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Abstract: Predicting the streamflow regimes using climate dynamics is important in water resource
management. However, in Indonesia, there are few studies targeting climate indices and streamflow.
A previous study found difficulty in developing a statistical prediction model for this relationship due
to its non-linear nature. This study attempted to address that gap by applying multiple regression
(MR) models using second- and third-order polynomial functions to show the non-linear relationship
between climate and flow regime indices. First, a correlation analysis was performed to check the
variable relationships. There was a good and significant correlation of El Niño Southern Oscillation
(ENSO) with the flow regime indices. Secondly, MR models were developed with the same-time
variables. The developed model showed that the Indian Ocean Dipole (IOD) had the effect of strongly
increasing the high flow in La Niña phases. Finally, time-lagged MRs were developed aiming at
forecasting. Lagged MR models with six-month leading climate indices demonstrated a relatively
good correlation with the observed data (mostly R > 0.700) with moderate accuracy (root mean
square error = 44–51%). It suggests that the forecasting of flow regime may be possible using ENSO
and IOD indices.

Keywords: Code River; ENSO; flow regimes; Indian Ocean dipole; multiple regression

1. Introduction

Understanding the pattern of streamflow dynamics is important in conserving an
ecosystem and anticipating water disasters. The pattern of streamflow can be defined
by the river flow regime. Flow regime is a term used by ecohydrologists to define five
aspects of river flow: the magnitude, timing, frequency, duration, and rate of change [1,2].
Recently, the perspective of flow regime was suggested to be shifted toward the climate and
ecological dynamics in the future [3]. In this context, studies to deepen the understanding
and predictability of the flow regime based on climate are growing in importance.

Indonesian rainfall is known to be affected by the El Niño Southern Oscillation (ENSO).
The ENSO is a periodical variation in sea surface temperatures over the Pacific Ocean,
which consists of El Niño and La Niña phases. El Niño is known to correlate with less
rainfall in Indonesia—causing drought over most parts of Indonesia—as opposed to La
Niña, which increases the rainfall in Indonesia [4,5]. The influence of ENSO events was
found to be well-correlated to rainfall in southern Indonesia [6,7].

Indonesian rainfall is also affected by another climate phenomenon—the Indian Ocean
dipole (IOD) [8]. The IOD is a seasonal oscillation of sea surface temperatures in the Indian
Ocean. The high activity of the IOD has been recognized to cause droughts in Indonesia [9].
A study in northwestern Java showed that IOD events affect the interannual rainfall
variation in the dry season [10]. Furthermore, the rainfall in southern Sumatra and Java,
facing the Indian Ocean, was negatively correlated with the IOD [7].
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ENSO and IOD effects are also being studied for their direct influence on streamflows,
especially for ENSO. An earlier study of the influence of ENSO on streamflows in 1993
found that there was a coherent and significant streamflow response to ENSO in four
regions of the United States [11]. The effect of ENSO on streamflows has been studied in
many regions around the world [12–15].

In Indonesia, there was a study of the effects of ENSO and IOD on the streamflow in
Citarum River, West Java [16]. The study found that the extreme high streamflow events
were associated with La Niña and negative IOD, while the extreme low streamflow events
were associated with positive IOD and El Niño. However, the authors of [16] acknowledged
the difficulty in developing a statistical prediction model of the relationship due to various
climate phenomena. The authors of [16] claimed that the relationship of ENSO and IOD on
streamflow becomes non-linear in some seasons, and thus they focused the discussion only
on the peak of the IOD event with a correlation analysis.

The relationship between ENSO and IOD also has been questioned for their inde-
pendency to each other. While many studies have reported that the IOD is statistically
independent to ENSO (e.g., [9,17–19], some studies argued that the ENSO and IOD are not
totally independent (e.g., [20–22]).

In this study, we attempted to investigate the non-linear relationship of ENSO and
IOD on streamflow by applying multiple polynomial regression analysis. We aimed to
demonstrate the predictability of streamflow regimes using ENSO and IOD in Code River,
southern Java Island, Indonesia (Figure 1). The study mainly consisted of three parts.
First, we investigated the relationship of ENSO and IOD with streamflow by correlation
analysis. Secondly, multiple polynomial regression models using ENSO and IOD indices
as predictors were developed with consideration of the average duration. Finally, the
forecasting ability of a time-lagged regression model was investigated. The streamflow
forecast using climate indices will be beneficial for water resource management.

Figure 1. Code River location in southern Indonesia. The small red box in the left figure (map of Indonesia) shows the
location of the right figure (satellite image of Yogyakarta Region).

2. Study Area

The Special Region of Yogyakarta is a small Indonesian province located in the south-
ern central region of Java Island, occupying an area of 3179 km2. One of the main rivers
in the province is Opak River. Many streams of Opak River tributaries cross in the center
of the province in Yogyakarta City. One of the tributaries is Code River, a well-known
stream, which often represents Yogyakarta City. Code River basin occupies an area of
approximately 40 km2. Code River joins Opak River after traveling south for 41 km from
its spring on Mount Merapi, north of Yogyakarta (Figure 1). As the stream is situated in a
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strategic location, Code River holds not only cultural value but also aesthetic value and
tourism potential [23].

Based on the Köppen climate type, the Yogyakarta region typically has a tropical
savanna (Aw) climate type. Sometimes, this region has a tropical monsoon (Am) climate
type. The region has dry months from May to October (MJJASO)—with August as the
driest—and wet months from November to April (NDJFMA)—with January or February as
the wettest. The annual rainfall varies between 400 to 3600 mm. The average temperature
varies from 22 ◦C in the upstream area to 27 ◦C in the downstream area. The lowest
temperatures occur in the dry months (June to August). The dry months have lower
temperatures compared with the wet months owing to the cold wind from the southern
hemisphere (Australia) winter [24].

3. Data and Methods
3.1. Data

The streamflow data used in this study were from the gauge station Kaloran in the
downstream part of Code River (Figure 1). The streamflow dataset was obtained from the
Indonesian Ministry of Public Works and Housing. The daily streamflow data of Kaloran
station is available for 21 years, covering 1994 to 2018. The river flow regime parameters
used in this study are the average flow, high flow, and low flow as defined by the flow
duration curve. The average flow was Q50 (50% percentile flow), the high flow was Q10
(10% percentile flow), and the low flow was Q90 (90% percentile flow). The high flow
index is important for flood prevention, while the low flow index is useful for drought
anticipation and environmental flow setting.

The climate variables used in this study are the Southern Oscillation Index (SOI) as the
ENSO index and Dipole Mode Index (DMI) as the IOD index. The DMI is the commonly
used index for IOD, and it is easily obtainable. The SOI was chosen as an easily defined
traditional ENSO index and it is frequently used by researchers to show the relationship
between ENSO and precipitation (e.g., [25,26]). The ENSO year annual variations and
rainfall patterns in Indonesia were in high coherence, as shown by the SOI in a long-series
dataset (1885–1983) [25]. The measure of SOI is based on the difference in sea level pressures
between Darwin and Tahiti [27]. In contrast, the other ENSO indices were mostly based
on the sea surface temperature anomalies in the tropical Pacific Ocean, such as NINO
3.4. The NINO 3.4 was identified as the most representative index for ENSO since the
publication in 1997 [28] and was frequently used in recent studies (e.g., [19,29,30]). SOI and
NINO 3.4 were well-correlated and not statistically different in most of the seasons [28].
Our calculations also indicated that SOI gave a slightly better correlation than NINO
3.4 in a longer duration average (not shown). Hence, the traditional SOI is used in this
study. The SOI (standardized) and DMI data were obtained from the National Oceanic and
Atmospheric Administration (NOAA) of the USA.

The time series of the 3- and 6-month averaged data of streamflow, SOI, and DMI
are shown in Figure 2. The missing data of streamflow from the period 2006–2009 are
dominated by La Niña (high SOI) events in the wet seasons of 2008 and 2009. The strong
La Niña events in 2011 can cover the information of strong La Niña events on the analysis.
The strong El Niño (low SOI) events captured in 1998/1999 and 2015/2016 were two of the
three super El Niño events identified since 1980 [29].
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Figure 2. Time series of Code River downstream flow, Southern Oscillation Index (SOI), and Dipole
Mode Index (DMI), with a 6-month moving average and 3-month moving average (light color). The
streamflow data of the years 2006 to 2009 are missing.

3.2. Methods

The Pearson correlation was used to find the correlation coefficient R. The datasets
used for the analysis were monthly data. While the climate indices were already in the
monthly dataset, the monthly flow regime indices datasets were obtained by extracting
the Q50, Q10, and Q90 from the 1-month daily data. The significance of the correlation was
evaluated using a two-tailed t-test at the 95% confidence level.

Regression models were developed using SOI and DMI as predictors to predict the av-
erage (Q50), high (Q10), and low (Q90) flow indices. We found that the correlation coefficient
between monthly SOI and DMI is −0.316, which is statistically insignificant. However, the
deviation from the dependent part has importance. Therefore, we used both SOI and DMI
on the prediction of streamflow using multiple regression models. Multiple regression
models were developed using first-, second-, and third-order polynomial functions. The
calculation of regression model parameters was performed at a 95% confidence level.

The estimated value of the regression models was then calculated by taking the model
term coefficients to the equation of the regression models as shown in Equations (1)–(3).
The accuracy of the regression models was evaluated by the estimated–observed correlation
coefficient and the standard error of the regression models. The calculation for the standard
error of estimation used the root mean square error (RMSE) following Equation (4) [31]
and is displayed as a percentage to the average of the observed values.

The model equation of the first-order polynomial regression with two predictors:

y = β0 + β1 × 1 + β2x2 + ε. (1)

The model equation of the second-order polynomial regression with two predictors:

y = β0 + β1x1 + β2x2 + β3x1
2 + β4x2

2 + β5x1x2 + ε. (2)

The model equation of the third-order polynomial regression with two predictors:

y = β0 + β1x1 + β2x2 + β3x1
2 + β4x2

2 + β5x1x2 + β6x1
3 + β7x2

3 + β8x1
2x2 + β9x1x2

2 + ε
(3)

with:
y = flow regime index (Q50, Q10, Q90);
x1 = SOI;
x2 = DMI;
β = coefficient of model term; and
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ε = model error.

RMSE =

√
Σ(y− y′)2

N − (k + 1)
(4)

with:
y = observed values;
y’ = estimated values;
N = number of observations;
k = number of parameters to be estimated (the number of β, except the intercept); and
Σ notes the summation for the monthly set of the x1, x2, and y.

4. Results
4.1. Correlation Analysis

The coefficients of the correlation between the observed flow regime indices and
climate indices (SOI and DMI) in the monthly datasets are shown in Table 1. SOI (ENSO)
had a distinctively higher correlation with the flow regime indices than the DMI (IOD).
The coefficients of the correlation of the climate indices with the flow regime indices
were between 0.330 to 0.347 for SOI and −0.031 to −0.099 for DMI. Although the SOI
correlations are at a lower level, they are statistically significant. The correlation of DMI
to the streamflow in this study is negligible due to its near-zero correlation coefficients.
Previous studies in northwestern Java showed that rainfall had a negative correlation with
IOD [10] and that most low flow events in rivers were linked with a positive IOD [16].
These different results may be caused by different timescales used by the studies. It is
discussed further in Section 5.1.

Table 1. The coefficients of the correlation between the observed flow regime indices and climate
indices (SOI and DMI) in the monthly datasets.

Correlation Variables No Moving
Average

3-Month Moving
Average

6-Month Moving
Average

Q50 with SOI 0.342 0.436 0.509
Q10 with SOI 0.330 0.407 0.466
Q90 with SOI 0.347 0.413 0.504

Q50 with DMI −0.031 −0.047 −0.029
Q10 with DMI −0.052 −0.046 −0.015
Q90 with DMI −0.099 −0.109 −0.104

The values in italic are statistically significant at the 95% confidence level with a two-tailed t-test.

The correlation coefficients on 3- and 6-month moving averaged datasets were also
calculated to investigate the temporal effect. The 3- and 6-month moving average time
series are also shown in Figure 2. Six months was the longest averaging period to show
the Indonesian biannual seasons. For the SOI, the 6-month moving average had a higher
correlation than did the 3-month moving average and the original dataset. The 6-month
moving average increased the correlation coefficient from the original dataset by 0.167,
0.136, and 0.157 for Q50, Q10, and Q90, respectively. These results signal that the ENSO
effect has a longer timescale than 1 month and that the peak is at the 6-month scale. On the
other hand, the moving average datasets of DMI did not show a noticeable change from
the original datasets.

The correlation coefficient becomes higher at the longer timescale of the moving aver-
age. It is because the moving average eliminated the variations which are shorter than the
averaging period. This tendency may be related to the elimination of variation under a 3- or
6-month timescale; for example, Madden–Julian Oscillation (MJO). The active phase of MJO,
which lasts about 1 or 2 months [32], has been known to increase the extreme precipitation
events over western and central Indonesia [33]. We eliminated this kind of noise because this
study focused on the ENSO and IOD, which are in a longer timescale variation.
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The effect of ENSO on the flow regime was clearly more dominant than the effect
of DMI in Code River (Table 1). Based on the two-tailed t-test, the correlations of SOI to
the flow regime indices were all significant, as opposed to the DMI correlations to the
flow regime indices, which were all not significant. With low and insignificant correlation
values, IOD had no association with the observed streamflow of Code River. ENSO, on
the other hand, had a positive association with the streamflow—and was the highest in a
6-month timescale. This effect of ENSO was essentially the same with Q50, Q10, and Q90.

The moving average may be considered to reduce the degree of freedom of the data
and may change the result of statistical analysis. Therefore, we checked the worst case by
calculating the correlation coefficient using one datum for each averaging period. For the
3-month (6-month) moving average, it was one datum every 3 (6) months, making a total
number of data used in each analysis become one-third (one-sixth) of the original moving
average datasets had. The results are similar to the values in Table 1. For example, the
correlation coefficient of Q50 in the 3- and 6-month moving average by this calculation are
0.440 and 0.516, respectively. The status of the significancy also did not change.

4.2. Multiple Regression Analysis

Equations (1)–(3) were used to develop multiple polynomial regression (MR) models
to estimate the Q50, Q10, and Q90 using SOI and DMI as predictors, with the original dataset
and 3- and 6-month moving average datasets. The regression models were evaluated by
correlation coefficients (R) between the estimated and the observed flow regime (Q50, Q10,
and Q90), root mean square error (RMSE, Equation (3), and the adjusted coefficient of
determination (R2).

Higher R values between the estimated and observed flow regimes were identified on
higher order regressions and longer timescales (Table 2). The highest correlation (R = 0.746)
was achieved by the third-order MR for Q50 in the 6-month moving average timescale. The
higher order MRs and a longer timescale of moving average were identified as having a
lower RMSE and a higher adjusted R2 (Figure 3). The results suggest that the best model’s
skill was achieved by the 6-month moving average dataset with third-order MR. Due to
the much lower model’s skill achieved by first-order MR, from now on the first-order MR
will be omitted from the analysis.

Table 2. The Pearson correlation coefficient (R) between the estimated and observed values of streamflow regimes on
second- and third-order multiple polynomial regressions with SOI and DMI as predictors.

Flow Regime Indices Multiple Regression Order
Correlation Coefficient (R) of Estimated-Observed

No Moving
Average

3-Month Moving
Average

6-Month Moving
Average

Q50 first-order 0.350 0.459 0.564
Q50 second-order 0.509 0.633 0.708
Q50 third-order 0.553 0.650 0.746

Q10 first-order 0.334 0.429 0.522
Q10 second-order 0.474 0.586 0.644
Q10 third-order 0.495 0.608 0.701

Q90 first-order 0.347 0.418 0.527
Q90 second-order 0.474 0.563 0.652
Q90 third-order 0.542 0.594 0.688

All values are statistically significant at the 95% confidence level with a two-tailed t-test.



Water 2021, 13, 1375 7 of 14

Figure 3. The root mean square error (RMSE) and adjusted R2 of the multiple regression (MR) models.
The 1st-, 2nd-, and 3rd-order are the respective MR orders. The 3 m M.A. and 6 m M.A. are the
3-month and 6-month moving average, respectively.

Figure 4 shows the estimated results of the 6-month moving average MR models in
scatterplots and time series graphs. The scatterplot of the estimated versus observed values
in Figure 4 shows that Q50 had the most accurate estimates and that the Q10 had the least
accurate estimates. For all flow indices, both second- and third-order MR models had a
tendency to underestimate in higher flows. On all flow indices, the third-order MR estimate
tended to have a higher value compared with the second-order estimate. The MR models
shown in time series (Figure 4) showed that the models had the highest accuracy, mostly in
the extreme values, corresponding to strong (positive and negative) SOI values, such as in
late 1994, mid-1998, early 2011, and late 2015.

4.3. Lagged Multiple Regression Analysis

The objective of MR analysis with variables at the same period was to investigate
the tendencies of the relationships and cannot be used for forecasting the future without
dynamical model prediction. A lagged MR with different periods of response and predictor
variables should be used for forecasting the future of the response variables. The climate
indices in this study may be able to forecast streamflow in the future with a few months
lag applied in the MR. This possibility was attempted in this study through analyzing the
MR with the climate indices dataset of 6 months before the streamflow dataset.

The MR with the same period variables (the MR used in Section 4.2) is labeled by
lag0 and the MR with 6-month lagged variables is labeled by lag6. The lag0 regression
result is provided in Section 4.2 and shows that the 6-month moving average was the best
timescale to reduce variation noises and achieve the highest model skill (highest correlation
with the observed flow, lowest standard error, and highest coefficient of determination).
Hence, in this lagged MR, we used only the 6-month moving average dataset with second-
and third-order MR. Additionally, the lag6 MR did not temporally overlap with the use
of the 6-month moving average dataset. The model evaluations are shown in Table 3 and
Figure 5.
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Figure 4. Comparison between the observed variables and the estimated flow regimes by multiple polynomial regression
model with 6-month moving average dataset. There are two figures: (a) The scatterplots of the estimated versus observed
values; (b) The time series of observed (Q50, Q10, Q90, SOI, and DMI) and estimated (Q50, Q10, and Q90) values in 1994–2005
(left side of the separation line) and 2010–2018 (right-side of the separation line).

Table 3. Multiple regression (MR) model evaluation for a 6-month moving average dataset in not-lagged (lag0) and 6-month
lagged (lag6) MR. R is the Pearson correlation coefficient between the estimated and observed flow regime indices. RMSE is
the root mean square error in percentage to the observed average. Adj. R2 is the Adjusted R2.

Flow Regime
Indices

Multiple Regression
Order

Lag0 Lag6

R RMSE Adj. R2 R RMSE Adj. R2

Q50
second-order 0.708 49% 0.490 0.763 45% 0.572
third-order 0.746 47% 0.539 0.779 44% 0.590

Q10
second-order 0.644 55% 0.402 0.701 51% 0.480
third-order 0.701 51% 0.472 0.724 50% 0.505

Q90
second-order 0.652 52% 0.413 0.694 49% 0.470
third-order 0.688 50% 0.452 0.742 46% 0.532
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Based on the correlation coefficient (R) of the estimated and observed values, lag6
performed well with a higher R compared with lag0. The third-order regressions had a
higher correlation to the observed values than the second-order regressions. However,
both orders showed similar patterns (Figure 5). The evaluation of the RMSE and adjusted
R2 showed that the lag6 regressions had a lower error and higher R2 compared with lag0,
but not by much. This indicates that lagged-time regressions had a slightly better accuracy
over the same-time regressions in predicting the flow regimes using SOI and DMI. With
these evaluation results, the lag6 MR is able to make forecasts regarding streamflow.

5. Discussion
5.1. IOD Climate Effects

The correlation analysis showed that SOI was a prominent indicator of streamflow
while DMI was not. Despite its low and insignificant correlation in this study, DMI has
been acknowledged for its effect on rainfall (and thus streamflow) in Indonesia [7,9,10].
A previous study in West Java clearly identified a positive IOD (with DMI) in the low
flow period [16]. The timescale of the previous study was 3 months, focusing on the
September–November (SON) period. In contrast, this study considered all months. The
correlation analysis results (Section 4.1) captured the correlation of the ENSO-streamflow
but could not capture the correlation of the IOD-streamflow.
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Despite the low correlation of IOD to the flow regime indices (Section 4.1), the time series
of the observed and estimated flows showed that the period of high positive IOD mostly
appeared in events of extremely low flow, such as in the year 1994 (Figures 1 and 5). This
agrees with the previous study, which concluded that positive IOD was associated with low
flow periods. Considering that the regression models in this study presented relatively good
evaluations, IOD can be confirmed to modulate the ENSO–streamflow relationship.

To further investigate the IOD contribution to the ENSO–streamflow relationship
in the model we developed, we applied the second- and third-order regression models
(6-month moving average) on varied dummy values of SOI and DMI. The range of SOI
(DMI) values in the 6-month moving average dataset was −1.80 to 2.27 (−0.61 to 0.93),
and thus the SOI (DMI) variation in this simulation was set from −2 to 2 (−0.8 to 0.8). The
correlation of SOI–streamflow is already known to be positive; thus, a higher SOI should
produce higher streamflow. In this case, we tested whether positive DMI (pDMI) and
negative DMI (nDMI) changed the tendency of the positive relationship.

The behavior of MR functions is depicted by simulation using the dummy data in
Figure 6. The simulations showed that in a higher positive SOI (pSOI), a higher pDMI
produced a more significant increase in the streamflow, and a lower nDMI produced a
relatively constant decrease in the streamflow. The second-order MR produced more
physically appropriate estimates than the third-order MR, which allowed the estimate
values to be below zero, especially on a negative SOI (nSOI). It is due to the lack of variance
of nSOI-nDMI combination in the dataset for developing the regression models.

Figure 6. Dummy simulations of second- and third-order multiple regression (6-month moving
average) to show the modulation effect of DMI to SOI–streamflow relationship produced by the
models. Dummy dataset of DMI (−0.8 to 0.8) and SOI (−2.0 to 2.0) were used in these simulations.

In this dummy simulation, the effect of DMI on the SOI–streamflow relationship in this
simulation was more apparent at a higher flow to strongly increase the flow in positive SOI
events. This modulation of SOI dependency due to the DMI cannot be expressed in linear
(first-order) MR. This is due to the crossing terms containing both SOI and DMI included
in the second- or third-order MR equations are necessary to express this modulation.

5.2. Flow Regimes Forecasting

The flow regime index Q50 can be beneficially used for the general purpose of water
resource management, while Q10 and Q90 can be used for anticipating flood and drought
events, respectively. Six months in advance is a good period for forecasting the flow regime



Water 2021, 13, 1375 11 of 14

in the sense of water resource management. This provides sufficient time for counteracting
the impact of the flow regime behavior in the future. The evaluation of the 6-month lagged
multiple regression models in this study showed a good correlation and moderate accuracy
(Table 3). This indicates that the current last 6-month average of SOI and DMI would be
able to predict the Q50, Q10, and Q90 6 months in the future using the regression model
coefficients developed in this study (Table 4), with some notes on the accuracy.

Table 4. Multiple regression (MR) model coefficients developed from a 6-month moving average dataset and lagged
regression with climate indices lead streamflow indices by 6 months. To be used with the corresponding equations provided
in the Section 3.2.

Flow
Regime
Indices

Multiple
Regression

Order

Coefficients

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

Intercept SOI DMI SOI2 DMI2 SOI.DMI SOI3 DMI3 SOI2.DMI SOI.DMI2

Q50
second-order 1.449 0.225 −0.457 1.133 1.588 2.189
third-order 1.452 −0.004 −0.993 1.252 −0.203 1.293 −0.002 8.920 −0.133 4.938

Q10
second-order 2.210 0.164 −0.173 1.614 5.990 5.247
third-order 2.182 −0.001 −1.406 1.777 0.699 1.978 −0.135 19.498 1.865 15.137

Q90
second-order 1.141 0.316 −0.263 0.616 −1.181 −0.080
third-order 1.041 0.114 −0.276 1.091 −0.181 1.111 −0.140 2.738 −1.974 −0.958

Simple and usable models are important for practical uses, such as forecasting. The
goal in developing multiple regression equations is to include meaningful variables that
explain most of the data variability [34]. In general, the second-order MR is recommended
by considering its model evaluation which was good enough and not far behind the
third-order MR (Table 3). Furthermore, a lower order polynomial MR can keep the model
equation simple and may prevent extreme results in the case of inputs outside the consid-
ered range.

The Q50 MR models had similar accuracy in second- and third-order MR (Figure 5),
indicating that both regression orders can be used to forecast Q50 with a tendency to
underestimate. The only noticeable difference between the two MR orders was in the
combination event of strong negative IOD (less than −0.5) and strong positive ENSO
(greater than 0.5). In such an event, which was captured only once in this study (in 1997),
the third-order MR estimated an immediate reduced flow, while the second-order MR did
not (Figure 5, bottom row). For the general purpose of river flow information, a simpler
equation with second-order regression may be better.

The Q10 MR models have the least accuracy among the three flow indices (Figure 5).
The most accurate estimation of the model was only found in two events with a combination
of positive SOI and positive DMI, in 2011–2012 and 2018. Although the accuracy of both
was similar, the third-order MR was better than the second-order regression in forecasting
Q10. This is because the third-order MR tended to produce a higher estimate than the
second-order MR (especially in the event of positive SOI and DMI). A higher estimation of
high flow is usually favored to set a safety margin in the event of floods.

The Q90 MR models had better accuracy in the third-order MR than in the second-
order MR (Figure 5). The MR models of Q90 had almost equal numbers in producing
underestimated and overestimated values. However, the underestimated (overestimated)
values tended to be in the higher (lower) level of Q90, while an underestimation is more
favorable for anticipating drought and conserving ecosystems in rivers.

5.3. Model Validation

The relationships among variables found in this study are expected to be useful for
predicting streamflow using the climate indices. The regression equations in this study
(Table 4) can be used for forecasting after model validation is applied to them. However,
we could not conduct model validation due to a lack of enough data. The streamflow data
we obtained only covered 21 years, which included only four or five ENSO cycles. We need
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all 21 years of data to capture the variations of ENSO and IOD. We concluded that the IOD
modulates the ENSO–streamflow relationship. Hence, with more ENSO and IOD data for
at least two additional ENSO cycle periods, we would be able to capture the modulation in
our models and make a model validation.

6. Conclusions

We developed multiple regression (MR) models to predict the flow regimes of Code
River using the ENSO and IOD indices with second- and third-order polynomial functions.
First, the relationship of the SOI (ENSO) and DMI (IOD) to the Code River streamflow was
checked. Good and significant correlations of SOI to the flow regime indices were found
in the 6-month moving average dataset. However, the use of monthly data in this study
could not capture the effect of IOD in a simple correlation analysis.

Despite the insignificant low DMI correlation to the flow regime indices, the observed
and estimated values in this study mostly agreed with a previous study in Citarum River,
in that the extreme low flows appeared in strong positive IOD periods. Considering the
relatively good model evaluation obtained by the MR models in this study, in further
investigation, the IOD was confirmed to modulate the ENSO–streamflow relationship. This
effect could be captured by second- and third-order polynomial MRs. The effect of IOD on
the streamflow was identified to greatly increase the higher flows (of Q50 and Q10) in the
positive ENSO phases.

In the MR analysis, the 6-month moving average was identified as the highest corre-
lated timescale. We also identified that the third-order regression was a better model skill
compared with the second-order regression. However, the difference between their estima-
tion results was not significant. Therefore, both regression orders can be used to make a
prediction. A time-lagged MR analysis was conducted using the 6-month moving average
dataset and the two regression orders. We found that 6-month lagged (lag6) MR were better
in explaining more variability of the flow regime compared with the same-time (lag0) MR.
The lag6 MR model showed a relatively good evaluation with moderate accuracy: most R
values with the observed data were over 0.700, 44–51% RMSE, and 0.470–0.590 adjusted R2.

Flow regime forecasting using 6-month lagged (lag6) multiple polynomial regression
was possible with some caution regarding the model’s accuracy. Q50 was found to have the
most stable and accurate estimates and thus, it is recommended for use with second-order
MR for forecasting. Q10 and Q90 demonstrated lower model accuracy, and we recommend
using third-order MR for forecasting. It is beneficial for water resource managers to be able
to forecast the flow regime indices in the next 6 months using climate indices.

The lag6 MR model is expected to be useful for streamflow forecasting after a proper
model validation in the future. In this study, the model validation could not be done due to
a lack of data, making the validation work for the future. This study was, nonetheless, able
to demonstrate non-linear climate–streamflow relationships and streamflow predictability
with the climate indices using multiple polynomial regressions.
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