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Abstract: Effective management of water resources entails the understanding of spatiotemporal
changes in hydrologic fluxes with variation in land use, especially with a growing trend of urbaniza-
tion, agricultural lands and non-stationarity of climate. This study explores the use of satellite-based
Land Use Land Cover (LULC) data while simultaneously correcting potential evapotranspiration
(PET) input with Leaf Area Index (LAI) to increase the performance of a physically distributed
hydrologic model. The mesoscale hydrologic model (mHM) was selected for this purpose due to its
unique features. Since LAI input informs the model about vegetation dynamics, we incorporated the
LAI based PET correction option together with multi-year LULC data. The Globcover land cover data
was selected for the single land cover cases, and hybrid of CORINE (coordination of information on
the environment) and MODIS (Moderate Resolution Imaging Spectroradiometer) land cover datasets
were chosen for the cases with multiple land cover datasets. These two datasets complement each
other since MODIS has no separate forest class but more frequent (yearly) observations than CORINE.
Calibration period spans from 1990 to 2006 and corresponding NSE (Nash-Sutcliffe Efficiency) values
varies between 0.23 and 0.42, while the validation period spans from 2007 to 2010 and corresponding
NSE values are between 0.13 and 0.39. The results revealed that the best performance is obtained
when multiple land cover datasets are provided to the model and LAI data is used to correct PET,
instead of default aspect-based PET correction in mHM. This study suggests that to minimize errors
due to parameter uncertainties in physically distributed hydrologic models, adequate information
can be supplied to the model with care taken to avoid over-parameterizing the model.

Keywords: CORINE; Hydrologic Modeling; LULC; mHM; MODIS

1. Introduction

Decision-making about the sustainability of water resources requires supporting tools
to manage the resources effectively. Hydrological models are useful tools to capture spa-
tiotemporal variations in hydrological fluxes in many basins. A model consists of various
parameters that define the characteristics of the basin. Hydrologic models have become
progressive tools for studying the effects of anthropogenic activities and environments
on hydrology and ecology [1]. Good modeling should be characterized by a high degree
of confidence in the simulated outputs and minimization of uncertainty in model results.
These uncertainties may be due to data input integrity, measured output data, non-optimal
parameters, and model bias [2].
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The conventional knowledge is that the best simulation is associated with less uncer-
tainty in its output. The best model is the one that gives results close to reality with the use
of the least parameters and model complexity, i.e., a parsimonious model [3]. Hydrologists
are faced with improving the quality of model outputs by using various procedures to
reduce these uncertainties [4,5]. However, errors due to model bias are difficult to address
and are usually mentioned by the modeler when reports are made. To address uncertainties
relating to non-optimum parameter values, model calibration is employed. This procedure
is targeted at obtaining optimum parameter values for the model setup in the specific basin,
such that the error due to non-optimal parameters is insignificant compared with errors
due to data integrity [6].

Various strategies have been adopted to calibrate hydrological models. Scientists have
introduced series of mathematical functions that guide parameter optimization during the
calibration of the model [7–9]. Hydrologists are also engaged in exploring model setups and
data inputs to obtain the best model performances. Various resolutions of Digital Elevation
Models (DEM), LULC source and resolutions, soil map resolution, and data length have
been studied to obtain their effects on model performance. These responses vary among
models due to model types and structures [10]. Physically distributed hydrological models
are capable of simulating multi-layered hydrological processes. Rather than utilizing
extensive hydrological and meteorological data during calibration, physically distributed
hydrologic models require the evaluation of many parameters that describes the physical
characteristics of the catchment [11]. These models provide output upon which decisions
about effective water resources management are based especially with spatiotemporal
changes in LULC [12–14]. Therefore, the accuracy of these outputs is of high importance
to hydrologist, hence the need for efficient calibration procedure to design simulations
representing the interested basin.

The effect of input data resolution on SWAT model performance was studied by
Bouslihim et al. [15], which focused on simulating hydrologic fluxes using various spatial
resolution of soil data. Likewise, the temporal resolution effect was observed by Ficchì
et al. [16] using different precipitation time-steps to simulate hydrologic events. These
studies showed that quality and resolution of data affect the estimation of hydrological
fluxes. According to Li et al. [17] in their study on the effect of calibration length on lumped
hydrological model performance, longer calibration periods do not necessarily result in
better model performance and optimum parameter values can be attained with fewer
calibrations. This was enhanced in recent research by Ilampooranan et al. [18], which
further clarified the need for additional calibration data sources to improve the robustness
and predictive ability of distributed models. The rise in technology, data accessibility
and technical capabilities are gradually improving the complexity of hydrologic models.
This raises the question of how model complexity affects model performance and was
elucidated by Orth et al. [19], which concluded that complexity does not necessarily cause
increased model performance.

Vegetation can have a significant effect on hydrological fluxes due to variations in
the physical characteristics of the land surface, soil, and vegetation; such as the roughness,
albedo, infiltration capacity, root depth, architectural resistance, leaf area index (LAI), and
stomatal conductance [20,21]. Setyorini et al. [22] utilized SWAT model calibrated with
the LULC map obtained from supervised classification of Landsat images to evaluate the
impact of LULC changes and climatic variables on hydrological parameters. The combined
effect of both variables decreased surface runoff, groundwater, lateral flow and stream flow
while evapotranspiration increased. Boongaling et al. [23] further studied the impact of
LULC changes using the SWAT model configured with land cover data generated from
Satellite Pour l’Observation de la Terre (SPOT) 5 imagery with a resolution of 10 m and
revealed that vegetated sub-basins tend to loosen the soils and permit improved rate of
infiltration leading to increase base flow and decreased overland flow. The sensitivity of
vegetation parameters to hydrological processes was also assessed by Das et al. [24] using
Land Use Land Cover (LULC) changes in the eastern India basin between 1995 and 2005
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to set up Variable Infiltration Capacity (VIC) model, which revealed the LAI as the most
sensitive parameter that influences hydrological fluxes. Yearly variability in LAI is essential
in model calibration and monthly water balance as observed by Tessema et al. [25] in the
simulation of runoff in Goulburn–Broken catchment of Australia using VIC model.

Furthermore, Chen et al. [26] simulated the effects of irrigation waters on surface water
and energy balance fluxes using VIC model and irrigation scheme for Heihe River basin
in China, which revealed a greater increase in evapotranspiration as irrigation activities
persists. Additionally, the impacts of future climate changes on hydrological characteristics
resulted in the decline in streamflow as studied by Hashim et al. [27], using HBV to
simulate fluxes in Harver River catchment, although these impacts were later found by
Bisht et al. [28] to be flow type and time-step dependent, as observed using integrated
MIKE 11 NAM-HD. In a different study by Jasrotia et al. [29] to predict streamflow under
changing climate conditions using VIC, precipitation projections in Jhelum catchment was
observed to have a huge influence on runoff. The application of cell to cell routing and
modified parametrization was revealed to increase model performance in a conceptual
model as studied by Paul et al. [30] using Satellite-based Hydrologic Model (SHM). LULC
changes through deforestation, urbanization, expansion of croplands led to reduction in
the extent of canopy cover for interception and transpiration, which affects hydrologic
model performance. Jin et al. [1] reiterated this inference in their study on the impact of
multiple LULC datasets and resolutions on hydrologic performance and suggested using a
high-resolution LULC dataset for modeling when only one year LULC dataset is available.

Most previous studies have been exploring various strategies to improve model
performances by adjusting input data features, model set up and calibration approach.
However, little information exists about the combined effect of multiple LULC datasets
and LAI on the performance of fully distributed physically based hydrologic models
like the mesoscale Hydrologic Model (mHM). Hence, this study aims at (1) exploring
the performance of a distributed hydrologic model by calibrating the hydrologic model
using a series of land use land cover datasets and (2) analyzing the influence of leaf area
index, which is a significant characteristic of forest areas on the performance of the model.
This research involves different model configuration cases with varying LULC, potential
evapotranspiration (PET) setup, and comparing the performance and hydrograph of each
simulated output. Some limitations of the study is that while there exists different land
cover classes in nature, the model only identifies three significant land cover classes (Forest,
Impervious and Pervious). Hence, error in reclassification of closely related classes is
inevitable. Furthermore, only annual LULC data can be defined in the model, despite the
use of multiple land cover inputs. Finally, users can manually define LAI classes in look up
tables, if LAI is not provided as input.

2. Materials and Methods
2.1. Study Area

The study area is the Karasu basin located at the Euphrates River’s headwaters in
Turkey (Figure 1). The basin is mostly dominated by pasture, grass and bare land. The
total area is about 2886 km2. This area is hugely mountainous with an elevation range
of 1125–3500 m and mean basin slope of 20%. Karasu Basin boundaries are within the
longitudes 38◦58′ E to 41◦39′ E and latitudes 39◦23′ N to 40◦25′ N. Studies showed that
60–70% of the total annual runoff volume comes during snowmelt season. The annual
mean precipitation of the basin fluctuates from 400 to 450 mm/year [31]. Streamflow data
for the Karasu basin are collected by General Directorate of Turkish State Hydraulic Works
(DSI) at the Karasu Aşağı Kağdarıç gauging station (#6695500-GRDC ID or #2154-Local
ID) [32]. The basin downstream is characterized by huge dams that make accurate runoff
estimation crucial to efficient water resources allocation for flood control, hydropower
generation, irrigation, and water supply [33].
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Figure 1. The location of the Karasu Basin and the elevation.

2.2. Model Description

The mHM is a fully distributed hydrologic model based on numerical approximations
of hydrologic processes such as canopy interception, snow accumulation and melting,
soil moisture dynamics, infiltration and surface runoff, evaporation, subsurface storage
and discharge generation, deep percolation and base flow, and discharge attenuation and
flood routing [34]. The model discretization in this setup is based on grid cells of 0.0625◦

spatial resolution, with each grid generating runoff that is routed using adaptive timestep,
constant celerity routing method. The mHM utilizes a Multiscale Parameter Regionaliza-
tion technique to account for sub-grid variability of catchment morphology [35–37] which
enables the swapping between different scales while calculating all fluxes and routing
streamflow on a preferred model scale. The model contains 62 global parameters that can
be adjusted during the calibration process and pedo-transfer functions for soil parame-
terization [35]. Samaniego et al. [38] can be consulted for explicit description of model
formulation and parameter description. The mHM was preferred as the interest model due
to its three unique features (1) multiscale parameter regionalization technique, which links
basin’s physical characteristics to parameter value via pedo-transfer functions (2) ability to
process multiple LULC data (3) use of leaf area index (LAI) data not only for calculating
interception loss but also for correcting PET.

2.3. Data Preparation

The basic data for setting up the mHM can be classified into meteorological data,
morphological data, land cover data and gauging station data. The essential meteorological
variables are the precipitation and average air temperature at hourly to daily temporal reso-
lution. However, based on a strategy of estimating potential evapotranspiration, additional
data like net radiation, wind speed, the absolute vapor pressure of air, potential evapotran-
spiration, maximum and minimum air temperature. The morphological variables are the
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digital elevation model, soil maps with textural properties, geological maps containing
specific yield, permeability and aquifer thickness. For this study, the E-OBS dataset was
utilized with the precipitation, average air temperature data and potential evapotranspi-
ration obtained from Rakovec et al. [39] with a resolution of 0.25◦ and daily time steps,
input directly into the model, hence no need for its estimation in the model (Table 1). All
morphological data are provided at a resolution of 0.001953◦ and the meteorological data
at 0.25◦. The model is run at a daily time-step with and outputs are internally resampled to
a spatial resolution of 0.0625◦ by the model.

Table 1. Overview of input datasets.

Variable Description Spatial
Resolution Source

Q (daily) Streamflow Point Karasu Aşağı Kağdariç station
(#6695500-GRDC ID or #2154-Local ID)

P (daily) Precipitation 0.25◦ E-OBS 20.0e

ETref (daily) Reference evapotranspiration 0.25◦ E-OBS 20.0e

Tavg (daily) Average air temperature 0.25◦ E-OBS 20.0e, MODIS

Land cover Pervious, impervious and forest 0.001953◦ CORINE, MODIS, GlobcoverV2

DEM data Slope, aspect, flow accumulation
and direction 0.001953◦ SRTM

Geology class Two main geological formations 0.001953◦ EUROPEAN SOIL DATABASE

Soil class Soil texture data 0.001953◦ HARMONIZED WORLD SOIL
DATABASE

2.4. Land Cover Data

The Coordination of Information on the Environment (CORINE), MODIS and GLOB-
COVER land cover data were used. The Coordination of Information on the Environment
(CORINE) Land Cover (CLC) is the first land cover map in Europe based on photographic
interpretation of Landsat-5, Landsat-7 ETM, SPOT-4/5, IRS P6 LIS III, Sentinel-2 and
Landsat-8 satellite images for the years 1990, 2000, 2006, 2012 and 2018. The geometric
accuracy of all the images are≤25 m except Landsat-5 and Sentinel-2 images, with accuracy
≤50 m and ≤10 m respectively, producing the CLC 1990, CLC 2000, CLC 2006, CLC 2012
and CLC 2018 products respectively. The spatial resolutions of the products are 100 m and
250 m, [40] with the land cover inventoried into 44 classes [41]. The main advantage of
the CORINE Land Cover (CLC) inventory is its frequent update by European countries,
although the level of detail of the source data is a limitation [41]. This limitation suggests
that the CLC inventory is a useful resource for land cover change studies on the regional
scale. The MODIS Land Cover collection is a global land cover data set designed to sup-
port research related to current, seasonal to the decadal status of global land properties,
with 17 land cover classes at a 500 m spatial resolution and yearly temporal coverage
with a 71.6% overall accuracy [40]. The GLOBCOVER dataset is a global project initiated
by European Space Agency (ESA) in conjunction with the Joint Research Centre (JRC),
the European Environment Agency (EEA), the Global Observation of Forests Cover and
Land Dynamic (GOFC-GOLD), Food and Agriculture Organization (FAO), the United
Nations Environment Program (UNEP) and the International Geosphere-Biosphere Pro-
gram (IGBP) [42]. The project entailed the generation of world land cover map using 300
m Medium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT [43].
The mHM identifies only three land cover classification. This classification includes forest
(coniferous and deciduous), impervious (urban and built-up areas, water bodies, and
consolidated soils), and pervious (grasslands, croplands, and bare soil) [34]. Hence, the
land cover data were reclassified to suit the data requirements.
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2.5. Sensitivity Analysis

Hydrologic models are associated with uncertainties, which have always prompted
researchers better to understand the hydrologic process and better representation in models.
These models are associated with some level of complexities that vary among models to
represent necessary variables correctly. Sensitivity Analysis (SA) is a method employed by
modelers to deal with these complexities during calibration by analyzing the contribution
of each model parameter to the uncertainty in model prediction. The basis for SA is an
effect called the “Sparsity of Factors” principle. This principle, which originates from
the field of Statistical Design of Experiments, states that when a process is influenced by
several variables, its behavior is likely driven by a small subset of these variables [44].
These subsets of variables characterize sources of uncertainties in model prediction and
upon which research towards model performance improvement should be focused [45].
SA can summarily be applied for assessment of model similarities [46], obtaining regions
of sensitivity [47], factor and model reduction [48] and uncertainty apportionment [49]. In
this study, we used PEST Tool [9] to assess most important parameters based on Jacobian
matrix to include in the model calibration.

2.6. Model Calibration and Validation

In this study, four different cases (Table 2) based on input data were created to achieve
the set objectives. These cases contain different configurations and representations of
hydrologic processes. The Case 1 (C1) model was configured using one-year GLOBCOVER
land cover data and no correction of PET data using LAI information in the region. The
PET data was only subjected to correction with the aspect of the grid cells. The Case 2 (C2)
model was also configured with the same land cover data but with LAI correction. This
strategy allows the PET data to be corrected based on the LAI data supplied to the model.
The Case 3 (C3) model was configured with multiple land cover data from a different
database. It contained 1990 and 2000 CORINE land cover data and consecutive MODIS
land cover data from 2001 to 2008 for the calibration period. The PET data, in this case,
is also subjected to only the aspect correction and ignores the LAI correction. The Case 4
(C4) model contains the same land cover configuration as C3; however, the PET data were
subjected to LAI correction. The model was calibrated with the discharge data from the
gauging station from 1990 to 2006 while 2007 to 2010 was used for the validation.

Table 2. Description of the model cases.

Ase Land Cover Input PET Correction with LAI

1 1 year Globcover dataset No

2 1 year Globcover dataset Yes

3 MODIS and CORINE datasets No

4 MODIS and CORINE datasets Yes

2.7. Dynamically Dimensioned Search Algorithm (DDS)

The DDS was developed to obtain best global solutions within a model evaluation
limit based on heuristic global search algorithm [50]. The DDS algorithm begins its search
globally and becomes localized as the iteration numbers approaches the limit of function
evaluations. This is achieved by decreasing the number of dimensions in the neighborhood
dynamically and probabilistically, and further distribute the reducing probability equally
to each decision variable [51]. The need to modify parameters simultaneously during
calibration to preserve the current gain in calibration result was the motivation behind the
algorithm. The critical feature of DDS was triggered by the poor result associated with
manual calibration of watersheds especially with progress in the calibration process. It
becomes necessary to calibrate one or few parameters simultaneously as calibration result
improves in order to prevent loss of previously gained result [50].
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2.8. Model Performance

The Nash-Sutcliffe efficiency (NSE) was used to evaluate the integrity of the model
simulations for each scenario. This objective function quantifies the accuracy of prediction
by comparing the differences between predicted and observed discharge values. NSE is
a scaled metric that compares the expected variable with the observed variable’s mean
as the naïve forecast. An efficiency of zero, indicates that using the observed data as
forecast would give the same error as the predicted data, a negative efficiency means that
the mean of the observed data is a better predictor than the model prediction [52]. The
inverse (NSEinv) and logarithm (NSEln) of this metric was also adopted to capture the
flow dynamics. Pushpalatha et al. [53] reported that NSEln and NSEinv are useful metrics
for the evaluation of low flows, although the latter shows no sensitivity to high flows
unlike the NSEln, which shows little sensitivity, and NSE, which is highly sensitivity to
high flows. The Kling-Gupta Efficiency (KGE) was also adopted to evaluate the annual
flows [54]. KGE consists of three components targeted at addressing the flaws observed in
NSE. This evaluation criterion is based on NSE decomposition into the linear correlation
between observed and simulated flows, the flow variability term and biased term [55]. The
optimum value is 1 and unlike NSE, KGE does not have an inherent benchmark against
which flows are compared and the value to be compared is subjective to the modeler [56].
Other evaluation criteria used are PBIAS and Mean Absolute Error (MAE), which measured
the simulated values’ average tendency to be larger or smaller than their observed ones and
the absolute difference between observed and simulated flows respectively. The optimum
value of MAE is 0 and low magnitude values indicates accurate model prediction. Positive
values of PBIAS indicate some overestimation of predicted data while negative values
indicates model underestimation of predicted values.

Stagl and Hattermann [57] suggested the use of some hydrological indices for the
evaluation of model simulation. For this study, the long-term annual average discharge,
flow in dry season, high flows (Q10), low flows (Q90), flow in wet season and base flow
were selected as indices to evaluate the modeled cases. The wet season was taken from
May to October while the rest of the months were considered as dry season. The base flow
was estimated as 30% of the average daily flow and the performance was evaluated using
the procedure alighted in Chirachawala et al. [58], which is the absolute difference between
each calibrated case and its corresponding value in the observed case.

3. Results
3.1. Land Use Land Cover Variations

LULC maps in physically distributed hydrological models are essential inputs for effi-
cient modeling of spatial variations in hydrologic fluxes, excess rainfall and infiltration in
particular. This study adopted the CORINE and MODIS LULC dataset and the changes in the
land cover characteristics shown in Figure 2 using the mHM recognized land cover classes.

The variation in land cover classes between the upper and lowest land cover map
adopted is also shown in Figure A1. Using the conventional CORINE land cover nomen-
clature to characterize the land cover in the basin as shown in Table A1, the most dominant
land cover obtained in the study period is the natural grasslands, which increased from
718.63 km2 in 1990 to 929.63 km2 in 2012, although a slight decline was noticed in 2000
before the increase in subsequent years. A significant increase in the area covered by water
bodies was also observed. In 1990, 0.04% of the watershed, which is 1.1 km2, is covered by
water. This increased to 11.17 km2 in 2000 and varied annually until it reached 9.42 km2

in 2012. Road networks in the basin occupied the least land cover in the studied maps
covering 0.013% of the total basin area in 1990 and expanded to 0.054% in 2012. Artifi-
cial surfaces like buildings, roads, industry and land cover comprising of urban fabrics
increased by 7.35% between 1990 and 2012. This may be responsible for the decrease in the
agricultural areas from 1194.53 km2 to 1139km2, indicating about 4.7% decline. In the same
vein, forest areas declined by 6.3% between 1990 and 2012. Glacier and perpetual snow
in the watershed were observed to cover more area in 2012. In 1990, the snow area was
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around 434.62 km2 and steadily increased annually in the observed maps to 473.98 km2

in 2012. However, the hydrologic model of interest was designed to recognize three land
cover classifications; forest, impervious and pervious. MODIS has no separate forest class
in the study domain after reclassification but more frequent (yearly) observations than
CORINE, hence these two land cover products complement each other.

Figure 2. Land cover evolution in Karasu basin (a) CORINE (b) MODIS.

3.2. Sensitivity Analysis

Sensitivity analysis in this study was used to identify model parameters sensitive to
discharge prediction in the basin using the Parameter Estimation and Uncertainty Analysis
(PEST) tool [9]. PEST performs all calibration tasks, including sensitivity and uncertainty
analysis, upon the user needs. The tool allowed the identification of the sensitive param-
eters to discharge prediction in the model set up and these were normalized using the
maximum sensitivity value. Of the 62 global parameters in the model, 20 parameters were
selected as most sensitive as shown in Table A2 and they were afterwards used to calibrate
the hydrologic model.

The mHM parameters are divided into groups based on the processes they influence.
The soil moisture parameters were observed to be very sensitive to the model output,
although this sensitivity varies among the parameters. Eleven of these parameters out of
about twenty soil moisture parameters were sensitive in the setup. This actually depends
on the method used for modeling soil water movement, the Feddes equation was used in
this study. The sensitivity of PET parameters differs with choice of PET estimation method.
For this study, PET correction using LAI and aspect maps were eventually adopted. The
PET parameters related to correction using LAI parameters were found to be sensitive.
The process of interflow was also found to be sensitive to streamflow predictions in the
model set up. This was shown in the sensitivity analysis characterized with 3 out of the
5 interflow parameters showing huge sensitivity. Lastly, the percolation process, through
the recharge coefficient parameter was found to be sensitive to the streamflow dynamics in
the study area. These sensitive parameters were selected to calibrate the model to obtain
optimum parameter values with 3000 iterations.

3.3. Model Calibration

All four cases were calibrated with the sensitive parameters obtained from the sensi-
tivity analysis. These cases are used to consider the simultaneous effect of PET correction
technique and multiple LULC maps. The estimated NSE value ranges between 0.226
and 0.422, with the highest in Case 4 and the lowest at Case 1 respectively. PBIAS and
MAE value for Case 1 and Case 3 were the highest, indicating a better performance, with
Case 2 and Case 4 the better cases. KGE values for the modeled cases during calibration
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ranges between 0.419 and 0.544 for the calibration, with Case 4 having the highest KGE
value indicating the best performance with this metric. NSEln and NSEinv were adopted
to filter out the high flow sensitivity of conventional NSE during estimation. The range
of NSEln was −0.36 and 0.05 while that of NSEinv was −0.65 and −0.61. Considering the
individual effect of PET correction method on the model performance, Case 1 and Case 2
were configured with the same input data but different PET correction method. Case 3 and
Case 4 were also configured with the same input data but different PET correction method. In
this vein, the NSE value of Case 2 revealed higher value than that of Case 1 while that of Case
4 also revealed a higher NSE value than that of Case 3. To isolate the effect of multiple land
cover data on the model, Case 1 and Case 3 were configured with the same input dataset but
different land cover configuration. Case 2 and Case 4 were also configured with the same
input data but different land cover configuration. In this comparison, Case 3 and Case 4
proved better with higher NSE values. KGE values for these cases also follows the same
pattern with the Case 4 having the best performance among the cases as shown in Table 3.

Table 3. Performance assessment of the different cases.

NSE (-) NSEln NSEinv PBIAS (%) KGE MAE (m3/s)

Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val

Case 1 0.23 0.19 −0.36 −0.08 −0.63 −0.38 43.5 29.2 0.42 0.51 15.9 15.1

Case 2 0.41 0.38 0.05 0.26 −0.61 −0.48 2.8 −10.8 0.54 0.52 12 10.8

Case 3 0.24 0.22 −0.36 −0.07 −0.63 −0.36 44.2 30.2 0.42 0.51 15.9 15

Case 4 0.42 0.39 −0.02 0.23 −0.65 −0.89 8.8 −16.7 0.54 0.48 12.3 10.6

3.4. Model Validation

For the validation phase, the NSE value obtained were slightly lower than the calibra-
tion phase ranging from 0.19 and 0.39, with the Case 4 also showing the best performance.
The NSEln metric revealed its highest value as Case 2 and the lowest with Case 3, recording
efficiency of 0.26 and −0.07 respectively. KGE also recorded its highest value in Case 2
and lowest in Case 4. However, Case 4 performed better under MAE, with the lowest
value among the observed Cases as shown in Table 3. The hydrograph of the observed
and simulated average monthly discharges for all the cases is shown in Figure 3 and the
cumulative distribution frequency of daily discharge data is shown in Figure A2 should be
noted that all cases underestimated the frequency of the discharge until it reached about
1000 m3/s, when Case 2 and Case 4 overestimated the frequency, as did the other cases
when the discharge accumulated to about 1400 m3/s.

Figure 3. Observed and simulated average monthly discharge of designed 4 cases. (a) Calibration (b) Validation.
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3.5. Hydrological Indices

The annual discharge, wet season flows, dry season flows and base flow of the modeled
cases were used to evaluate the model’s performance by comparing them with the observed
data from the gauging station, as shown in Table 4. For annual discharge, wet season flows,
low flows and dry season flows, Case 2 performed better than the others, although Case 4
also performs optimally. For annual discharge, the percentage difference of Case 2 is 2.89%
while that of the worst performance is Case 3, with a percentage difference of 44.37%. The
dry season flow performance showed a different trend, with Case 3 performing better than
the other cases, with a percentage difference of 1.62% against the lowest performing case,
which was Case 2 with a difference of 22.7%. Finally, for the high flows, case 1 has the
lowest percentage difference of 1.48%, indicating the best scenario for this flow type.

Table 4. Performance of mHM in simulating hydrological indices.

Hydrological Indices Case Difference (%)

Annual Discharge

Case 1 43.63

Case 2 2.89 *

Case 3 44.37

Case 4 8.96

High flows (Q10)

Case 1 1.48 *

Case 2 15.21

Case 3 1.93

Case 4 11.53

Low flows (Q90)

Case 1 2.96

Case 2 0.97 *

Case 3 3.05

Case 4 1.16

Wet flows

Case 1 91.97

Case 2 29.50 *

Case 3 92.18

Case 4 40.21

Dry flows

Case 1 2.88

Case 2 22.7

Case 3 1.62 *

Case 4 21.1

Base flow

Case 1 43.45

Case 2 2.78 *

Case 3 44.19

Case 4 8.83
* Bold indicates lowest (best) cases.

To show the effect of misclassification of land cover on discharge, monthly discharge
in the basin was predicted by providing the model with CORINE 2006 and MODIS 2006
sequentially. The CORINE land cover product characterized with forest, pervious and
impervious land cover predicted higher discharges between May and October, while the
MODIS land cover product with just pervious and impervious classes simulated higher
discharges for the rest of the months.
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The flow duration curve (FDC) is an important tool in hydrology to summarize
streamflow time series [59]. This study below applies FDC to observe the exceedance
probabilities of flows and further divides the flow into high flow, low flow and median
flow. Flows less or equal to 10% exceedance are characterized as high flows, flows between
50 and 60% exceedance probabilities are median flows and those beyond 90% exceedance
probabilities are low flows.

Flow duration curves as shown in Figure 4 describes the flow characteristics in the
basin and the variation in the different modeled cases. For the high flows as shown in
Figure 4b, case 1 and case 3 seems to capture the flows better and closer to the observed
flow. However, for the median and low flows, cases 2 and 4, configured with LAI data
provided optimum simulation that captures the flow.

Figure 4. Flow Duration Curve for (a) total flows (b) high flows (0–10%) (c) median flows (50–60%) (d) low flows (90–100%).

4. Discussion

The need to estimate the impacts of climate and land use change on discharge regime
has made hydrologic models popular worldwide, especially with their ability to predict
flows at gauges and ungauged catchments. However, these predictions are subjected to
uncertainty due to model bias, input data errors, and errors in model parameter values [60].
The goal of hydrologic modelers is to reduce uncertainties associated with the model out-
puts upon which decision about hydrologic fluxes are based. There have been numerous
studies focusing on different ways to improve model performance by exploring various in-
put data characteristics that affects the predictions in conceptual and physically distributed
models [17–19,61–63]. Models like mHM are spatially distributed since they consist of
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equations involving one or more space coordinates, which are used for simulation of spatial
variation in hydrological variables within a catchment as well as simple outflows and bulk
storage volumes. Such models make considerable demands in terms of computational time
and data requirements and are costly to develop and operate [6]. The results presented in
this study provide the spatial model’s response to varying characteristics of the input data
based on the objective under study. Recall that the scenarios labeled as Case 1 to Case 4 and
their varying input characteristics. Case 1 and Case 2 were configured with single LULC
data, with LAI influence on the Case 2 only. The same applies to Case 3 and Case 4 but with
multiple land cover classes, which makes it possible to observe LAI’s effect on the model
performance. LAI is a key biophysical vegetation property for interception that describes
biome-specific canopy structure and an essential variable in evaluating the interrelation of
the components of the water-soil-plant-atmosphere system, which influences environmen-
tal studies [64]. The vegetation of an area due to its LAI is a significant component of land
surface models that influence evapotranspiration simulation and, consequently, affects base
flow, recharge, infiltration excess, saturation excess, subsurface storm flow and catchment
wetness [25]. As hypothesized, the cases LAI data performed better than their counterparts
during calibration and validation process. The implication is that predictions are more
accurate when leaf area index is included in the model for correction on evapotranspiration.
Precise evaluation of evapotranspiration is a vital aspect of water balance estimation. About
60% of terrestrial precipitation returns to the atmosphere by plant transpiration (40%),
or through direct soil evaporation (20%) [65]. The correct simulations of LAI seasonal
dynamics and stomatal aperture in an eco-hydrological model are prerequisite of good
simulation of canopy radiation exchanges and transpiration fluxes which are important
components of the accurate water balance estimation [66].

Furthermore, the impact of single and multiple land cover data was observed. The
result associated better model performance with the cases with multiple land cover data.
This corroborates Jin et al., [1], where the use of multiple land-use datasets improved
model performance although with some complexities in simulation complexity due to
greater number of LULC patches. LULC maps are essential input of physically distributed
models since they spatially delineate the basin’s different morphological characteristics
that decide water’s fate on the earth’s surface. A detailed characterization of land cover
is essential for urban areas, as coarse spatial description might result in biased estimates
by hiding urban heterogeneous evapotranspiration [67]. Petrucci & Bonhomme [68] also
found a similar result to our study where increasing geographical information clearly
improves model performances with the land use classification providing the highest benefit.
Finally, considering the combined effect of both morphological characteristics, the case
with multiple land cover data and LAI to correct evapotranspiration performed better than
the other cases and the case with single land cover data, without LAI correction performed
worse. It is noteworthy that the discharge data were used in the model’s calibration,
which leaves the possibility of variation in model performance if different calibration
method or data was used. The data-intensive nature of physically distributed models often
leads to over-parameterization while effectively representing each hydrologic process that
constitutes such a model. This opens up another phase of research in hydrologic modeling
to solve over-parameterization and identify strategies to improve model performance
without overwhelming the model with information.

FDC provides an indepth response of the flow to varying configurations of the model
set up. While the total FDC gives a general response of the basin to the stream flow
timeseries, focusing on the response of specific flow type sheds essential information for
various aspects of water resources management, such as high flows for dam construction
and low flows for irrigation mangement [69].
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5. Conclusions

Hydrologic modeling remains an important decision support tool for efficiently allocat-
ing water resources and solving global water security issues, especially with the climate’s
non-stationarity and changing land use. The model outputs are characterized with some
degree of uncertainty by underestimating or overestimating the simulated values. The best
models are thus characterized with reduced uncertainties, and different methods are being
adopted to achieve this. This study explored the impact of LULC maps and LAI on the
performance of a fully distributed hydrologic model. Various model cases were set up to
evaluate the independent effects of LAI and LULC map on model performance. The result
showed that using LAI for accurate estimation of evapotranspiration values adopted for the
simulation of hydrologic processes increased the model performance when the model was
calibrated using discharge data. In addition to this, providing mHM with multiple LULC
datasets has better performance than those with single LUCL data. This study reiterated
the observation of Jin et al. [1] about the impact of multiple land cover datasets on model
performance. We further suggest using optimum land cover dataset when available to
enable the model to capture recent and relevant LULC patches that will be utilized in the
simulation of the hydrologic processes. Especially in rapidly developing landscapes, this
will be necessary to capture the basin dynamics. Furthermore, in the absence of multiple or
yearly LULC maps, other strategies that will reduce model uncertainty like using LAI data
for accurate estimation of evapotranspiration can be adopted.
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Acknowledgments: We thank Ali Arda Şorman and İsmail Bilal Peker for their fruitful discussions
on the data and study area. We also thank the three anonymous reviewers and editors for their
constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

http://villumfonden.dk/
https://www.dsi.gov.tr/Sayfa/Detay/744
https://doi.org/10.5281/zenodo.4575390


Water 2021, 13, 1538 14 of 18

Appendix A

Figure A1. Selected CORINE and MODIS land cover maps of the study area for CORINE 1990, CORINE 2012, MODIS 2001
and MODIS 2008.

Figure A2. Cumulative distribution function of observed and simulated daily discharge (a) calibration (b) validation.
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Table A1. Detailed Land cover statistics in Karasu Basin for the selected years using CORINE land cover data.

CORINE Land Cover Classes Years

1990 2000 2006 2012

%Land
Cover

Area
km2

%Land
Cover

Area
km2

%Land
Cover

Area
km2

%Land
Cover

Area
km2

Continuous urban fabric 0.05 1.33 0.04 1.23 0.07 1.92 0.57 16.13

Discontinuous urban fabric 1.35 38.15 1.48 41.77 1.12 31.49 0.67 18.98

Industrial or commercial units 0.41 11.62 0.48 13.45 0.58 16.22 0.57 15.99

Road and rail networks 0.01 0.37 0.05 1.49 0.02 0.64 0.05 1.52

Airports 0.31 8.77 0.31 8.83 0.31 8.83 0.32 9.02

Mineral extraction sites 0.08 2.14 0.11 3.20 0.14 3.93 0.17 4.85

Construction sites - - 0.02 0.60 0.02 0.57 0.05 1.44

Green urban areas 0.02 0.48 0.02 0.67 0.02 0.68 0.01 0.25

Sport and leisure facilities 0.22 6.15 0.21 5.83 0.18 5.14 0.21 5.89

Non-irrigated arable land 18.07 509.51 18.08 509.72 5.36 151.21 5.30 149.53

Permanently irrigated land 8.29 233.87 8.23 232.04 17.45 492.00 17.42 491.15

Pastures 2.25 63.45 2.15 60.74 4.64 130.93 4.43 125.00

Complex cultivation patterns 4.19 118.15 3.97 111.93 6.25 176.34 6.26 176.63

Land principally occupied by
agriculture with significant areas

of natural vegetation
9.56 269.55 9.39 264.73 9.60 270.74 9.61 270.95

Broad-leaved forest 0.78 21.88 0.82 23.07 0.51 14.37 0.48 13.45

Coniferous forest 0.12 3.44 0.14 4.02 0.14 3.87 0.14 4.06

Mixed forest 0.74 20.87 0.75 21.25 0.27 7.51 0.24 6.82

Natural grasslands 25.49 718.63 25.38 715.67 31.65 892.50 32.97 929.63

Transitional woodland-shrub 11.32 319.20 11.29 318.43 3.55 100.22 2.19 61.87

Beaches dunes sands 0.12 3.38 0.10 2.66 0.23 6.60 0.23 6.46

Bare rocks 0.37 10.46 0.37 10.30 0.42 11.96 0.43 12.15

Glaciers and perpetual snow 15.41 434.62 15.41 434.52 16.71 471.20 16.81 473.98

Inland marshes 0.62 17.40 0.63 17.64 0.17 4.64 0.35 9.81

Water bodies 0.04 1.10 0.40 11.17 0.41 11.45 0.33 9.42

Table A2. Normalized sensitivity parameters.

Parameters Range Normalized Sensitivity

Rotfrcoffore 0.9–0.999 1.00000

pet_aforest 0.2999–1.3 0.48665

pet_apervi 0.2999–1.3 0.14471

Ptflowconst 0.6462–0.9506 0.14227

Infshapef 1.0–4.0 0.09453

ptflowdb −0.3726–0.1870999 0.07084

pet_aimpervi 0.29999–1.3000 0.01222

ptflowclay 0.0001–0.00289 0.01091
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Table A2. Cont.

Parameters Range Normalized Sensitivity

rotfrcofimp 0.9–0.9499 0.00945

ptfkssand 0.006–0.02599 0.00339

ptfksconst −1.2–0.28499 0.00841

ptfhigconst 0.5358–1.1232 0.00793

rotfrcofclay 0.9–0.999 0.00339

expslwintflw 0.05–0.3 0.00095

rechargcoef 0–50.0 0.00044

intrecesslp 0–10.0 0.00040

slwintreceks 1.0–30.0 0.00040

pet_bb 0–1.5 0.00039

pet_cc −2.0–0 0.00031

Rotfrcofsand 0.001–0.09 0.00002

References
1. Jin, X.; Jin, Y.; Yuan, D.; Mao, X. Effects of land-use data resolution on hydrologic modelling, a case study in the upper reach of

the Heihe River, Northwest China. Ecol. Modell. 2019, 404, 61–68. [CrossRef]
2. Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Review: Sources of hydrological model uncertainties and advances in their analysis.

Water 2021, 13, 28. [CrossRef]
3. Gan, T.Y.; Biftu, G.F. Effects of model complexity and structure, parameter interactions and data on watershed modeling. In

Calibration of Watershed Models; American Geophysical Union: Washington, DC, USA, 2004; pp. 317–329. ISBN 087590355X.
4. Bulygina, N.; Gupta, H. Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation.

Water Resour. Res. 2009, 45. [CrossRef]
5. Son, K.; Sivapalan, M. Improving model structure and reducing parameter uncertainty in conceptual water balance models

through the use of auxiliary data. Water Resour. Res. 2007, 43. [CrossRef]
6. Lohani, A.K. Rainfall-Runoff Analysis and Modelling; National Institute of Hydrology: Roorkee, India, 2018.
7. Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6,

279–298. [CrossRef]
8. Vrugt, J.A. Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB

implementation. Environ. Model. Softw. 2016, 75, 273–316. [CrossRef]
9. Doherty, J. PEST: Model-Independent Parameter Estimation, User Manual, 5th ed.; Watermark Numerical Computing: Brisbane,

Australia, 2010.
10. Camargos, C.; Julich, S.; Houska, T.; Bach, M.; Breuer, L. Effects of input data content on the uncertainty of simulatingwater

resources. Water 2018, 10, 621. [CrossRef]
11. Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [CrossRef]
12. Younghun, J.; Venkatesh, M. Uncertainty Quantification in Flood Inundation Mapping Using Generalized Likelihood Uncertainty

Estimate and Sensitivity Analysis. J. Hydrol. Eng. 2012, 17, 507–520. [CrossRef]
13. Muleta, M.K.; McMillan, J.; Amenu, G.G.; Burian, S.J. Bayesian Approach for Uncertainty Analysis of an Urban Storm Water

Model and Its Application to a Heavily Urbanized Watershed. J. Hydrol. Eng. 2013, 18, 1360–1371. [CrossRef]
14. Rampinelli, C.G.; Knack, I.; Smith, T. Flood Mapping Uncertainty from a Restoration Perspective: A Practical Case Study. Water

2020, 12, 1948. [CrossRef]
15. Bouslihim, Y.; Rochdi, A.; El Amrani Paaza, N.; Liuzzo, L. Understanding the effects of soil data quality on SWAT model

performance and hydrological processes in Tamedroust watershed (Morocco). J. Afr. Earth Sci. 2019, 160, 103616. [CrossRef]
16. Ficchì, A.; Perrin, C.; Andréassian, V. Impact of temporal resolution of inputs on hydrological model performance: An analysis

based on 2400 flood events. J. Hydrol. 2016, 538, 454–470. [CrossRef]
17. Li, C.Z.; Wang, H.; Liu, J.; Yan, D.H.; Yu, F.L.; Zhang, L. Effect of calibration data series length on performance and optimal

parameters of hydrological model. Water Sci. Eng. 2010, 3, 378–393. [CrossRef]
18. Ilampooranan, I.; Schnoor, J.L.; Basu, N.B. Crops as sensors: Using crop yield data to increase the robustness of hydrologic and

biogeochemical models. J. Hydrol. 2020, 125599. [CrossRef]
19. Orth, R.; Staudinger, M.; Seneviratne, S.I.; Seibert, J.; Zappa, M. Does model performance improve with complexity? A case study

with three hydrological models. J. Hydrol. 2015, 523, 147–159. [CrossRef]

http://doi.org/10.1016/j.ecolmodel.2019.02.011
http://doi.org/10.3390/w13010028
http://doi.org/10.1029/2007WR006749
http://doi.org/10.1029/2006WR005032
http://doi.org/10.1002/hyp.3360060305
http://doi.org/10.1016/j.envsoft.2015.08.013
http://doi.org/10.3390/w10050621
http://doi.org/10.1016/j.aqpro.2015.02.126
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000476
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000705
http://doi.org/10.3390/w12071948
http://doi.org/10.1016/j.jafrearsci.2019.103616
http://doi.org/10.1016/j.jhydrol.2016.04.016
http://doi.org/10.3882/j.issn.1674-2370.2010.04.002
http://doi.org/10.1016/j.jhydrol.2020.125599
http://doi.org/10.1016/j.jhydrol.2015.01.044


Water 2021, 13, 1538 17 of 18

20. Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration
Capacity Model. Water Resour. Manag. 2020, 34, 3779–3794. [CrossRef]

21. Aghsaei, H.; Mobarghaee Dinan, N.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land
use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ.
2020, 712, 136449. [CrossRef] [PubMed]

22. Setyorini, A.; Khare, D.; Pingale, S.M. Simulating the impact of land use/land cover change and climate variability on watershed
hydrology in the Upper Brantas basin, Indonesia. Appl. Geomat. 2017, 9, 191–204. [CrossRef]

23. Boongaling, C.G.K.; Faustino-Eslava, D.V.; Lansigan, F.P. Modeling land use change impacts on hydrology and the use of
landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy
2018, 72, 116–128. [CrossRef]

24. Das, P.; Behera, M.D.; Patidar, N.; Sahoo, B.; Tripathi, P.; Behera, P.R.; Srivastava, S.K.; Roy, P.S.; Thakur, P.; Agrawal, S.P.; et al.
Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005
using variable infiltration capacity approach. J. Earth Syst. Sci. 2018, 127, 1–19. [CrossRef]

25. Tesemma, Z.K.; Wei, Y.; Peel, M.C.; Western, A.W. The effect of year-to-year variability of leaf area index on Variable Infiltration
Capacity model performance and simulation of runoff. Adv. Water Resour. 2015, 83, 310–322. [CrossRef]

26. Chen, Y.; Niu, J.; Kang, S.; Zhang, X. Effects of irrigation on water and energy balances in the Heihe River basin using VIC model
under different irrigation scenarios. Sci. Total Environ. 2018, 645, 1183–1193. [CrossRef]

27. Al-Safi, H.I.J.; Sarukkalige, P.R. The application of conceptual modelling to assess the impacts of future climate change on the
hydrological response of the Harvey River catchment. J. Hydro-Environ. Res. 2020, 28, 22–33. [CrossRef]

28. Bisht, D.S.; Mohite, A.R.; Jena, P.P.; Khatun, A.; Chatterjee, C.; Raghuwanshi, N.S.; Singh, R.; Sahoo, B. Impact of climate change
on streamflow regime of a large Indian river basin using a novel monthly hybrid bias correction technique and a conceptual
modeling framework. J. Hydrol. 2020, 590, 125448. [CrossRef]

29. Singh Jasrotia, A.; Baru, D.; Kour, R.; Ahmad, S.; Kour, K. Hydrological modeling to simulate stream flow under changing climate
conditions in Jhelum catchment, western Himalaya. J. Hydrol. 2021, 593, 125887. [CrossRef]

30. Paul, P.K.; Kumari, N.; Panigrahi, N.; Mishra, A.; Singh, R. Implementation of cell-to-cell routing scheme in a large scale
conceptual hydrological model. Environ. Model. Softw. 2018, 101, 23–33. [CrossRef]
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