type Consolid.

Degree Color Remark OI
mg g−1

HI
mg
g−1

Tmax
◦C

TOC
%

MinC
%

S1
mg
g−1

S2
mg
g−1

S3
mg
g−1

Carbonate
%

10–12 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very stiff
greenish

grey
(7.5GY5/1)

quartz
sound 529.41 35.29 426 0.34 2.68 0 0.12 1.8 21.38

10–12 clast 1 ~10 mainly CNO3-
CNO4/CNO5 shale semi

greenish
grey

(5GY6/1)

sub-
parallel
fissility

516.67 58.33 419 0.36 2.46 0 0.21 1.86 19.62

10–12 clast 2 ~30
mixed; mostly

Oligocene–
Miocene

mudstone semi dark grey
(N4/) 481.82 145.45 ? 0.11 0.18 0.01 0.16 0.53 1.44

40–42 clast 1 70–80 CNO4/CNO5 mudstone soft-semi pale yellow
(5Y8/3) 465.79 21.05 427 0.38 6.04 0 0.08 1.77 48.18

40–42 clast 2 ~10
mixed; mostly

Oligocene–
Miocene

mudstone semi-well
very dark

grey
(N3/)

373.68 100 ? 0.19 0.26 0 0.19 0.71 2.07

70–72 clast 1 30–40 CNM6–7 carbonate
mudstone semi grey

(N6/) 230.59 220 433 0.85 6.71 0.02 1.87 1.96 53.52

100–102 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very stiff
greenish

grey
(10GY5/1)

quartz
sound 490.91 57.58 424 0.33 1.93 0 0.19 1.62 15.39

100–102 clast 1 ≤10 mainly CNO3-
CNO4/CNO5 mudstone semi dark grey

(N4/) 287.5 64.58 426 0.48 0.43 0 0.31 1.38 3.43

100–102 clast 2 20–30 CNM10 mudstone semi-well grey
(N6/) 195.83 91.67 423 0.24 1.16 0 0.22 0.47 9.25

123–125 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very stiff
greenish

grey
(10GY5/1)

quartz
sound 497.14 68.57 427 0.35 1.93 0.01 0.24 1.74 15.39

123–125 clast 1 almost
barren undetermined mudstone semi

dark greyish
brown

(10YR4/2)
249.12 61.4 ? 0.57 0.22 0.02 0.35 1.42 1.75

123–125 clast 2 30 CNM7 carbonate
mudstone semi-well pale yellow

(5Y8/3) 539.13 17.39 ? 0.23 8.23 0.01 0.04 1.24 65.64
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Table A4. Milano MV (LEV7GC core).

Core
Interval

(cm)
Samp.
Type

Nannofossils
(%) Dating Rock Type Consolid.

Degree Color Remark OI
mg g−1

HI
mg
g−1

Tmax
◦C

TOC
%

MinC
%

S1
mg
g−1

S2
mg
g−1

S3
mg
g−1

Carbonate
%

12–14 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very soft
greenish

grey
(10GY5/1)

quartz
sound 473.17 58.54 427 0.41 1.64 0.01 0.24 1.94 13.08

40–43 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very soft
greenish

grey
(10GY5/1)

quartz
sound 446.94 67.35 427 0.49 1.67 0.01 0.33 1.94 13.32

40–43 clast 1 <10 CNM8–9 shale well
dark greyish

brown
(10YR4/2)

parallel
fissility 270.49 88.52 ? 0.61 0.4 0.01 0.54 1.65 3.19

40–43 clast 2 20–30 CNM8–9 mudstone semi
greenish

grey
(5GY6/1)

554.17 37.5 399 0.48 2.29 0.01 0.18 2.66 18.27

78–80 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud soft

dark
greenish

grey
(10GY4/1)

quartz
sound 380.43 65.22 432 0.46 1.72 0.01 0.3 1.75 13.72

78–80 clast 1 <5 CNM8–9 mudstone semi-well dark grey
(N4/1) 265.71 42.86 427 0.35 1.46 0 0.15 0.93 11.64

78–80 clast 2 almost
barren undetermined mudstone semi

greenish
grey

(5GY6/1)
477.27 52.27 413 0.44 0.62 0.01 0.23 2.1 4.95
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Table A5. Leipzig MV (LEV9GC core).

Core
Interval

(cm)
Samp.
Type

Nannofossils
(%) Dating Rock Type Consolid.

Degree Color Remark OI
mg g−1

HI
mg
g−1

Tmax
◦C

TOC
%

MinC
%

S1
mg
g−1

S2
mg
g−1

S3
mg
g−1

Carbonate
%

10–13 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very soft
greenish

grey
(10GY5/1)

quartz
sound 224.62 52.31 428 0.65 1.52 0.01 0.34 1.46 12.12

10–13 clast 1 ≤10 CNM8–9 mudstone well
very dark

grey
(N3/)

189.93 93.22 427 0.59 0.61 0.01 0.55 1.12 4.87

67–69 clast 1 <10 CNM6–7 mudstone soft grey
(N/6) 76.12 76.12 434 0.67 0.37 0.01 0.51 0.51 2.95

67–69 clast 2 almost
barren undetermined sandstone semi-well

greyish
green

(5G5/2)
200 100 ? 0.03 0.03 0 0.03 0.06 0.24

98–100 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very stiff

dark
greenish

grey
(10GY4/1)

quartz
sound 168.75 56.25 427 0.48 1.58 0 0.27 0.81 12.6

98–100 clast 1 ~10
mixed; mostly

Oligocene–
Miocene

carbonate
mudstone/
sandstone

semi-well
light grey

(N7/)/dark
grey (N4/)

interbedding,
quartz
sound

207.69 42.31 424 0.26 9.35 0 0.11 0.54 74.58

98–100 clast 2 30–40 CNM6–7 mudstone semi-well grey
(N/6) 127.59 63.22 424 0.87 3.58 0 0.55 1.11 28.55

98–100 clast 3 50–60 CNM8–9 shale well Grey
(N/6)

sub-
parallel
fissility

291.67 94.44 423 0.36 6.09 0 0.34 1.05 48.57

128–130 matrix 30
mixed; mostly

Oligocene–
Miocene

sandy mud very stiff

dark
greenish

grey
(10GY4/1)

quartz
sound 155.1 61.22 422 0.49 1.63 0 0.3 0.76 13

128–130 clast 1 ? undetermined shale semi-well
reddish
brown

(2.5YR4/4)

sub-
parallel
fissility

321.62 51.35 427 0.37 0.93 0 0.19 1.19 7.42

128–130 clast 2 20–30 CNM7 carbonate
mudstone semi pale yellow

(5Y8/3) 220 130 428 0.4 7.23 0 0.52 0.88 57.67

128–130 clast 3 ~5 CNM8–9 mudstone semi light grey
(N7/) 73.33 64 426 0.75 0.26 0 0.48 0.55 2.07
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Table A6. Gelendzhik MV.

LEV1GC 4–6 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 7

Calcidiscus macintyrei X 7

Discoaster quinqueramus X 1

Discoaster variabilis X 4

Helicosphaera carteri X 6

Reticulofenestra pseudoumbilicus X 9

Umbilicosphaera jafari X 1

Umbilicosphaera rotula X 7

Sphenolithus disbelemnos X 1

Sphenolithus tintinnabulum X 1

Sphenolithus neoabies X 5

Paleogene

Micrantholithus sp. X 1

Reticulofenestra bisecta X 9

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 24

Coronocyclus mesostenos X 2

Cyclicargolithus floridanus X 20

Discoaster sp. X 8

Pontosphaera multipora X 1

Rhabdosphaera sp. X 3

small reticulofenestroids X 29

Sphenolithus moriformis X 6

Helicosphaera mediterranea X 2

Helicosphaera sp. X 6

Sphenolithus sp. X 3

Other

Siliceous microfossils X 2
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Table A7. Gelendzhik MV.

LEV1GC 4–6 Clast 1

Biozone: CNM10

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 30

Calcidiscus macintyrei X 1

Discoaster formosus X 3

Discoaster braarudii X 3

Discoaster kugleri X 2

Discoaster variabilis X 3

Helicosphaera carteri X 2

Umbilicosphaera rotula X 2

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 3

Discoaster sp. X 13

small reticulofenestroids X 10

Sphenolithus moriformis X 1

Other

Siliceous microfossils X 20

Table A8. Gelendzhik MV.

LEV1GC 4–6 Clast 2

Biozone: CNM10

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 1

Calcidiscus macintyrei X 2

Coccolithus miopelagicus X 2

Discoaster apetalus X 1

Discoaster assymetricus X 1

Discoaster exilis X 1

Discoaster kugleri X 2

Discoaster ulnatus X 1

Discoaster variabilis X 8
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Table A8. Cont.

LEV1GC 4–6 Clast 2

Biozone: CNM10

Species A C F R Specimens
Counted

Helicosphaera carteri X 5

Reticulofenestra pseudoumbilicus X 32

Sphenolithus disbelemnos X 1

Sphenolithus dissimilis X 2

Umbilicosphaera foliosa X 5

Umbilicosphaera rotula X 1

Paleogene

Reticulofenestra bisecta X 10

Reticulofenestra hillae X 1

Sphenolithus predistentus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 21

Coronocyclus nitscens X 1

Cyclicargolithus floridanus X 3

Discoaster deflandrei X 1

Discoaster sp. X 23

Pontosphaera multipora X 3

Reticulofenestra perplexa X 2

small reticulofenestroids X 16

Sphenolithus moriformis X 11

Table A9. Gelendzhik MV.

LEV1GC 18–20 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 5

Calcidiscus macintyrei X 3

Discoaster apetalus X 1

Discoaster calcaris X 1

Discoaster variabilis X 6

Gephyrocapsa <3 µm X 1
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Table A9. Cont.

LEV1GC 18–20 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Helicosphaera carteri X 9

Helicosphaera selli X 1

Reticulofenestra pseudoumbilicus X 10

Sphenolithus abies X 1

Sphenolithus heteromorphus X 1

Umbilicosphaera foliosa X 2

Umbilicosphaera jafari X 2

Paleogene

Cyclicargolithus abisectus X 1

Discoaster saipanensis X 1

Discoaster spinescens X 1

Micrantholithus sp. X 1

Reticulofenestra hillae X 1

Reticulofenestra bisecta X 5

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 29

Coronocyclus nitescens X 1

Cyclicargolithus floridanus X 28

Discoaster sp. X 18

Pontosphaera multipora X 1

Pontosphaera sp. X 3

Rhabdosphaera sp. X 1

small reticulofenestroids X 19

Sphenolithus moriformis X 3

Table A10. Gelendzhik MV.

LEV1GC 18–20 Clast 1

Biozone: CNM8–9

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 4

Calcidiscus macintyrei X 12

Discoaster variabilis X 5
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Table A10. Cont.

LEV1GC 18–20 Clast 1

Biozone: CNM8–9

Species A C F R Specimens
Counted

Helicosphaera carteri X 5

Helicosphaera walbersdorfensis X 5

Reticulofenestra pseudoumbilicus X 13

Sphenolithus abies X 4

Sphenolithus heteromorphus X 1

Umbilicosphaera rotula X 4

Paleogene

Calcidiscus gerrardii X 1

Micrantholithus sp. X 1

Reticulofenestra hillae X 1

Reticulofenestra reticulata X 1

Reticulofenestra bisecta X 2

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Braarudosphaera bigelowii X 4

Coccolithus pelagicus X 22

Coronocyclus nitescens X 1

Cyclicargolithus floridanus X 1

Discoaster sp. X 7

Helicosphaera intermedia X 1

Helicosphaera mediterranea X 1

Pontosphaera multipora X 2

Pontosphaera sp. X 3

Reticulofenestra perplexa X 20

Rhabdosphaera sp. X 2

small reticulofenestroids X 25

Sphenolithus moriformis X 6

Cretaceous

Zeugrhabdotus sp. X 1
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Table A11. Gelendzhik MV.

LEV1GC 65–67 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 2

Calcidiscus macintyrei X 3

Discoaster braarudii X 2

Discoaster cauliflorus X 1

Discoaster decorus X 2

Discoaster exilis X 3

Discoaster variabilis X 9

Helicosphaera carteri X 9

Helicosphaera walbersdorfensis X 1

Helicosphaera wallichi X 3

Reticulofenestra pseudoumbilicus X 17

Sphenolithus heteromorphus X 1

Umbilicosphaera jafari X 6

Umbilicosphaera rotula X 2

Helicosphaera etholonga X 1

Paleogene

Discoaster barbadiensis X 1

Reticulofenestra hillae X 2

Reticulofenestra bisecta X 5

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 13

Coronocyclus mesostenos X 8

Cyclicargolithus floridanus X 11

Discoaster sp. X 6

Pontosphaera discopora X 1

Pontosphaera multipora X 8

Pontosphaera sp. X 1

Reticulofenestra perplexa X 3

Rhabdosphaera sp. X 2

small reticulofenestroids X 13

Sphenolithus moriformis X 9
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Table A12. Gelendzhik MV.

LEV1GC 65–67 Clast 1

Biozone: CNM10

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 4

Discoaster braarudii X 4

Discoaster decorus X 2

Discoaster kugleri X 1

Discoaster variabilis X 4

Gephyrocapsa <3 µm X 1

Helicosphaera carteri X 10

Helicosphaera dissimilis X 1

Helicosphaera selli X 1

Reticulofenestra pseudoumbilicus X 22

Sphenolithus delphix X 1

Sphenolithus heteromorphus X 1

Sphenolithus neoabies X 1

Umbilicosphaera jafari X 2

Umbilicosphaera rotula X 2

Paleogene

Discoaster barbadiensis

Helicosphaera recta X 1

Reticulofenestra hillae X 3

Reticulofenestra bisecta X 3

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 16

Coronocyclus mesostenos X 3

Cyclicargolithus floridanus X 5

Discoaster deflandrei X 1

Pontosphaera multipora X 2

Pontosphaera sp. X 3

Reticulofenestra perplexa X 2

Rhabdosphaera sp. X 2

small reticulofenestroids X 32

Sphenolithus moriformis X 1

Table A13. Heraklion MV.

LEV3GC 2–5 Matrix

Biozone: undetermined
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Table A14. Heraklion MV.

LEV3GC 25–27 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 4

Coccolithus miopelagicus X 4

Discoaster variabilis X 2

Helicosphaera carteri X 3

Reticulofenestra pseudoumbilicus X 4

Sphenolithus abies X 1

Sphenolithus cometa X 3

Sphenolithus heteromorphus X 10

Umbilicosphaera rotula X 1

Paleogene

Reticulofenestra bisecta X 2

Reticulofenestra lockeri X 2

Sphenolithus predistentus X 1

Long-range
Paleogene–Neogene

Coronocyclus mesostenos X 1

Discoaster sp. X 2

Sphenolithus truaxii X 2

Helicosphaera sp. X 8

small reticulofenestroids X 10

Reticulofenestra perplexa X 11

Sphenolithus moriformis X 11

Cyclicargolithus floridanus X 21

Coccolithus pelagicus X 34

Cretaceous

undetermined Cretaceous sp. X 1

Table A15. Heraklion MV.

LEV3GC 65–67 Clast 1

Biozone: CNM6–7

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 2

Calcidiscus macintyrei X 3

Calcidiscus premacintyrei X 1
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Table A15. Cont.

LEV3GC 65–67 Clast 1

Biozone: CNM6–7

Species A C F R Specimens
Counted

Discoaster variabilis X 8

Gephyrocapsa <3 µm X 1

Helicosphaera ampliamperta X 5

Helicosphaera carteri X 16

Helicosphaera walbersdorfensis X 6

Sphenolithus dissimilis X 2

Sphenolithus heteromorphus X 5

Umbilicosphaera foliosa X 1

Umbilicosphaera jafari X 9

Umbilicosphaera rotula X 6

Paleogene

Discoaster barbadiensis X 1

Reticulofenestra lockeri X 1

Reticulofenestra bisecta X 2

Sphenolithus predistentus X 2

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 61

Coronocyclus mesostenos X 1

Cyclicargolithus floridanus X 15

Discoaster deflandrei X 12

Discoaster sp. X 35

Helicosphaera intermedia X 7

Pontosphaera sp. X 2

small reticulofenestroids X 25

Sphenolithus moriformis X 13

Cretaceous

undetermined Cretaceous sp. X 1

Eiffellithus turriseiffelii X 1

Table A16. Heraklion MV.

LEV3GC 65–67 Clast 2

Biozone: undetermined
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Table A17. Moscow MV.

LEV5GC 10–12 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 4

Calcidiscus premacintyrei X 1

Coccolithus miopelagicus X 1

Discoaster variabilis X 1

Gephyrocapsa <3 µm X 2

Helicosphaera carteri X 3

Helicosphaera orientalis X 2

Pseudoemiliania lacunosa X 2

Reticulofenestra pseudoumbilicus X 9

Sphenolithus heteromorphus X 2

Syracosphaera pulchra X 1

Umbilicosphaera jafari X 4

Umbilicosphaera rotula X 1

Paleogene

Chiasmolithus sp. X 1

Coccolithus formosus X 3

Cyclicargolithus abisectus X 3

Discoaster barbadiensis X 1

Discoaster multiradiatus X 1

Helicosphaera recta X 1

Reticulofenestra lockeri X 1

Reticulofenestra hillae X 1

Reticulofenestra stavensis X 1

Sphenolithus ciperoensis X 1

Sphenolithus distentus X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 11

Coronocyclus mesostenos X 3

Cyclicargolithus floridanus X 5

Discoaster deflandrei X 1

Discoaster sp. X 5

Helicosphaera intermedia X 1
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Table A17. Cont.

LEV5GC 10–12 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Pontosphaera multipora X 1

Pontosphaera sp. X 2

Reticulofenestra perplexa X 4

small reticulofenestroids X 3

Sphenolithus moriformis X 4

Cretaceous

undetermined Cretaceous sp. X 1

Table A18. Moscow MV.

LEV5GC 10–12 Clast 1

Mainly CNO3-CNO4/CNO5

Species A C F R Specimens
Counted

Neogene

Coccolithus miopelagicus X 1

Discoaster discissus X 1

Discoaster durioi X 1

Discoaster exiis X 3

Gephyrocapsa <3 µm X 1

Helicosphaera carteri X 4

Sphenolithus abies X 3

Paleogene

Coccolithus formosus X 3

Discoaster barbadiensis X 1

Discoaster multiradiatus X 1

Discoaster nodifer X 1

Helicosphaera compacta X 2

Helicosphaera recta X 2

Reticulofenestra lockeri X 7

Reticulofenestra bisecta X 4

Reticulofenestra reticulata X 2

Sphenolithus distentus X 8

Sphenolithus obtusus X 1

Sphenolithus peartiae X 1

Sphenolithus predistentus X 2

Zygrhablithus bijugatus X 4
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Table A18. Cont.

LEV5GC 10–12 Clast 1

Mainly CNO3-CNO4/CNO5

Species A C F R Specimens
Counted

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 10

Coronocyclus mesostenos X 1

Cyclicargolithus floridanus X 71

Discoaster deflandrei X 9

Discoaster leroyi X 1

Discoaster sp. X 8

Helicosphaera intermedia X 1

Helicosphaera mediterranea X 3

Pontosphaera multipora X 3

Pontosphaera sp. X 1

Sphenolithus moriformis X 7

small reticulofenestroids X 11

Cretaceous

Arkhangelskiales sp. X 3

Broinsonia parca X 1

undetermined Cretaceous sp. X 3

Diazomatolithus lehmanii X 1

Eiffelithus sp. X 2

Zeugrhabdotus X 2

Table A19. Moscow MV.

LEV5GC 10–12 Clast 2

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 5

Calcidiscus macintyrei X 5

Coccolithus miopelagicus X 1

Discoaster kugleri X 1

Discoaster variabilis X 1

Discoater durioi X 1

Gephyrocapsa <3 µm X 3
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Table A19. Cont.

LEV5GC 10–12 Clast 2

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Helicosphaera carteri X 6

Helicosphaera orientalis X 1

Helicosphaera selli X 1

Helicosphaera stalis X 2

Pontosphaera japonica X 1

Pseudoemiliania lacunosa X 2

Reticulofenestra pseudoumbilicus X 7

Rhabdosphaera? sp. X 3

Sphenolithus abies X 3

Sphenolithus belemnos X 1

Sphenolithus dissimilis X 1

Sphenolithus heteromorphus X 6

Syracosphaera pulchra X 1

Umbilicosphaera foliosa X 3

Umbilicosphaera jafari X 7

Umbilicosphaera rotula X 1

Umbilicosphaera sibogae X 1

Paleogene

Coccolithus formosus X 2

Cyclicargolithus abisectus X 5

Discoaster multiradiatus X 1

Helicosphaera compacta X 2

Reticulofenestra lockeri X 4

Reticulofenestra bisecta X 9

Reticulofenestra hillae X 1

Sphenolithus capricornatus X 1

Sphenolithus ciperoensis X 2

Sphenolithus distentus X 3

Sphenolithus predistentus X 1

Sphenolithus umbrellus X 2

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 15

Coronocyclus mesostenos X 6
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Table A19. Cont.

LEV5GC 10–12 Clast 2

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Coronocyclus nitescens X 1

Cyclicargolithus floridanus X 26

Discoaster deflandrei X 5

Discoaster salomoni X 2

Discoaster sp. X 3

Helicosphaera intermedia X 5

Helicosphaera mediterranea X 3

Helicosphaera sp. X 1

Pontosphaera multipora X 1

Pontosphaera sp. X 2

Sphenolithus moriformis X 3

small reticulofenestroids X 26

Table A20. Moscow MV.

LEV5GC 40–42 Clast 1

Biozone: CNO4/CNO5

Species A C F R Specimens
Counted

Paleogene

Coccolithus eopelagicus X 2

Cyclicargolithus abisectus X 2

Discoaster barbadiensis X 1

Helicosphaera obliqua X 1

Helicosphaera recta X 2

Reticulofenestra lockeri X 1

Reticulofenestra bisecta X 5

Sphenolithus ciperoensis X 4

Sphenolithus distentus X 2

Sphenolithus predistentus X 1

Zygrhablithus bijugatus X 6
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Table A20. Cont.

LEV5GC 40–42 Clast 1

Biozone: CNO4/CNO5

Species A C F R Specimens
Counted

Long-range
Paleogene–Neogene

Braarudosphaera bigelowi X 1

Coccolithus pelagicus X 29

Coronocyclus mesostenos X 5

Coronocyclus nitescens X 3

Cyclicargolithus floridanus X 81

Discoaster deflandrei X 11

Discoaster sp. X 3

Helicosphaera euphratis X 2

Helicosphaera intermedia X 3

Helicosphaera leesiae X 2

Helicosphaera mediterranea X 2

Pontosphaera japonica X 6

Rhabdosphaera? sp. X 4

Sphenolithus conicus X 4

Sphenolithus moriformis X 20

Cretaceous

Broinsonia parca X 1

Eiffelithus sp. X 1

Rhagodiscus infinitus X 1

Table A21. Moscow MV.

LEV5GC 40–42 Clast 2

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 3

Coccolithus miopelagicus X 1

Helicosphaera carteri X 4

Helicosphaera princei X 1

Helicosphaera stalis X 1

Reticulofenestra pseudoumbilicus X 2

Rhabdosphaera? sp. X 2

Sphenolithus dissimilis X 1

Sphenolithus heteromorphus X 2

Sphenolithus tintinnabulum X 1

Umbilicosphaera jafari X 5

Umbilicosphaera rotula X 3
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Table A21. Cont.

LEV5GC 40–42 Clast 2

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Paleogene

Calcidiscus gerrardii X 1

Coccolithus crassus? X 1

Coccolithus formosus X 7

Cyclicargolithus abisectus X 2

Cyclicargolithus parvus X 1

Discoaster wemmelensis X 1

Helicosphaera leesiae X 1

Helicosphaera recta X 1

Reticulofenestra daviesii X 1

Reticulofenestra lockeri X 1

Reticulofenestra bisecta X 5

Sphenolithus ciperoensis X 3

Sphenolithus distentus X 2

Sphenolithus umbrellus X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 17

Coronocyclus mesostenos X 3

Cyclicargolithus floridanus X 33

Discoaster deflandrei X 3

Discoaster sp. X 1

Pontosphaera sp. X 1

small reticulofenestroids X 17

Sphenolithus moriformis X 4

Table A22. Moscow MV.

LEV5GC 70–72 Clast 1

Biozone: CNM6–7

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 1

Calcidiscus premacintyrei X 3

Discoaster exilis X 1

Helicosphaera ampliaperta X 6

Helicosphaera carteri X 5

Sphenolithus cometa X 1

Sphenolithus dibelemnos X 1
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Table A22. Cont.

LEV5GC 70–72 Clast 1

Biozone: CNM6–7

Species A C F R Specimens
Counted

Sphenolithus heteromorphus X 5

Umbilicosphaera jafari X 4

Paleogene

Cyclicargolithus abisetus X 2

Discoaster barbadiensis X 1

Reticulofenestra lockeri X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 12

Coronocyclus mesostenos X 4

Cyclicargolithus floridanus X 19

Discoaster deflandrei X 5

Discoaster sp. X 8

Helicosphaera intermedia X 4

Pontosphaera multipora X 2

Pontosphaera sp. X 1

Reticulofenestra perplexa X 4

small reticulofenestroids X 9

Sphenolithus moriformis X 15

Cretaceous

Dizomatolithus lehmanii X 1

Table A23. Moscow MV.

LEV5GC 100–102 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 4

Calcidiscus macintyrei X 3

Discoaster exilis X 2

Gephyrocapsa <3 µm 1

Helicosphaera carteri X 4

Reticulofenestra pseudoumbilicus X 18
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Table A23. Cont.

LEV5GC 100–102 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Schyphosphaera intermedia X 1

Sphenolithus cometa X 2

Sphenolithus heteromorphus X 4

Umbilicosphaera jafari X 2

Umbilicosphaera rotula X 2

Paleogene

Discoaster multiradiatus X 1

Discoaster nodifer X 1

Sphenolithus ciperoensis X 2

Sphenolithus distentus X 1

Sphenolithus predistentus X 2

Zygrhablithus bijugatus X 2

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 18

Coronocyclus mesostenos X 2

Cyclicargolithus floridanus X 17

Discoaster deflandrei X 3

Discoaster sp. X 5

Sphenolithus moriformis X 6

Cretaceous

Diazomatolithus lehmanii X 1

Table A24. Moscow MV.

LEV5GC 100–102 Clast 1

Mainly CNO3-CNO4/CNO5

Species A C F R Specimens
Counted

Neogene

Coccolithus miopelagicus X 1

Discoaster kugleri X 2

Reticulofenestra pseudoumbilicus X 3

Umbilicosphaera jafari X 3
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Table A24. Cont.

LEV5GC 100–102 Clast 1

Mainly CNO3-CNO4/CNO5

Species A C F R Specimens
Counted

Paleogene

Coccolithus formosus X 8

Reticulofenestra lockeri X 2

Reticulofenestra reticulata X 1

Reticulofenestra stavensis X 5

Sphenolithus distentus X 8

Sphenolithus peartiae X 3

Umbilicosphaera detecta X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 22

Coronocyclus nitescens X 2

Cyclicargolithus floridanus X 66

Discoaster deflandrei X 2

Helicosphaera euphratis X 1

Helicosphaera intermedia X 3

Helicosphaera leesiae X 1

Helicosphaera sp. X 1

Pontosphaera multipora X 1

small reticulofenestroids X 13

Sphenolithus moriformis X 20

Cretaceous

undetermined Cretaceous sp. X 2

Zeugrhabdotus sp. X 1

Table A25. Moscow MV.

LEV5GC 100–102 Clast 2

Biozone: CNM10

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 1

Calcidiscus macintyrei X 2

Coccolithus miopelagicus X 2

Discoaster kugleri X 2

Discoaster variabilis X 2

Gephyrocapsa <3 µm X 2
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Table A25. Cont.

LEV5GC 100–102 Clast 2

Biozone: CNM10

Species A C F R Specimens
Counted

Helicosphaera ampliaperta X 3

Helicosphaera carteri X 10

Pseudoemiliania lacunosa? X 2

Reticulofenestra pseudoumbilicus X 12

Sphenolithus heteromorphus X 4

Umbilicosphaera foliosa X 2

Umbilicosphaera jafari X 2

Umbilicosphaera rotula X 1

Paleogene

Cyclicargolithus abisectus X 2

Discoaster nodifer X 1

Reticulofenestra lockeri X 1

Reticulofenestra bisecta X 4

Sphenolithus ciperoensis X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 38

Cyclicargolithus floridanus X 36

Discoaster deflandrei X 1

Discoaster sp. X 1

Helicosphaera intermedia X 2

Helicosphaera mediterranea X 1

small reticulofenestroids X 12

Sphenolithus moriformis X 13

Cretaceous

Diazomatolithus lehmanii X 2

Eiffelithus sp. X 1

other

Siliceous microfossils X 2
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Table A26. Moscow MV.

LEV5GC 123–125 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 2

Calcidiscus macintyrei X 2

Discoaster kugleri X 1

Gephyrocapsa <3 µm X 2

Helicosphaera carteri X 6

Reticulofenestra pseudoumbilicus X 9

Sphenolithus heteromorphus X 3

Umbilicosphaera jafari X 4

Umbilicosphaera rotula X 2

Paleogene

Reticulofenestra bisecta X 1

Sphenolithus ciperoensis X 1

Sphenolithus distentus X 2

Sphenolithus predistentus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 16

Cyclicargolithus floridanus X 11

Discoaster deflandrei X 2

Discoaster sp. X 2

Helicosphaera leesiae X 1

Reticulofenestra perplexa X 5

Sphenolithus moriformis X 8

Sphenolithus sp. X 1

Cretaceous

undetermined Cretaceous sp. X 1

Diazomatolithus lehmanii X 2

Table A27. Moscow MV.

LEV5GC 123–125 Clast 1

Biozone: undetermined
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Table A28. Moscow MV.

LEV5GC 123–125 Clast 2

Biozone: CNM7

Species A C F R Specimens
Counted

Neogene

Coccolithus miopelagicus X 2

Helicosphaera carteri X 10

Sphenolithus heteromorphus X 27

Paleogene

Reticulofenestra bisecta X 2

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 21

Cyclicargolithus floridanus X 16

Discoaster deflandrei X 1

Discoaster sp. X 4

Helicosphaera intermedia X 1

Micrantholithus sp. X 1

Pontosphaera sp. X 4

Reticulofenestra perplexa X 30

small reticulofenestroids X 10

Sphenolithus moriformis X 15

Table A29. Milano MV.

LEV7GC 12–14 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 1

Calcidiscus macintyrei X 4

Coccolithus miopelagicus X 1

Discoaster discissus X 1

Discoaster durioi X 1

Discoaster variabilis X 1

Gephyrocapsa <3 µm X 2

Helicosphaera carteri X 4

Pseudoemiliania lacunosa X 2

Reticulofenestra pseudoumbilicus X 24

Sphenolithus heteromorphus X 1

Umbilicosphaera jafari X 2

Umbilicosphaera rotula X 1
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Table A29. Cont.

LEV7GC 12–14 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Paleogene

Discoaster barbadiensis X 3

Sphenolithus umbrellus X 2

Long-range
Paleogene–Neogene

Braarudosphaera bigelowii X 1

Coccolithus pelagicus X 8

Cyclicargolithus floridanus X 11

Discoaster deflandrei X 3

Discoaster sp. X 1

Helicosphaera intermedia X 1

Pontosphaera multipora X 2

Pontosphaera sp. X 3

Reticulofenestra perplexa X 6

small reticulofenestroids X 10

Sphenolithus moriformis X 3

Cretaceous

Arkhangelskiella sp. X 2

undetermined Cretaceous sp. X 1

Rhagodiscus sp. X 1

Table A30. Milano MV.

LEV7GC 40–43 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Pleistocene

Gephyrocapsa oceanica X 2

Neogene

Calcidiscus macintyrei X 4

Coccolithus miopelagicus X 1

Discoaster asymmetricus X 1

Gephyrocapsa <3 µm X 1

Helicosphaera carteri X 7
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Table A30. Cont.

LEV7GC 40–43 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Helicosphaera princei X 1

Helicosphaera stalis X 1

Pseudoemiliania lacunosa X 2

Reticulofenestra pseudoumbilicus X 40

Sphenolithus disbelemnos X 2

Sphenolithus heteromorphus X 3

Umbilicosphaera jafari X 6

Paleogene

Cyclicargolithus abisetus X 2

Discoaster barbadiensis X 1

Reticulofenestra bisecta X 1

Reticulofenestra lockeri X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Braarudosphaera bigelowii X 1

Coccolithus pelagicus X 15

Coronocyclus mesostenos X

Cyclicargolithus floridanus X 4

Discoaster deflandrei X

Discoaster sp. X 4

Helicosphaera mediterranea X 1

Pontosphaera multipora X 1

Pontosphaera sp. X 2

Reticulofenestra perplexa X 2

Sphenolithus moriformis X 3

Cretaceous

undetermined Cretaceous sp. X 1

Dizomatolithus lehmanii X 3

Eiffellithus turriseiffelii X 1

Rhagodiscus sp. X 1
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Table A31. Milano MV.

LEV7GC 40–43 Clast 1

Biozone: CNM8–9

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 6

Calcidiscus macintyrei X 12

Discoaster variabilis X 6

Helicosphaera carteri X 9

Helicosphaera walbersdorfensis X 5

Reticulofenestra pseudoumbilicus X 15

Sphenolithus abies X 4

Umbilicosphaera rotula X 4

Paleogene

Reticulofenestra hillae X 3

Reticulofenestra reticulata X 1

Reticulofenestra bisecta X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Braarudosphaera bigelowii X 4

Coccolithus pelagicus X 19

Cyclicargolithus floridanus X 1

Discoaster sp. X 8

Helicosphaera intermedia X 1

Helicosphaera mediterranea X 2

Pontosphaera multipora X 2

Pontosphaera sp. X 4

Reticulofenestra perplexa X 15

Rhabdosphaera sp. X 2

small reticulofenestroids X 18

Sphenolithus moriformis X 8

Cretaceous

Zeugrhabdotus sp. X 1

undetermined Cretaceous sp. X 1
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Table A32. Milano MV.

LEV7GC 40–43 Clast 2

Biozone: CNM8–9

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 2

Cryptococcolithus sp. X 1

Discoaster variabilis X 1

Gephyrocapsa <3 µm X 1

Helicosphaera carteri X 15

Helicosphaera stalis X 1

Helicosphaera walbersdorfensis X 6

Reticulofenestra pseudoumbilicus X 39

Sphenolithus abies X 2

Sphenolithus heteromorphus X 1

Umbilicosphaera foliosa X 1

Umbilicosphaera jafari X 20

Paleogene

Cruciplacolithus sp. X 1

Reticulofenestra bisecta X 1

Sphenolithus ciperoensis X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 15

Coronocyclus mesostenos X 8

Cyclicargolithus floridanus X 10

Helicosphaera intermedia X 1

Pontosphaera multipora X 1

Pontosphaera sp. X 5

small reticulofenestroids X 28

Sphenolithus moriformis X 4

Table A33. Milano MV.

LEV7GC 78–80 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 1

Helicosphaera carteri X 2

Reticulofenestra pseudoumbilicus X 48

Sphenolithus disbelemnos X 2
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Table A33. Cont.

LEV7GC 78–80 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Sphenolithus heteromorphus X 4

Umbilicosphaera jafari X 6

Umbilicosphaera rotula X 3

Paleogene

Discoaster barbadiensis X 1

Sphenolithus distentus X 1

Long-range
Paleogene–Neogene

Braarudosphaera bigelowii X 1

Coccolithus pelagicus X 21

Cyclicargolithus floridanus X 19

Discoaster sp. X 5

Pontosphaera multipora X 1

Pontosphaera sp. X 2

Reticulofenestra perplexa X 3

small reticulofenestroids X 10

Sphenolithus calyculus X 1

Sphenolithus moriformis X 5

Table A34. Milano MV.

LEV7GC 78–80 Clast 1

Biozone: CNM8–9

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 3

Coccolithus miopelagicus X 2

Helicosphaera carteri X 2

Reticulofenestra pseudoumbilicus X 14

Sphenolithus abies X 1

Sphenolithus disbelemnos X 2

Sphenolithus heteromorphus X 2

Umbilicosphaera foliosa X 4

Umbilicosphaera jafari X 2

Umbilicosphaera rotaria X 1

Umbilicosphaera rotula X 2
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Table A34. Cont.

LEV7GC 78–80 Clast 1

Biozone: CNM8–9

Species A C F R Specimens
Counted

Paleogene

Discoaster barbadiensis X 1

Reticulofenestra bisecta X 3

Reticulofenestra lockeri X 3

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 12

Coronocyclus mesostenos X 3

Cyclicargolithus floridanus X 6

Pontosphaera sp. X 1

small reticulofenestroids X 48

Sphenolithus moriformis X 8

Table A35. Milano MV.

LEV7GC 78–80 Clast 2

Biozone: undetermined

Table A36. Leipzig MV.

LEV9GC 10–13 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 3

Helicosphaera carteri X 2

Reticulofenestra pseudoumbilicus X 19

Sphenolithus heteromorphus X 1

Umbilicosphaera jafari X 1

Umbilicosphaera rotula X 1

Paleogene

Discoaster saipanensis X 1
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Table A36. Cont.

LEV9GC 10–13 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 14

Cyclicargolithus floridanus X 9

Discoaster deflandrei X 2

Discoaster sp. X 5

Helicosphaera intermedia X 1

Reticulofenestra perplexa X 2

Sphenolithus moriformis X 5

Coronocyclus mesostenos X 2

Cretaceous

undetermined Cretaceous sp. X 2

Table A37. Leipzig MV.

LEV9GC 10–13 Clast 1

Biozone: CNM8–9

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 1

Calcidiscus macintyrei X 2

Helicosphaera carteri X 8

Helicosphaera princei X 1

Helicosphaera stalis X 1

Helicosphaera walbersdorfensis X 2

Reticulofenestra pseudoumbilicus X 25

Rhabdosphaera sp. X 1

Sphenolithus abies X 1

Sphenolithus cometa X 1

Sphenolithus disbelemnos X 2

Sphenolithus heteromorphus X 2

Umbilicosphaera jafari X 4

Umbilicosphaera rotula X 1
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Table A37. Cont.

LEV9GC 10–13 Clast 1

Biozone: CNM8–9

Species A C F R Specimens
Counted

Paleogene

Coccolithus fomosus X 1

Cyclicargolithus abisectus X 1

Sphenolithus ciperoensis X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 37

Cyclicargolithus floridanus X 18

Discoaster deflandrei X 3

Discoaster sp. X 3

Helicosphaera intermedia X 2

Helicosphaera mediterranea X 2

Helicosphaera sp. X 3

Pontosphaera sp. X

Reticulofenestra perplexa X 9

small reticulofenestroids X 3

Sphenolithus moriformis X 6

Cretaceous

undetermined Cretaceous sp. X 1

Dizomatolithus lehmanii X 2

Table A38. Leipzig MV.

LEV9GC 67–69 Clast 1

Biozone: CNM6–7

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 1

Calcidiscus premacintyrei X 1

Discoaster exilis X 1

Helicosphaera ampliaperta X 5

Helicosphaera carteri X 4

Helicosphaera princei X 1

Sphenolithus cometa X 2

Sphenolithus dibelemnos X 1

Sphenolithus heteromorphus X 3

Umbilicosphaera jafari X 3
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Table A38. Cont.

LEV9GC 67–69 Clast 1

Biozone: CNM6–7

Species A C F R Specimens
Counted

Paleogene

Cyclicargolithus abisetus X 2

Discoaster barbadiensis X 1

Reticulofenestra bisecta X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 10

Coronocyclus mesostenos X 2

Cyclicargolithus floridanus X 24

Discoaster deflandrei X 4

Discoaster sp. X 11

Helicosphaera intermedia X 4

Helicosphaera mediterranea X 1

Pontosphaera multipora X 1

Pontosphaera sp. X 1

Reticulofenestra perplexa X 3

small reticulofenestroids X 10

Sphenolithus moriformis X 11

Sphenolithus sp. X 1

Cretaceous

Dizomatolithus lehmanii X 4

Table A39. Leipzig MV.

LEV9GC 67–69 Clast 2

Biozone: undetermined

Table A40. Leipzig MV.

LEV9GC 98–100 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 2

Helicosphaera carteri X 4

Reticulofenestra pseudoumbilicus X 17

Sphenolithus heteromorphus X 2

Umbilicosphaera jafari X 3
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Table A40. Cont.

LEV9GC 98–100 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Paleogene

Cyclicargolithus abisetus X 1

Discoaster multiradiatus X 1

Reticulofenestra hillae X 2

Long-range
Paleogene–Neogene

Braarudosphaera bigelowii X 1

Coccolithus pelagicus X 11

Coronocyclus mesostenos X 1

Coronocyclus nitescens X 1

Cyclicargolithus floridanus X 5

Discoaster deflandrei X 1

Discoaster sp. X 5

Micrantholithus sp. X 1

Pontosphaera multipora X 1

Pontosphaera sp. X 2

Reticulofenestra perplexa X 2

Cretaceous

Dizomatolithus lehmanii X 1

Table A41. Leipzig MV.

LEV9GC 98–100 Clast 1

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus premacintyrei X 2

Coccolithus miopelagicus X 1

Cryptococcolithus sp. X 1

Reticulofenestra pseudoumbilicus X 1

Umbilicosphaera roluta X 1
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Table A41. Cont.

LEV9GC 98–100 Clast 1

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Paleogene

Cyclicargolithus abisetus X 4

Helicosphaera compacta X 2

Helicosphaera recta X 1

Reticulofenestra bisecta X 1

Reticulofenestra erbae X 2

Reticulofenestra hillae X 2

Reticulofenestra lockeri X 2

Sphenolithus distentus X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 13

Coronocyclus mesostenos X 2

Coronocyclus nitescens X 2

Cyclicargolithus floridanus X 82

Discoaster deflandrei X 4

Discoaster sp. X 1

Helicosphaera intermedia X 7

Helicosphaera sp. X 5

Pontosphaera sp. X 2

Reticulofenestra perplexa X 2

small reticulofenestroids X 10

Sphenolithus moriformis X 9

Cretaceous

undetermined Cretaceous sp. X 2

Dizomatolithus lehmanii X 4

Table A42. Leipzig MV.

LEV9GC 98–100 Clast 2

Biozone: CNM6–7

Species A C F R Specimens
Counted

Neogene

Calcidiscus premacintyrei X 2

Helicosphaera carteri X 7

Helicosphaera walbersdorfensis X 2
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Table A42. Cont.

LEV9GC 98–100 Clast 2

Biozone: CNM6–7

Species A C F R Specimens
Counted

small reticulofenestroids X 9

Sphenolithus heteromorphus X 12

Umbilicosphaera jafari X 22

Umbilicosphaera rotula X 8

Helicosphaera vedderi X 1

Discoaster variabilis X 1

Discoaster petaliformis X 1

Helicosphaera waltans X 2

Helicosphaera ampliaperta X 2

Coccolithus miopelagicus X 5

Paleogene

Cyclicargolithus abisectus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 31

Cyclicargolithus floridanus X 11

Discoaster sp. X 3

Helicosphaera intermedia X 1

Helicosphaera sp. X 10

Pontosphaera sp. X 3

Reticulofenestra perplexa X 3

Sphenolithus moriformis X 6

Table A43. Leipzig MV.

LEV9GC 98–100 Clast 3

Biozone: CNM8–9

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 8

Coccolithus miopelagicus X 2

Discoaster formosus X 1

Helicosphaera carteri X 7

Reticulofenestra pseudoumbilicus X 31

Rhabdosphaera sp. X 2

Umbilicosphaera jafari X 5

Umbilicosphaera rotula X 1
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Table A43. Cont.

LEV9GC 98–100 Clast 3

Biozone: CNM8–9

Species A C F R Specimens
Counted

Paleogene

Cyclicargolithus abisetus X 1

Reticulofenestra daivesi X 1

Sphenolithus ciperoensis X 1

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 28

Cyclicargolithus floridanus X 6

Discoaster deflandrei X 2

Discoaster sp. X 5

Helicosphaera intermedia X 2

Pontosphaera multipora X 3

Pontosphaera sp. X 3

Reticulofenestra perplexa X 17

Sphenolithus moriformis X 15

Cretaceous

Eiffellithus sp. X 1

Watznaueria barnesiae X 2

Table A44. Leipzig MV.

LEV9GC 128–130 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Neogene

Calcidiscus macintyrei X 1

Calcidiscus premacintyrei X 1

Discoaster exilis X 1

Discoaster ulnatus X 1

Helicosphaera carteri X 6

Helicosphaera walbersdorfensis X 2

Reticulofenestra pseudoumbilicus X 8

Sphenolithus abies X 1

Sphenolithus cometa X 1

Sphenolithus heteromorphus X 1

Umbilicosphaera jafari X 6
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Table A44. Cont.

LEV9GC 128–130 Matrix

Mixed; Mostly
Oligocene–Miocene

Species A C F R Specimens
Counted

Paleogene

Coccolithus formosus X 1

Cyclicargolithus abisetus X 1

Discoaster tanii X 1

Reticulofenestra bisecta X 1

Reticulofenestra hillae X 1

Reticulofenestra lockeri X 1

Sphenolithus delphix X 1

Sphenolithus distentus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 12

Coronocyclus mesostenos X 1

Cyclicargolithus floridanus X 16

Discoaster deflandrei X 1

Discoaster sp. X 1

Helicosphaera intermedia X 1

Pontosphaera multipora X 1

Reticulofenestra perplexa X 3

Sphenolithus moriformis X 3

Cretaceous

Eiffelithus sp. X 1

undetermined Cretaceous sp. X 3

Watznaueria barnesiae X 3

Watznaueria ovata X 1

Table A45. Leipzig MV.

LEV9GC 128–130 Clast 1

Biozone: undetermined
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Table A46. Leipzig MV.

LEV9GC 128–130 Clast 2

Biozone: CNM7

Species A C F R Specimens
Counted

Neogene

Coccolithus miopelagicus X 7

Helicosphaera carteri X 5

Reticulofenestra pseudoumbilicus X 1

Sphenolithus heteromorphus X 14

Umbilicosphaera jafari X 6

Umbilicosphaera rotula X 2

Paleogene

Discoaster barbadiensis X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 45

Coronocyclus nitescens X 1

Cyclicargolithus floridanus X 35

Discoaster deflandrei X 2

Discoaster sp. X 5

Helicosphaera intermedia X 3

Micrantholithus sp. X 4

Pontosphaera sp. X 8

Reticulofenestra perplexa X 3

small reticulofenestroids X 4

Sphenolithus moriformis X 6

Cretaceous

Watznaueria barnesiae X 2

Table A47. Leipzig MV.

LEV9GC 128–130 Clast 3

Biozone: CNM8–9

Species A C F R Specimens
Counted

Neogene

Calcidiscus leptoporus X 1

Discoaster bolli X 1

Discoaster formosus X 1

Discoaster variabilis X 1

Helicosphaera carteri X 8

Reticulofenestra pseudoumbilicus X 28
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Table A47. Cont.

LEV9GC 128–130 Clast 3

Biozone: CNM8–9

Species A C F R Specimens
Counted

Sphenolithus dissimilis X 1

Umbilicosphaera foliosa X 2

Umbilicosphaera jafari X 3

Paleogene

Zygrhablithus bijugatus X 1

Long-range
Paleogene–Neogene

Coccolithus pelagicus X 6

Cyclicargolithus floridanus X 2

Discoaster sp. X 3

Pontosphaera multipora X 2

Pontosphaera sp. X 1

Reticulofenestra perplexa X 1

Sphenolithus moriformis X 4

Cretaceous

Dizomatolithus lehmanii X 2Water 2021, 13, x FOR PEER REVIEW 64 of 67 
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